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A SEQUENTIAL SIGNED-RANK TEST FOR SYMMETRY!

By MARrIoN R. REYNOLDS, JR.

Virginia Polytechnic Institute and State University

A sequential procedure for testing the hypothesis that the distribution
of a sequence of i.i.d. random variables is symmetric about zero is given,
where the test statistic is a function of the signs and the ranks of the
absolute values of the observations. Necessary and sufficient conditions
that the individual signed ranks be independent are given. The critical
region, power, and expected sample size of the test are determined approxi-
mately by using the fact that the test statistic behaves asymptotically like
a Brownian motion process.

1. Introduction. Consider the problem of testing that a sequence X;, X,, - - -
of independent and identically distributed random variables has a distribution
which is symmetric about some given value. This problem arises, for example,
in testing the effects of two treatments where the subjects are arranged in pairs;
each of the treatments is given to one member of the pair chosen at random,
and the random variables under consideration are the differences between the
responses of the subjects within the pairs. For the problem of testing the
hypothesis of symmetry, sequential parametric tests (e.g., the sequential z-test)
and nonparametric fixed sample size tests (e.g., the sign test and the Wilcoxon
signed-rank test) are available, but there appear to be very few sequential non-
parametric tests available. This paper develops a sequential nonparametric test
based on a signed-rank statistic proposed by Parent (1965).

Among the existing sequential nonparametric tests for symmetry, a sequential
probability ratio test based on the signs and ranks of the observations was
developed by Weed, Bradley and Govindarajula (1969). This test assumes that
the alternatives are Lehmann alternatives. Miller (1970) proposed a truncated

sequential test based on the Wilcoxon signed-rank statistic. If X, X,, --- is a
sequence of independent and identically distributed random variables with con-
tinuous cdf F, R}, is defined to be the rank of |X;| in the set {|X;|, |Xy|, - - -, | Xjl}s

i < J, and sgn (X;) is defined to be 1 if X, > 0and — 1 otherwise, then one form
of the Wilcoxon signed-rank statistic is

SRn = Z;{;l Sgn (Xt)R;Fn .
Parent (1965) developed a statistic which, like the Wilcoxon statistic, is based

on the signs and ranks of the absoluté values of the observations and can be
used to test for symmetry. Parent defined the signed sequential rank (SSR) of
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X, to be
Y, = sgn (X)R, .
Note that Y, is the product of sgn (X;) and the rank of |X;| relative to the
absolute values of the previous observations only. The value of Y, does not
change as more observations are taken as do the ranks in the Wilcoxon statistic.
The range of possible values for Y, increases with i, so if we define a new
variable Z, = Y,/(i + 1), then —1 < Z, < 1 for all i.
In this paper it is proposed that the statistic
1

i+ 1
be used in a truncated sequential test with linear barriers. The test procedure
using the statistic Z,* continues taking observations as long as Z,* € (— =, =)
and n < N where ~ is a positive constant and N is the truncation point. If
Z,* ¢ (—=, =) for some n < N, then the null hypothesis of symmetry about zero
is rejected and if n reaches N without Z,* leaving the interval (— -, ) then the
null hypothesis is accepted. It will be shown that a continuous normalized
version of Z#,,,, 0 < ¢ < 1, converges to a Brownian motion process on [0, 1]
as N — oo. If Nis fairly large, then the probability that Z,* leaves the interval
(— =, =) before time N can be approximated by the probability that a Brownian
motion process crosses linear barriers by a speciffied time. The Brownian motion
approximation is used to determine the critical value ~ and also the power of
the test under certain alternatives. The test relies on the same truncated linear
barrier procedure that Miller used for the statistic SR, /n.

Section 2 of this paper gives necessary and sufficient conditions for the inde-
pendence of the signed sequential ranks Y,, or equivalently the Z,. It is shown
that the Z; are independent under the null hypothesis of symmetry about zero
so that Z,* is the sum of independent random variables. Section 3 shows that
Zyys 0 <t £ 1, when normalized and redefined to be continuous in [0, 1],
converges to a Brownian motion process which can be used to approximate the
behavior of the statistic Z,*. Section 4 gives expressions for the approximate
power and expected sample size of the test and compares the SSR statistic with
the Wilcoxon statistic for the truncated linear barrier test.

Z =2z = 2 sgn (X;)Rf

2. Necessary and sufficient conditions for independence of the signed se-
quential ranks. If Y}, Y,, ... are the signed sequential ranks corresponding to
the sequence X, X,, - .. of i.i.d. random variables with continuous cdf F, then
Parent (1965) has shown that a sufficient condition for the Y, to be independent
is that F satisfy

(2.1) F(—x)[1—F(0)] = FO)[1 — F(x)], x=0.
If F(0) # 0 or 1 and f is the density of F, then (2.1) is equivalent to
fi=2 = O f), x>0,

1 — F0)
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so that the density at —x is a constant multiple of the density at x. This
condition will be satisfied under the null hypothesis of symmetry about zero
and also under some alternatives. In this section it will be shown that (2.1) is
a necessary condition for the signed sequential ranks to be independent and
some additional conditions equivalent to (2.1) will be given.

Consider the n random variables X, X,, - . ., X, and the corresponding vector
of signed sequential ranks Y, = (Y,, Y,, ---, Y,). The event Y, =y, corre-
sponds to a particular ordering of the X’s with p of the X’s positive and n — p
negative, where p is the number of positive components in y,. The absolute
values of the n — p negative X’s have a particular ordering among the positive
X’s. Thus each y, corresponds to an event like

0= eX; <X, < - <e&X,;)

where p of the ¢, are 1 and n — p are —1. Let F;(+) be the cdf of ¢, X , i.e.,
F(x) = F(x) ife;, = 1 and Fy(x) = 1 — F(—x) if¢; = —1. Then

PlY, =y, Yy=py -, Yn:yn}zp{0§51le§erj2§ _—<—_5an%}
1 dFy(u;) .

= souol=0 ;oz=u1 ce Scuo,n=u,,,’_l

The following theorem gives necessary and sufficient conditions for the signed
sequential ranks Y,, Y,, Y;, - - - to be independent.

THEOREM 2.1. If X, X,, X;, -+ is a sequence of independent and identically
distributed random variables with continuous cdf F and Y,, Y,, Y,, - - - are the cor-
responding signed sequential ranks, then the following conditions are equivalent:

(i) Y, Y, Y, .. are independent,
.. 1
i) P{Y, =y} =—[1 = FO] y,>0

= FO) Pu <0

forall n = 1, where y, is a nonzero integer in [ —n, n],
(i) F(—x)[1 — F(0)] = FO)[1 — Fx)], x = 0,
(iv) |X,| and sgn (X)) are independent,
(V) R}, and sgn (X,) are independent for all n > 1.

Proor. If F(0) = 0, then all of the X’s are positive and the signed sequential
ranks reduce to sequential ranks (see Parent (1965)) which are independent with
PlY,=y,}=1/n, y,=1,2,...,n A proof of this is given in Barndorff-
Nielsn (1963). In this case sgn (X,) = 1 with probability one so all the con-
ditions are satisfied. By a similar argument all the conditions hold if F(0) = 1,
so we can assume from now on that F(0) + 0 or 1.

(i) = (ii). Assume that (i) holds. For n =1, P{Y, =1} =1 — F(0) and
P{Y, = —1} = F(0). Forn > 2 let y be a nonzero integer such that —(n — 1) <
y <n — 1and let s =sgn(y). Using the fact that X,_, and X, have the same
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distribution gives

A TIA 1A

(3= P{Y; = yJIP{Y, = yIP{Y, =y + s}
=PYi=py» Yn—2=yn—2’ =) Y, =v+ 9}
=P0=ZeX; < Sy J|u| = SX, 1
(2.2) S sX, S e, S 0 = &, X }
= P[0 < ¢ X; - = em_lX,-m__1 < sX,
S X S ek, , = = & X}
= P{Y =yv s Yoy = Yoo Yamr = )5 Yo = )}
= [[1122 P{Y, = y:J1P{Yaoy = YIP{Y, = )}
The first and last parts of (2.2) imply that
PY,=y+s}=PY, =)}, y==%l -, (-1,

and thus P{Y, = y} does not depend on |y|. (ii) now follows from the fact that
P{Y, > 0} = P{X, > 0} = 1 — F(0) and P{Y, < 0} = F(0).

(ii)=>(iii) Let |[X|2Y, 1<k <n—1, be the kth order statistic from
{1 X, | X, - - +» [X,oil}. For 0 < a < 1 define |X|,~ and |X|,* by

|X|,~ = inf{u: P(|X| < u) = a}
1X],* = sup {u: P(X| < ) = a}
so that if |X|,~ = |X|,* then |X]|,” is the a percentile point of the distribution
of |X,|. Note that since F is assumed to be continuous then P{|X| < X"} =
P{|X| = |X],"} = a.
Now Y, =y, > 0 if and only if X, is positive and is exceeded by exactly
n — y, of the absolute values of the previous n — 1 observations. Thus

PO < Y, < [nal} = PO < X, < X[t} = §2 [FO) — FO)dF ()

Hlina)
where Fxp 1(y) is the cdf of |X|r, |X|o=* = 0, and |X[3™' = +oo.

Itis known (see Rao (1965), page 355) that if |X|,~ = |X]|,*, then |X|Z con-
verges to |X|,” as n — oo with probability 1. A slight generalization of this
theorem for the case |X|,” < |X|,* gives for ¢ > 0

lim,,_ P{|X|,- —e < |X|54 < |X|,F +¢ forall n>mp=1.

Since [F(y) — F(0)] < 1,
§ [F(y) — FO)]dF xp-1(y) = §i% lz**‘ [F(y) — FO)] dFyp=1(3) + 0(1) -
Also,
[F(X|,~ — ¢) — FO)IP{X],~ — ¢ < |[X|gah < [X]F + ¢}
< S IH IR — FO)1dF xpa (9)

= [F(lea + ¢) — FO)IP{| X, — e < [X|tay = |X[o" + ¢}
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so that
F(X|,” —¢) — F(0) < lim inf, .., P{0 < X, < | Xt

[na]

(2.3) < limsup, . P[0 < X, < |X|t,
=< F(|X|,* + ¢) — F(0).

Now (2.3) holds for all ¢ > 0 and using the fact that F(|X|,”) = F(|X|,*),
lim,_., P{0 < Y, < [na]} = lim,_, P[0 < X, < |X|5}
= F(|X],") — £(0) -
A similar argument gives
lim, ., P{—[na] < Y, < 0} = lim,_, P{0 < —X, < |X|rz}
= F(0) — F(—[X],") -
By the hypothesis that (ii) holds
lim, .. P{0 < ¥, < [na]} = lim, ., 8L [1 — F(0)] = af1 — F(0)]
n
and
lim, ., P{—[na] < Y, < 0} = lim,_., 1" F(0) = aF(0).
n
It follows that
a[l — F(0)] = F(|X|,”) — F(0) and  aF(0) = F(0) — F(—|X]|,”).

Solving for « gives

1 _ 1 -
1_—F(O)[F(|X|a ) —F(O)] =a= W[F(O) — F(—1X].7)]
and from this it is easy to show that (iii) holds for x = |X|,~. Since « is an
arbitrary number in [0, 1], F(|X|,”) = F(|X|,*), and F(—|X|,”) = F(—|X|,%),
then (iii) holds for all x > 0.

The equivalence of (iii) and (iv) was proved by Parent by showing that the
joint distribution of sgn (X,) and |X,| will factor into the product of the margin-
als if and only if (iii) holds. (iv) — (v) follows from the fact that the X’s are
independent, and (v) — (ii) follows from the distribution of R}, and of sgn (X,,).

(ii) = (i). (Parent). If (ii) holds then

It P(Y, = 3 = - FOP~[1 — FO)F

where p is the number of positive components in y,. From what we have
already proved (ii) implies (iii) so if ¢, = —1 then

dF(x) = d[1 — F(—x)] = T% dF(x) .
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Hence
P{Y'n = yn) = S:tol=0 S:toz=ul’ trt S;on=un_1 H?:l sz(uz)
F 0 P o0 oo o0 n
- |:1_—_-.—(F—2(—)Sj| S“1='0 S“2"'“1’ Tt S“n=“n—1 Hi:l dF(u’)
=|:_F@_T"”p{oéxj <X, <. <X}
1 — F(0) ! L "
= L Foy=+[1 — FO)P .
n!

Thus P{Y, =y,} = i, P{Y, = y;} so Y, Y;, - -+, Y, are independent. Since
this is true for every n > 1, Y,, Y,, Y;, - - - are independent.

3. Convergence of the signed sequential rank statistic to Brownian motion.

3.1. Introduction. The statistic that was proposed for testing the hypothesis
of symmetry was

Z'n,+ = Z?=1 Zi = Z?=1

Let Z,* = 0 and define
ZN+(t) = Zf"Nt] + (Nt - [Nt])Z[Nt]+1 s 0 =t L.

Y, 1
LA » X)R+ .
l—[— 1 i=1 l + 1 Sgn( z) it

For each value of N, Z,*(¢) is in C[0, 1], the space of continuous functions on
[0, 1] where C is given the uniform topology induced by the metric

o(9, k) = supyg,<1 9(7) — A(D)] g, he C[0, 1].

Using the theory of weak convergence of probability measures on C[0, 1] it will
be shown that a process X, (f) which is asymptotically equivalent to

ZyH(1) — EZ,*(1) tt
Var (Z,* (1))

converges in distribution to a Brownian motion process on [0, 1] with mean
zero and variance ¢ as N — co. The proof requires that the original observations
be independent and identically distributed but does not require that the signed
sequential ranks Y,, or equivalently the Z,, be independent.

3.2. Preliminary calculations. Before proving the convergence to Brownian
motion it is necessary to compute the mean and variance of Z,*. To facilitate
the computations Y, can be rewritten as

Yn = Z?=1 ¢'m

where
Bin = Pun(Xi X,) =1 | X| = X,
(3.1) =0 —X| < X, < |Xi]
= -1 X, =-Ix.
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Thus
zZ,* = Z"-—lz = Z"-l} Zz—l ¢i

The mean and variance of Z,* can thus be expressed in terms of the means,
variances, and covariances of {¢,;}.

Let
¢ = E[¢;] = § — §= F(—x) dF(x), %,
0 = E[$;;] = 1 — 2F(0),
and
7 =E[¢;; 5] = § — 2w F(—x) dF(x) + (2, F(—x)* dF(x) .
Then
R Y 1=J=1 1
and
EZ* = né + (6 — 28)log (n + 1) + O(1).
Also
Var (Z;) = G + Ty (=G-8 + (- DEF—280)+ 1 -6,
and forj < k
Cov (2, ) = ———_[(j — )3y — 2¢%) + 30" — 0¢].

(4 Dk + 1)
Combining the variance and covariance terms for the Z’s gives

Var (Z,* — Z,,,+)

(3.2) = Dieen 1y + U = DG = &)+ U = DG — 260) + 1 — 07
1
2 =m+1 = ;+1————°———
X [(j — D)Gr — 2&2) + 367 — 0¢] (m < n)

and
Var (Z,*) = nz? 4 o(n)

where ? = [§ + 67 — 5&7).
In proving convergence it will be convenient to use the statistic
A, =" E[Z,7|X;] — (n— )EZ,*

as an approximation to Z,*. To get a continuous version of 4, corresponding
to the continuous function Z,*() define

Ay(t) = Ay + (Nt — [Nt])(A[Nt]+1 — Apys)
= DM E[Zy*(1)| X;] — [NEZ,* (1)

for 0 <7< 1. Note that if the X, are independent then A4,(¢) is constructed
from partial sums of independent random variables so that the functional central
limit theorem can be applied to the sequence {A4,(7)}.
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Using the conditional expectations of {¢,,}, 4, can be written as

(sgn X;—0)

(3.3) = Zia[ ST 00 — 8 + -

+ (Bt )(F(X> >] + EZ
and the variance of 4, — 4,, is given by
Var (A, = A) = Zfwns U — DG =€)
(3.4) + (= DA — 260 427 — &) + 1 — ¢7]
1
23 + 2k =it
E e

X [(J — DBr — 28 + (36° — €06)] .
Thus

(3'5) Var (AN(t)) = Var (A[Nt]) + (Nt - [Nt])2 Var (A[Nt]+1 - A[Nt])
= [Nt]z? 4 o([Nf]) .

In order to use A4, as an approximation to Z,* it is necessary to show that
A, is in some sense close to Z,*. We will use E[Z,* — A4,] as a measure of
closeness. If g(Xi, ..., X,) is a function of independent random variables
Xy -+, X, andif 37 E[g(X,, -+, X,) | X;] — (n — 1)Eg(X,, - - -, X,) is used as
an approximation to g(X,, - - -, X,), then from Lemma 4.1 in Héjek (1968)
(3:6)  Elg — X3 E(9|X;) + (n — DEGT = Var (9) — Var (T3, E(9] X)) -
Using (3.2), (3.4) and (3.6), we have

E[(Z,* — Z,%) — (A, — A} = Var (Z,* — Z,%) — Var (4, — 4,)

(3.7) = Slnn _H)z( — 2 + &)
= log (") (4 — 27 + &) + 0(1),
n>mz=0,

where O(1) is for n — oo.

3.3. A functional central limit theorem. We can now state and prove the
theorem on the convergence of the sequence {X,(f)}. Note that X,() is a
random function in the space C[0, 1] of continuous functions on [0, 1].

THEOREM 3.1. If X, X,, - .- is a sequence of i.i.d. random variables with con-
tinuous cdf F, and Z,*(t) is defined by

Zyt(t) = 2 Z, 4 (Nt — [Nt Zy4141

where
z, =1
i+ 1

k3

sgn (X)R

11
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then the function

X,(1) = _N% (Zo*(t) — NEE), o<r<1,

where EZ,*(t) = Nt§ + o(Nt) and Var (Z,%(t)) = Ntr* + o(Nt), converges in dis-
tribution to a Brownian motion process on [0, 1] with mean zero and variance t.

Proor. To prove that X,(f) converges to a Brownian motion process it is
sufficient (Theorem 8.1, Billingsley (1968)) to verify the convergence of the
finite dimensional distributions and the tightness of {X(?)}.

For t €0, 1], X,(f) can be written

_ (INQY: Ag() = EAy(o) Var (A, | 1z
Xu(t) = < N > Var (Ay(1))} ([N)te + Ntz (Zivey — Awve)
(3.8) o (Bdryy = INE) + — (N — [NO)(Zoyys — &)

|
+ ]—V_i;‘“ (Nt - [Nt])(A[Nt]-l—I - EA[Nt]+1 - A[Nt] + EA[Nt]) *

As N — oo, ([Nt]/N)} — t* and 1/([Nt]r)? Var (4,(t))} — 1. The second term on
the right in (3.8) converges in probability to zero by Chebychev’s inequality
and (3.7), and the third term converges to zero since EApy, — [Nf]§é =
(0 — 2¢) log ([Nt] + 1) + O(1). The fourth term also converges in probability
to zero since (Nt — [Nt])(Zyi41 — &) < 2. To show that the fifth term con-
verges in probability to zero use (3.4) and Chebychev’s inequality. From this
it follows that

— g Ax() — EAy(D)
(3.9) Xy(t) — t W—)PO.
Let t, t, - -+, t,, be M points in [0, 1]. Using (3.9) we can conclude (see e.g.
Theorem 4.1, Billingsley (1968)) that

(Xy(t), Xy(ts), + - -5 Xy(tar)
has the same limiting joint distribution as
(3.10) <t,% Ay(t) — EAy(t) 4 Ay(ty) — EAL(H,) ,
Var (Ay(1))t Var (Ay(1,))t

3 AN(’M) _ EAN(tM)> .
Var (4y(ty))*

M

If we can show that the normalized approximation statistic

1t Ax(t) — EAy(1)
Var (4,(1))!

(3.11) o<r<1,

converges to a Brownian motion process, then (3.10) must converge to the
proper multivariate normal distribution. First we check that Lindeberg’s
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condition holds when applied to

(3.12) Ay — EAy _ J3L [EZy*| X)) — EZy*] |

Var (4,)} Var (4y)}
Now by (3.3) and (3.5)

|E(Zy* | X;) — EZy*| < 2[}—{;—1 B | = o(Var (A
Applying Theorem 3.1 in Prohorov (1956), (3.11) converges to a Brownian
motion process. This proves the convergence of the finite dimensional distri-
butions.

To prove tightness of {X,(7)} it is sufficient to prove (see Theorem 8.2,
Billingsley (1968)) that for every ¢ > 0 and 7 > 0 there exists a d € (0, 1) and an
integer N, such that

(3.13) P{sup;;_,<; |[Xx(t) — Xy(s)| > ¢} < when N> N,.
The probability in (3.13) can be written as
P{sup;;_yi<s | Xn(t) — Xy(s)| > ¢}
B4) S P {supe s i (A0 — EAL(D) — (Au(s) — EAy(s))] > ¢}

P oo i (2270 = Ay0) — (Z346) — Ay(o)] > ¢}
e {suplt_sK,, Nlét ((EAy(t) — N€) — (EAy(s) — Ns£)| > e} :

The first term on the right in (3.14) can be made arbitrarily small by taking 0
small enough and N large enough, since (3.11) converges to Brownian motion.
The last term on the right also converges to zero since

(EA(f) — Nt&) — (EAy(s) — Ns€) = (6 — 2¢) log <%%{_i) + o1y,

For the middle term use the corollary to Theorem 8.3 in Billingsley (1968) to
get

P {SUp1c-scs 5= (20 (0) = Ay(0) — (Za7(9) = Ax(o))] > ¢}
< D5 P {SUPuvecsimnm i (20 — 44(0)
- (& (5) - @G> 5
= 25 gy (3 () -2 (7))
= () =G> 5
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Chebychev’s inequality and (3.7) can now be used to show that this term
converges to zero. This establishes the tightness of {X,(7)} and the proof is
complete.

4. A truncated test for symmetry.

4.1. Description of the test. It has been shown that if Y}, ¥,, ... are the
signed sequential ranks of X, X,, ... from a distribution with continuous cdf
Fand Z,* = 37, Y,/(i + 1) then

E[Z,*] = n§ 4 o(n) and Var (Z,%) = nt* + o(n) .

If f is the density of F and f is symmetric about zero, then EZ,* = 0 and
Var (Z,*) = 4n + o(n). If f is symmetric about some positive constant or if f
has median zero but is skewed to the right, then the expected value of Z,* is
positive. This suggests that Z,* could be used to test the hypothesis that f is
symmetric about zero against a general class of alternatives that includes sym-
metric distributions with shifted means and skewed distributions with zero
medians. The null hypothesis would be rejected if Z,* or |Z,*| is too large.
It is anticipated that most alternatives of interest will be shift alternatives so
the problem can be stated formally as testing the null hypothesis

H,: f issymmetric about 0
against the alternative hypothesis
H,: [ is symmetric about some d = 0.

The test procedure is a sequential procedure in which an upper bound N is
placed on the number of observations. At each stage n (< N) an observation
X, is taken and the value of Z,* is computed. If, for some n < N, Z,* does
not fall in some fixed interval (2, =), « < 0 < -, then sampling stops and H, is
rejected. If Z,* € (4, =) and n < N, then another observation is taken and the
value of Z},, is computed. If n = Nand Z,* € (4, =), then sampling stops and
H, is accepted. In cases where only one-sided alternatives are considered there
is only one rejection boundary for Z,*, i.e., either « = — oo or = = co.

If the value of the test statistic is close to zero in the two-sided test, then as
n approaches N a point is reached from which it is not possible to reach the
rejection boundary no matter what the value of the remaining Z’s. This fact
leads to the use of an inner acceptance boundary that permits early acceptance
of H,. At any point n, £ N the maximum amount that Z,* can increase or
decrease while taking the remaining N — n, observations is Y}, ., (i/i + 1).
Thus if for any n < N, Z,* satisfies
i

¥

L
i+ 1’

then H, can be accepted since it will not be possible to reject at a later time.

Z + Z?:’n&l l < Zn+ < & — Zév=n+1
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4.2. Power of the tests. In Theorem 3.1 it was shown that the function
Xy(t) = 2 (Z,(t) — Neg), o<1,
Niz

converges in distribution to a normalized Brownian motion process X(f), 0 <
t<1, as N> oo. Z,(t) is just a continuous version of Z},, so Nit(Zf,, —
[Nt]€) has approximately the same distributions as X(r) for large N. Under the
null hypothesis § = 0 and z = 1/3% so in this case (3/N)!Z},,, has approximately
the same distribution as X(r). It is well known that

P{supyg,<r X(f) = ¢} = 20 (_ %)
where ®(.) is the cdf of the standard normal distribution. Thus for the one-
sided test under the null hypothesis

P{reject H,|H)} = P{Z,* = = forsome n=1,2, ..., N}

o (3) 7z (3 =
~ P{sup,.,; X(t) = ¢} = 20(—c)

where ¢ = (3/N)}=. It will be convenient to use (3/N)!Z,* as the test statistic
since in this case the critical value ¢ will not (under the Brownian motion
approximation) depend on N.

Under the alternative hypothesis (3/N)!Z},, has approximately the same dis-
tribution as a Brownian motion process with mean (3N)¢t and variance 37,
If X*(r) is a Brownian motion process with mean pt and variance ¢’ then
Dinges (1962) proved that

4.1) P{supyc,<r X*(t) = c}
op(25)8 (Z£52) o)
- exp( g’ oT? + oTt /)’
Using (4.1), the probability that the test rejects by a given time M(M < N) is

given by

3
(4.2) Plmax, oy £, = =} = P {S}lpoéth/N X*t) = (%) a}

= e () (55) + o ()

Setting M = N in (4.2) gives the power of the test.

For two-sided tests we will consider only symmetric tests, although the unsym-
metric case could be treated with some increase in the complexity of the
formulas. Anderson has shown (1960) that if X*(f) is a Brownian motion
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process with mean pt and variance o% then

Plsupyg,<r | X*(1)] = ¢}

(4.3) = (= 1)
0 (A= ) (2265 (11 g (220))
0 (ST B ) (255) 4 (1))

The first term in the series (4.3) above is just
(4.4) P{supyg,cr X*(t) = ¢} 4+ P{inf_, ., X*(f) £ —c}.

The series is alternating and if the first term is used as an approximation to the
whole expression the error is bounded by the second term which is small for
values of u, ¢ and ¢ in our case. Thus for the two-sided test the critical value
c can be determined by
3\¢
(3) 2

~ P{supyg., |X(#)| = c}
~ 4®(—c).

P{reject H,|H)} = P {maxls”sN

= f

Under the alternative hypothesis

(7)
N n
=~ P{sUPogicyw [X*(1)] = ¢}

4.5) ~ P{SupostsM/N X*(t) = c}
+ Plinfyg,<p/n X*(t) < —c}

=op(55) 0 (F5) + 2 (5R)

()0 () (202,

P{maXISnsM = C}

Setting M = N in (4.5) gives the approximate power of the test.

4.4. Expected sample sizes. The Brownian motion approximation can be used
to compute the expected sample size for the one-sided and two-sided tests. If
t* is the time until a Brownian motion process X *(r) either exits from (4, =) or
t reaches T, then

Er* = sgs[di P{r* < s}:'a’s+ T.P{t* = T}.
A

For a one-sided test P{t* < s} = P{sup,g,, X*(¢) = c} for s < T, and this prob-
ability is given by (4.1). Anderson (1960) has proved the following lemma.
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LEMMA.

th[iCI)(At + B)]dt
O Ldr t
= - H e (D) — e (TR)
T% 1
A (2t

Using the lemma it is easy to verify that

s[4 s9)a= £[0(2270) - on ()05

so that

(4.6) Er* =@ (”i; c)(% _ T>

—(I)<_T‘Lf_Tl;_£>exp<2c#><# —|—T>-|— r+0.

o

_L__exp[—(AT + BY[2T], B<O.

Now Et* ~ E(n*/N), where n* is the sample size of the test, so substituting
¢ = (3N)¥, ¢ = 3z? and T = 1 into (4.6) gives

e~ @(252) (5 - W)

—o () () (E ) e

For the two-sided test Anderson (1960) has shown that

57 s S Pl < s)ds

o D (=1 + ) fo(F=m)

x exp (Z271) (114 oxp (=5))

B ¢<—#T _a(TZ%S + 1)c> exp <2sc,u)( + exp (2cl~‘)>}

The first term in (4.7) above is

(4.7) =

“.8) {7 sdi P{SUPosic, X*(1) = c}ds + {7 s(—;i Plinfy.,z, X*(1) < —c}ds .
S S

The first term on the right in (4.8) above is given by (4.6) and the second term
by substituting — g into (4.6). The series (4.7) is an alternating series and a
bound for the error involved in using only the first term (4.8) is given by the
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second term, which is small for values of z, ¢ and ¢ in our case. Thus

4.9)  Et*~® (ﬁ%}ﬁ) (_;_ _ T) (1 4 exp <—02c,,z>>

_®<_1%7;%c><%+ T)(l —{-exp(g%)) + 2T.

Now Et* ~ E(n*/N) and letting # = (3N)}¢, ¢> = 37%, and T = 1 in (4.9) gives

o =0(255) (; =)+ o0(59)

(7)1 on()) 420

4.5. Comparison of the SSR and Wilcoxon statistics for truncated linear barrier
tests. Miller’s truncated sequential rank test for symmetry about zero using the
Wilcoxon signed-rank statistic was described in the Introduction. If R}, is the
rank of |X;| in (|Xy|, |X;], - -+, |X,]) and U* = sgn (X)) - R{,, then the Wilcoxon
signed-rank statistic can be expressed as

SR, = Yo, sgn (X)R}, = Xr, U™,

Note that U, unlike Y; = sgn (X,)R}, depends on all of the observations
X, X,, - -+, X, so that the rank of X, changes after each new observation is
taken. Although SR, can be written in such a way as to make the computation
fairly simple, the U;* are not independent even under the null hypothesis so
that SR, is not the sum of independent signed ranks.

Miller and Sen (1972) have shown that a continuous version of

SR[Nt] - E(SR[Nt]) tt

> 01,
Var (SRy,)} -

converges in distribution to normalized Brownian motion as N — co. If
(3/N)ISR,/n is used as the test statistic then Miller’s test is, under the null
hypothesis, approximately equivalent to normalized Brownian motion crossing
a linear barrier.

Under the alternative hypothesis E(SR,) = n*¢ + o(n?) and Var (SR,) =
4n®C? 4 o(n®) where {? = (=, F(—x)*dF(x) — F®(0)*. Then

o[R) S e

Var ((i)* SR%) ~ 1201
N N

h

and

Thus the test statistic (3/N)!SR,/n can be approximated by X *(n/N) where
X*(t) is a Brownian motion process with mean (3N)r and variance 12{%.
Miller has shown that the approximations are very good for N = 20 and N = 50
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where the alternative hypothesis is that the observations are from the double
exponential distribution with density

flx) = exp[—|x — A]], —o < x< oo

The mean of this distribution is A. If the Brownian motion approximation is a
reasonable approximation to the SSR statistic, then it should be possible to
compare Miller’s test using the Wilcoxon statistic with the test using the SSR
statistic.

In order to check on the accuracy of the Brownian motion approximation to
the power of the SSR test, several simulations were run for the null distribution
and for alternatives in the double exponential distribution with mean A.
Various values of ¢ and A were selected for N = 10, 20, 50. A summary of
the results is given in Table 1. For N = 50 the same 2000 sequences were used
to calculate the probability of rejection under the null hypothesis for the three
given values of c. Under the null hypothesis (A = 0) the Z’s are independent
and

P{an ! }z_l_, i:il,iz,...,in,
n+4 1 2n

In this case the Z’s can be generated directly from uniform random variables

without having to do any ranking. Under most alternative hypotheses the Z’s

will not be independent, so random variables from the specified alternative

have to be generated and the Z’s obtained from the observations by ranking.

Comparing, in Table 1, the simulation power with the Brownian motion
power shows that Brownian motion approximation over estimates the probability
of rejection for all values of N, A and ¢ considered. Although the power of the
tests is lower than the Brownian motion approximation predicted, the tests are
not necessarily worse than expected because the probability of accepting the
null hypothesis when it is true is greater than the value assumed by the
approximation.

It appears that in order to get the desired significance level a, the c-value
obtained from 4®(—c) = a should be reduced slightly so that the significance
level is actually a and the power is increased. Since it is difficult to adjust the
c-value in the simulation results the c-value in the approximation formulas was
increased to a value, say ¢/, such that the significance level predicted by the
formulas was equal to the value actually obtained in the simulation. When
this was done the Brownian motion approximation to the power was very close
to the power estimated by the simulation. The results for the adjusted Brownian
motion approximation are given in the last two columns of Table 1.

For purposes of comparison, the power of one-sided tests using the SSR and
Wilcoxon statistics was computed for shift alternatives for obervations from the
double exponential distribution centered at A. The choice of the double expo-
nential distribution permits the easy calculation of Var(Z,*) and Var (SR,)
which require that {=_ F(—x)*dF(x) be evaluated. The power of the two-sided
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TABLE 1
Power of two-sided SSR test for N = 10, 20, 50
. Adjusted
Number Number Estimated Brownian Br o']w nian ¢
N C A of of Power Motion Motion
Sequences Rejections Power Power
10 2.241 0 1000 26 .026 .050 .026 1.11
0 2000 122 .061 .100 .061 1.104
.5 500 205 .410 .494 .400 1.104
2 1.960 1.0 500 475 .850 .908 .852 1.104
1.5 500 490 .980 .993 .983 1.104
1.960 0 2000 160 .080 .100 .08 1.048
0 2000 72 .036 .050 .036 1.055
0 2H g 500 483 966 974 964 1.055
2.807 0 2000 17 .0085 .01 .0085 1.019
TABLE 2

Approximate power and expected sample size for S %

one-sided tests with N = 20 for SSR and Wilcoxon statistics

SSR Statistic

Wilcoxon Statistic

N=2
Power E[n] Power E[n]
A=0 .0500 19.74 .0500 19.74
.5 .4940 17.18 .4888 17.27
1.0 .9078 13.58 .9273 13.68
1.5 .9932 11.55 .9995 11.56
TABLE 3

Approximate power and expected sample size for 5 %

one-sided tests with N = 50 for SSR and Wilcoxon statistics

SSR Statistic

Wilcoxon Statistic

N =150
Power E[n] Power E[n]
A=0 .0500 49.35 .0500 49.35
.25 .4057 44.15 .4037 44.22
.50 .8564 34.06 .8604 34.19
.75 .9894 26.20 .9925 26.22
1.00 .99977 21.94 .99995 21.94

test for all but near alternatives is almost exactly the same as the power of a
one-sided test with the same c-value.

Table 2 gives the power and expected sample size from the Brownian motion
approximation of a 5 9, one-sided test using both the SSR and Wilcoxon statistics
for N =20 and A = 0.5, 1.0, 1.5. Table 3 gives the power and expected sample
size for N = 50 and A = .25, .50, .75, 1.00.
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Examination of Tables 2 and 3 reveals that the tests using the SSR and
Wilcoxon statistics are almost equivalent for the range of N and A considered.
The only area where the two tests differ significantly is for large A where the
power is very high for both tests.

It appears that for extreme alternatives, the power of the test using the
Wilcoxon statistic converges to one faster than the power of the SSR test as
N — oco. Using only first order terms, the means of the Brownian motion
approximations are (3N)t for both the SSR and Wilcoxon test statistics,
but the variances are 37% for the SSR statistic and 12{?*¢ for the Wilcoxon
where {? = E[F(—X)*] — E[F(—X)]*. For location shift alternatives £ > 0, so
(3N)t — oo as N — co. If x is large then @(x) = 1 — (1/x)¢(x) so that for N
large enough that 4 > ¢, the power of the one-sided test is

Plreject H} =~ 1 — 2206 2¢<‘u — c)
uw—c o
where ¢ = (3N)}¢ and o? is the variance of the particular test statistic being
used.

Since p is the same for both tests the power is determined by the values of
% the smaller the value of ¢2 the higher the power. Under H,, ¢* = 1 for both
test statistics but as F(0) — O (corresponding to far alternatives) the variance
of the Wilcoxon statistic — 0 while the variance of the SSR statistic — 1.
Thus the Wilcoxon statistic should be more powerful for far alternatives and
large N, but in this case the power of both tests is very high.

In conclusion we can say that for reasonable values of N and alternatives
that are not too far from the null hypothesis the Wilcoxon and SSR statistics
are essentially equivalent for the truncated linear barrier test. Even in the case
of extreme shifts and large N the power of both tests is so high that any differ-
ence in power might very well be unimportant in practice. The SSR statistic
should be slightly easier to use than the Wilcoxon statistic, but its main ad-
vantage over the Wilcoxon statistic is the independence of the Z’s under the
null hypothesis. For small values of N it should be possible to compute the
exact null distribution using a computer, and even in cases where simulation is
necessary, the independence makes the sequence of Z’s easy to generate.
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