The Annals of Statistics
1975, Vol. 3, No. 2, 363-372

MAXIMUM LIKELIHOOD ESTIMATION IN
THE BIRTH-AND-DEATH PROCESS!

By NieLs KEIDING
University of Copenhagen
Maximum likelihood estimation of the parameters 2 and y of a simple
(linear) birth-and-death process observed continuously over a fixed time
interval is studied. Asymptotic distributions for large initial populations
and for large periods of observation are derived and some nonstandard

results appear. The related problem of estimation from the discrete skele-
ton of the process is also discussed.

1. Introduction. Let X, be the population size at time ¢ of the (linear) birth-
and-death process, that is, the Markov process in which

PX,, =j|X,=i}=iih 4+ o(h), j=i+1,
=1 —iA+ph+oh), j=i,
= iph + o(h), j=i—1,
=o(h), otherwise,

i=0,1,2,...,2=0, g = 0, and assume throughout that X, is degenerate at
some x, > 0. We shall consider maximum likelihood estimation of the parame-
ters 2 and p assuming that the process has been observed continuously over
some time interval.

The maximum likelihood estimators are the occurrence-exposure rates 4 =
B,/S,, i = D,/S,, B, and D, being the number of births and deaths and S, =

¢ X, du the total time lived by the population in the time interval [0, r]. The
sampling properties of these estimators have been studied by a number of
authors, to be referred to in Section 2, who assumed various stopping rules
depending on the number of births and deaths.

In this paper the sampling properties of the estimators will be studied under
the assumption of a fixed interval [0, ¢] of observation. Exact results are as yet
scarce, see Section 2. Asymptotic results for large initial population sizes are
standard and stated in Section 3. Asymptotic results for large ¢ are studied in
Sections 4 and 5. Two aspects of the birth-and-death process cause novel
features. First,if 2 > p, X, — 0 (“becomes extinct”’) with probability (/)% and
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X, — co otherwise, whereas if 2 < p, X, — 0 a.s. Accordingly, Section 4 gives
asymptotic results conditioned on X, — oo and Section 5 results conditioned on
extinction. Secondly, given X, — oo, X,/E(X,) — W a.s. where W is nondegener-
ate. Asymptotic normal theory no longer holds but is replaced by “Student”-
distribution results. The proof uses a generalization of Lamperti’s random time
change transforming the birth-and-death process into a compound Poisson
process, and then transforms the time scale back in a Billingsley (1968)-type
approach.

Finally, estimation under the assumption that the process is only observed at
equidistant points of time (the so-called discrete skeleton) is discussed in Section
6 and the results are shown to improve the early work of Immel (1951) and
Darwin (1956). Furthermore, it is pointed out that by making the discrete
skeleton infinitesimal, the results for continuous observation are recovered.

The results are related to recent work by Dion (1972) on estimation in the
Galton-Watson process and results by Jagers (1973 ¢c) on estimation of the off-
spring distribution of a Bellman-Harris process.

The particular cases ¢ = 0 (the pure birth process) and 2 = 0 (the pure death
process) have been studied previously. Keiding (1974) gave results for the pure
birth process, using different proofs, and Beyer, Keiding and Simonsen (forth-
coming) give exact and L,-convergence results for the pure birth process and
the pure death process as well as a numerical evaluation of the asymptotic
results (for these particular processes), given in Sections 3 through 5 of the
present paper.

The literature on estimation in the pure death process is vast, this problem
occurring in a variety of life-testing situations. We shall not attempt to review
this literature, but call attention to the review by Cox (1965) and a paper by
Wolff (1965) on estimation in birth-and-death processes of queuing theory.
Further specific references are given in Sections 2 and 3.

The asymptotic results in Sections 3 through 6 specialize in an obvious way
to the pure birth and pure death processes. We shall not state this specialization
explicitly in each case and will therefore assume through those sections that
A>0and p > 0.

2. Maximum likelihood estimation from continuous observation.
THEOREM 2.1. The likelihood function is proportional to
L(2, ) = PP xp[—(2 + w)S,]
where B, and D, are the number of births and deaths, respectively, and S, = \! X, du

is the total time lived in the population during [0, t]. (B,, D,, S,) is minimal suffici-
ent and the maximum likelihood estimators are given by i = B,/S, and fi = D,/S,.

REMARK. N, = B, + D, is to be understood as the number of discon'tinuities of
X, 0 < u < t. At B, of these, X, jumps 4 1, at D, of them, X, jumps — 1. Thus
B, and D, depend on {X, |0 < u < 1} only and it is seen that X, — x, = B, — D,.
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Proor. The likelihood function seems to have been derived first by Darwin
(1956). The other results are immediately derived from the likelihood function.

REMARK. The characteristic function and some other results concerning the
distribution of the minimal sufficient statistic were given by Puri (1968). For
discussions of the distribution of 2 when 2 = 0 see Hoem (1969b) and his
references.

Exact and approximate small-sample properties of 4 in the pure birth process
(# = 0) and of # in the pure death process (4 = 0) are given by Beyer, Keiding
and Simonsen (forthcoming).

Alternative stopping rules. Stopping rules making the observation time ¢ a
random variable have been studied by a number of authors. Thus Moran (1951,
1953) used the stopping time r = inf {t| X, = 0 or N, = n}, that is, continue
observation until extinction or until n events (births or deaths) have occurred,
whichever is first. Kendall (1952) used r = inf {t| D, = x,} and Bartlett (1955,
Section 8.3) described briefly stopping rules dependent on N, or D,. The likeli-
hood function for all such cases is A%< pu” exp[—(4 + p)S.], reflecting the widely
known but apparently never rigidly proven statement that “the likelihood func-
tion is independent of the stopping rule,” see e.g. Barnard, Jenkins and Winsten
(1962). Consequently the maximum likelihood estimators have the same simple
form as above, although the sampling properties, of course, differ. Anscombe
(1953) studied sequential estimation with the criterion that 2 — u be estimated
with a prescribed small standard error a. He obtained the stopping time ¢ =
inf {t| S, = N,/a}. (Some device must be prescribed to avoid extinction before
then.) Asymptotically (as N, — co) unbiased estimates of 2 + zand 2 — p were
obtained as aN,* and a(B, — D, )N, respectively. We remark that since under
this stopping rule we may substitute S, for N /a, these estimators are nothing
but N./S. and (B, — D.)/S,, or the maximum likelihood estimators once again.

3. Asymptotic results for large populations. The birth-and-death process
with X, = x, can be interpreted as the sum of x, independent birth-and-death
processes with the same parameters and x, = 1. The following asymptotic re-
sults for large x, and fixed r may therefore be obtained from standard asymptotic
maximum likelihood theory.

THEOREM 3.1. As x, — oo, (4, 2) — (4, p) a.s. and
xo(e(]_mt - l)}%<2 - 1>' Normal 0 20
G (D) e Normal @0 G D
the factor in { } being replaced by x,t when 2 = p.
Proor. It was shown by Puri (1968) that

B, 2
eA-mt _ 1
E Dt = | ¢ T:—xo
s, 1 #
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(appropriately modified when 2 = ), and since by the strong law of large num-
bers B,/x, — EB,, D,/x,— ED, and S,/x, — ES, a.s. as x, — oo, the strong con-
sistency follows. Asymptotic normality follows from standard theory, we need
only compute the information matrix. But

( —DjloglL —D,D,log L) _ (Btll"2 0 )
—D,D;logL —D/}loglL 0 D, p?
and the result follows by taking the expectations.

REMARK. Sverdrup (1965) gave a careful study of similar properties for related
processes, cf. also Kendall (1949) and Hoem (1969a, 1971).

4. Asymptotic results for large periods of observation given non-extinction.
In the supercritical case, that is, when 4 > p, it is well known that X,/E(X,) =
X,/{x,exp(2 — p)i} — W a.s. as t — oo, where P{W = 0} = P{X, — 0} = (p/2)*
and the distribution of W, given W > 0, is gamma (x,, x,”%), that is, has the
density xzow?~te=%*/T'(x,), w > 0 (Harris (1963)). Similar results hold for a.s.
convergence of the minimal sufficient statistic which implies the following con-
sistency result.

THEOREM 4.1. (a) Ast— oo,

B, 2
X, e AmmE D) — | 7 W a.s.
S, 1)~ #

(b) Ast— oo, (4, ) — (2, p) a.s. on the set {X, — oo}.

Proor. (b) is a corollary of (a). To prove (a), we may use Jagers’ (1973a)
results on almost sure convergence of random functionals of general branching
processes. In fact, the birth-and-death process is a general branching process
with Malthusian parameter 2 — , life-length distribution function L(x) =1 —
e+ and expected reproduction process given by the density de~**dx. In the
case x, = 1, (a) is now obtained directly from Jagers’ Corollaries 1, 2, and 5,
and the generalization to x, > 1 is immediate.

The asymptotic behavior of the estimators on the set {W = 0} = {X, — 0} is
described in Section 5 below.

THEOREM 4.2. As t — oo,
SHA — At A
SHa—ppt || B
(A — p)S, e~ F=mt/x, w

in the conditional distribution, given W > 0, where A, B and W are independent, A
and B are normal (0, 1) and W is gamma (x,, X,™").

Proor. The almost sure convergence of S,, properly normalized, was shown
in Theorem 4.1.
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The asymptotic normal distribution is obtained from asymptotic normality in
a certain compound Poisson process which is converted into a birth-and-death
process by a random time change, and then applying Billingsley (1968)-type re-
sults to verify that the asymptotic normality holds after the random time change.

Let a compound two-dimensional Poisson process (Q,, R,) be defined in the
following way. At each event of a Poisson process U, with intensity 2 4+ x the
two-dimensional cluster size (M, N) = (1, 0) or (0, 1) with probability 2/(2 + p)
and /(2 + p), respectively. Then if (M,, N;), i = 1,2, ... are independent
replications of (M, N), (Q,, R,) = (3¥+ M,, 3,7+ N,). Obviously E(M, N) =
(A2 + p), /(2 + p)) so that E(Q,, R,) = (¢, pt) and similarly it is seen that
V(Q,) = (A + p)tE(M?) = a1, V(R,) = ptand Cov (Q,, R,) = (A + p)tE(MN) =
0. Since (Q,, R,) has independent increments, it follows by the central limit
theorem that ((Q, — Ar)(46)~%, (R, — pr)(pt)~F) is asymptotically two-dimensional
normal with mean zero and variance matrix the identity.

We now want to perform a random time change of the process (Q,, R,) in the
following way. The Poisson process U, which governed the sojourn times of
(Q:» R,) is to be replaced by the so-called split time process N, with intensities
equal to (4 + p)X,, where X, = ¥ V¢=* (M, — N,) + x,. Formally, this is done
for each w by starting with the sojourn times T, T,, - - - of U, and defining the
sequence Y, Y,, .- by Y, = oo if x, + >}%_, (M, — N,) = 0 for some k < i and
Y, = T;/[x, + 2%, (M; — N,;)] otherwise. The split time process N, is then given
by {N, =i} ={Y, <t<Y,,}, and we finally define the stochastic process
(B,, D) = (¥+ M, 3¢ N;). It is now easily checked from the structure of
jumps and sojourn times that Y, = B, — D, + x, is a birth-and-death process
with intensities 4 and g and X, = x, and that B, and D, are the numbers of
births and deaths in [0, 7], respectively. Furthermore, it is seen that defining
S, = {4 X, du, wehave (B,, D,) = (Qs,, Rs,). Thisconstruction is due to Lamperti
in the case of the pure birth process, cf. Athreya and Ney (Theorem III. 11.1).

Replace now ¢ by S, in the asymptotic result above to get

((Qs, — AS)(AS,)7H, (Rs, — pS)(1S)~H) = (SH(A — )24, Si(@ — pyp?) .

The proof that the asymptotic normality will still hold after the random time
change t — S, on the set {S, — oo} is now similar to Dion’s (1972) proof for
discrete time, cf. also Jagers (1973b). From this proof we also conclude that
the asymptotic normal distribution is independent of W as stated.

ReMARK. This method of proof will yield a series of central-limit type theo-
rems for Markov branching processes. Such theorems will be useful counter-
parts to central limit results, e.g., of the type stated by Athreya and Ney (1972,
Section III. 10).

COROLLARY. Ast— oo,

[x(e?=#* — 1)/(2 — )]} ( ((2 B gj;) o (ﬁZ:ﬁ)
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in the conditional distribution, given X, — co. The limiting distribution is bivariate
Student with common denominator (cf. Johnson and Kotz (1972), page 134), that
is, each component is Student with 2x, d.f. and the components are independent for
given W,

REMARK. As x,— oo in the corollary above, the limiting distribution tends
towards the two-dimensional standardized normal in accordance with the result
in Theorem 3.1.

REMARK. The results of Theorem 4.2 and its corollary will still hold if con-
sidered in the conditional distribution given {X, > 0} instead of {X, — co}. By
this remark, which is parallel to one made by Dion (1972), approximate con-
fidence limits may be obtained.

5. Asymptotic results for large periods of observation given ultimate extinc-
tion. If X, — 0 as # — co which happens with probability (/2)% in the super-
critical case 2 > p and almost surely otherwise, the consistency of the estimators
no longer holds, since the sample will be in effect finite as t — co.

Since for a supercritical process with 2 > u, the conditional distribution, given
that X, — 0, is identical to that of a birth-and-death process with birth parameter
¢ and death parameter 4 (Waugh 1958), the results in the present section are
relevant for supercritical processes, given extinction.

THEOREM 5.1. For A < p, (4, ) — (B/S, D/S) a.s., as t — oo, where B and D
are the total number of births and deaths until extinction and S = (¢ X, dt.
The distribution of (B, D, S) is given by the density

Xo A pde=Uirpsghra=

bl d!
b=0:1a2a”‘ad=b+xo,s20'

Proor. Most of the results are immediate. The distributions of N and of S
given N were given by Puri (1968). Gani and McNeil (1971) discussed further
aspects of the distribution of (¥, §).

From the results in the Theorem, various results concerning the limiting dis-
tribution of (4, 2) may be derived. A couple of examples are shown below.

(a) The expected values of (B/S, D/S) quickly become complicated. Given
N =B+ D, E(5") = (2 + p)/(N — 1) so that

(3]) - CHER (2= Lt

and it follows that for x, = 1, E(B/S) = (2 + p)/2 and for x, = 2, it may be
seen that

E(g) _ 62+ 642 — 30 4 B
S 12,2

(b) The estimator 4 — f of the Malthusian parameter 2 —  is asymptotically
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equal to —x,/S, whose distribution is given by the density
}x,
o e ] (4) " hot =2t

u < 0, where I is a modified Bessel function.

6. Equidistant sampling. Until now it has been assumed that the complete
process {X,|0 < u < r} was observed. It may be more realistic to assume that
the process is observed at the equidistant points 0, z, 2z, ..., kt = ¢. The
observations X, (sometimes called “the discrete skeleton”) then form a Galton-
Watson process as is well known (Harris (1963), page 101), but the transition
probabilities are rather messy, and direct maximum likelihood estimation does
not seem feasible (cf. Darwin (1956)).

In this Section, however, we shall show that interesting results may be ob-
tained by assuming that the following observations are available. Interpret the
discrete skeleton Galton-Watson process in the usual way as a chain of genera-
tions of independently reproducing particles, and assume that in addition to X,
itself, the number C, of particles among the X, that have O offspring is
known.

n—=1)7

PROPOSITION 6.1. Under the sampling scheme described above, the likelihood
function is proportional to

L(Z, p) = act{(l — a)(l — ﬁ)}Zg_Ian—otﬁXt_“’o‘*'Ut , 2>0, >0
where

e-mr __ | pi
a:‘uT{em_}_, ﬂ:./:a and C,=Xk,C,.

The maximum likelihood estimators of a and §3 are given by
a=C/yrkX,. and B=X —x,+ C)XEX,. .

Proor. Let Z, = X, _andlet C, = 0. Then clearly {(Z,, C,)|n =0,1,2,...}
is a Markov chain with stationary transition probabilities ¢,(z, ¢) = P{Z, = z,

. =c¢|Z,,=1i,C,_, =j} given by ¢,(z, ¢) = ¢,*(z, ¢), the ith convolution,
q:(z, ¢) = a’(l — a)t=ep=-va-o(1 — B)=¢, and ¢4(0, 0) = 1. The likelihood func-
tion is then derived as P{Z, = z,, C, = ¢, | Z,_; = 2,1, C,_y; = ¢y} - - P{Z, =
Zy, C1 = c1|Zo = X, CO = 0}

THEOREM 6.1. Assuming that only X, X, -+, X,, = X, are observed, the maxi-
mum likelihood estimator of the Malthusian growth parameter A — p is given by

z__—/J:_Llog( Xt oo+ X )
T Xo+ -+ 4+ Xpoyye

Proor. We have 2 — p = t7'log {(1 — a)/(1 — B)}, and the result is there-
fore true by Proposition 6.1 if X, . and C, were observed. But since 1 — pisa
function of the X,’s only, the result holds in the more narrow sample.
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This proof is patterned after Harris’ (1948) derivation of the maximum
likelihood estimator of the mean in an unrestricted offspring distribution of a
Galton-Watson process and settles a question left open by Darwin (1956), who
studied e=»* as an estimator of e-»* without proving that it is the maximum
likelihood estimator. Darwin obtained results concerning bias and asymptotic
variance of this estimator as well as asymptotic efficiency relative to the maximum
likelihood estimator exp{(B, — D,)z/S,} obtained from continuous observation.

E. R. Immel {1951) also remarked in his unpublished thesis that estimation
directly from the discrete skeleton is unfeasible. Immel then considered the
problem of estimating the parametric function § = /2 in the restricted model
with (log ¢ — log 4)/(# — 2) = r and showed that in this situation the maximum
likelihood estimator was given by 8 = Y k-* X, /3% X, . Immel proved consist-
ency and asymptotic normality of this estimator for large x, within the restricted
model and proposed to use f as an approximation in the general case.

In the restricted model § = e‘#~%7, so that the maximum likelihood estimator
of et*=7 in the restricted model is #. From Theorem 6.1 we see, however, that
6 is in fact the maximum likelihood estimator of e-2* in the unrestricted model,
which indicates that Immel’s proposal of using § as an estimator of # in general
should not be followed.

Comparison with continuous observation. The infinitesimal discrete skeleton. By
applying Dion’s (1972) results for the Galton-Watson process one may give
asymptotic results as k — oo for the maximum likelihood estimators (4, ) of
(4, p) in this sampling situation as well as efficiency results. This was shown in
detail by Keiding (1974) for the pure birth process and we shall not give the
full details for the birth-and-death process.

We may, however, call attention to the fact that when kK — o0, ¢ — 0, kv — ¢,
the likelihood function of the equidistant sampling situation approaches that of
continuous observation given in Section 2. (When observation is continuous,
the number of deaths in any interval is (almost surely) given by the knowledge
of the total population number at each instant in that interval and, in particu-
lar, C, — D,.) It may be seen that not only will the estimators (4, ) — (4, )
under this limiting process but that also the asymptotic distributions are asymp-
totically equal. As was assumed by Keiding (1974), the infinitesimal discrete
skeleton again yields an. alternative way of deriving the correct results, but it
should be emphasized that this success depends on the introduction of the obser-
vation of C, above.

Acknowledgment. My thanks are due to Steffen Lauritzen for discussions
through the preparation of this paper.
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