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MINIMAX ESTIMATORS OF THE MEAN OF A
MULTIVARIATE NORMAL DISTRIBUTION!

By M. E. Bock
University of Illinois

An extension of Strawderman’s results yields minimax admissible
estimates for the mean of a p-variate normal distribution where the known
nonsingular covariance matrix is not necessarily the identity and p > 2.
Minimax estimators for the case where the covariance matrix is unknown

are also given.

1. Introduction and summary. Let X have the p-variate normal distribution
with unknown mean vector ¢ and known nonsingular covariance matrix D.
Define the risk of an estimator 6(X) of @ to be

R, 0) = E[(6(X) — 6)((X) — 0)] .

Let p > 2 and g(X) = X. Charles Stein [10] has shown that the usual minimax
estimator ¢ is inadmissible. For D = I,, Strawderman [11] exhibited a class
of admissible minimax estimators which were proper Bayes and spherically
symmetric. Strawderman [12] also proved that there were no proper Bayes
spherically symmetric minimax estimators for p < 5 if D = I,. This paper
extends these results to the case where the covariance matrix D is not necessarily
the identity matrix. Certain forms of minimax estimators are also considered
for the case where the covariance matrix is unknown.

In Section 2, a spherically symmetric estimator 4 is defined to be of the form
6(X) = h(X'D-'X)X where & is a real-valued function. Let d, be the largest
eigenvalue of D. It is shown that if tr D < 2d,, no spherically symmetric
minimax estimator which is essentially different from g exists, as noted inde-
pendently by Brown [6]. For tr D > 2d, a class of spherically symmetric
minimax estimators is given and the class coincides with one given by Baranchik
[1] for D = I,. A subset of estimators in the class is exhibited which are proper
Bayes, and thus, admissible. For D = I, these are the estimators given by
Strawderman [11]. For tr D/d, < p/2 + 2, it is shown that no proper Bayes
spherically symmetric minimax estimators exist.

In Section 3, X has a p-variate normal distribution with unknown mean
vector 6 and covariance matrix ¢’D. Let d, be the largest eigenvalue of the
known nonsingular matrix D. Assume p > 2 and ¢? is an unknown positive
constant. A random variable § is given such that (S/¢?) has a chi-square (n)
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210 M. E. BOCK

distribution independent of X. The risk is

R(0; 0, 0% = E, A[(O(X, S) — 6Y(O(X, S) — 0)/a"].
A class of minimax estimators of the form A(X’D~'X/S)X is given where £ is a
real-valued function. Unless A(+) = 1 a.e., estimators of this form are minimax
only if tr D > 2d,. In another formulation X is assumed to be p-variate normal
with unknown mean vector § and unknown nonsingular covariance matrix D.

A random matrix & with Wishart (D, m, p) distribution independent of X is
given. The risk for an estimator (X, &) of @ is

R(0; 6, D) = E, ,[(0(X, &) — 8)(6(X, &) — 0)/tr D]

and p > 2. The usual estimator g(X, &) = X is minimax, but it is essentially
the only minimax estimator of the form A(X’S”~'X)X where 4 is a real-valued
function.

2. Known covariance matrix. Assume X has a p-variate normal distribution
with unknown mean vector # and known nonsingular covariance matrix D. Let
0(X) = (X'D'X)X, where k is a real-valued function. For the risk function
R(0, 0) = Ey(6(X) — 0)'(6(X) — @) the following expression is obtained via
Corollaries 1 and 2, Appendix:

(1) R(9, 0) = tr DER (), 5,0 p-19)) + O'OLER*(X(p44,00-10))
- 2Eh(x‘fp+z,0'1)—lo)) + 1]

where y?; ;) denotes a chi-square (j) random variable with noncentrality pa-
rameter 2.

Let d,, be the largest characteristic root of D. Lemmas 1 and 2 are used to
prove Theorem 1 which says that no minimax spherically symmetric estimator
essentially different from g(X) = X exists if tr D < 2d, .

LEMMA 1. Assume p = 2. Unless h(+) = 1 a.e., there exists ; = 0 such that

0 < 2(ER(xtpsaap) — 1) + Za[Ehz(X?pH,za)) - 2Eh(X?p+2,15)) + 1].
Proor. Let X be given as above. For p =2 and D =1, let §y(X) =
WX'X + x2,,)X, where y2,, is a random variable with chi-square (n) distribution
independent of X (let 2, = 0 if n = 0). In view of (1), risk
R(34; 0) = 2ER(Y}s1n,000) + O OLER (Llo1n,0000) — 2ER(xlisn,000)) + 1] -

For p =2 and D = I,, the estimator g(X) = X is minimax admissible with
constant risk R(g, §) = 2. Farrel [8] has shown that an admissible estimator is
essentially unique. Thus, unless 4(+) = 1 a.e., there exists a number 4 ,, = 0
such that

0 < R(dy, 0) — R(9, 0) = 2(ER (Lasn,1p,0p) — 1)
+ l(h,n)[Ehz(X?6+n,l(h,,,“)) - 2Eh(X?4+n,z(hy,,,,)) + 1]
for all 2 X 1 vectors @ such that 6’0 = 4 ,,-
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Let n = p — 2 where p = 2 and 4, = 4, ,_,, so that there exists 4, > 0 and

0 < 2ER(Xlp42,19) — 1) + ALER(Lipas,2p) — 2ER(Atp100p) + 11 0

LEMMA 2. Unless h(+) = 1 a.e., if 6(X) = W(X'D'X)X is minimax and p > 2,
then ER(x%,.14,,) < 1 where 2, is given in Lemma 1.

PROOF. An estimator § is minimax if R(, §) < tr D for all p x 1 vectors 6.
Let d, be the smallest characteristic root of D. Unless A(.) = 1 a.e., choose
a p X 1 vector 6, such that 6,6,d,”* = 6,/D*0, = 2, where 2, is given in Lemma
1. Equation (1) and the minimaxity of ¢ imply that

0 = tr D(ER(Lips2,29) — 1) + Ayl BB (Xip14200) — 2ER(Xip10,200) + 1]
Assume Eh*(x,,s,,) = 1. Then tr D/d, = p > 2 and the above inequalities
imply

0 2 d[2(ER(Lips2,20) — 1) + ALER(Xip44,20) — 2ER(Xip4a,2p0) + 111 -

But the right-hand side of the above inequality is positive by Lemma 1. Thus,
Eh“(x?pﬂ,za,) < 1 unless A(+) = 1 a.e. [J

THEOREM 1. Let X have p-variate normal distribution with unknown mean 6 and
known nonsingular covariance matrix D. Assume p > 2 and d,, is the largest char-
acteristic root of D. If tr D < 2d,, then no estimator of the form d6(X) =
h(X'D~'X)X is a minimax estimator for 6 under the quadratic loss (@ — 0y@ — 0)
where h is a real-valued function unless h(+) = 1 a.e.

PROOF. Assume 0(X) = A(X’D~'X)X is minimax with p > 2, and tr D < 2d,.
Unless 4(-) = 1 a.e., choose a p X 1 vector 6, such that /D0, = 6,/0,d,~* = 2,
where 4, is given in Lemma 1. Then equation (1) and the minimaxity of ¢
imply that

0 = tr D(ER(Lip42,10) — 1) + dLAlER(Xlp1400) — 2ER(Lp42,2,) + 1]
Since tr D < 2d, and ER(x},,,,,) < 1 (by Lemma 2), by Lemma 1 the right-
hand side of the above inequality is positive, a contradiction. Thus, ¢ is not
minimax unless 4(.) = 1 a.e. [

The result given in Theorm 1 was given independently by Brown [6].

The following class of minimax spherically symmetric estimators is a generali-
zation of a class given by Baranchik [1] for D = I,

THEOREM 2. Let trD >2d, and p>2 and r: [0, 00) —[0,1]. 6(X) =
(1 — er(X’D'X)X'D'X)™NX is a minimax estimator for 0 if 0<c<
2((tr D) d, ™ — 2) and r is monotone non-decreasing.

Proor. It suffices to show R(f, 6) < tr D for all §. By Corollaries 1 and 2,
Appendix, and setting r*(a) = r(a)/a

R(8, 0) — tr D = c{(tr D)E[(™*(Aipsa43x))'] + OOEL(P* (£ 4a12))'T}
+ 2¢'0E[r* (13 4242x)] — 2¢{(tr DYE[r*(xp4342x)]
+ O OE[r* (1 +4+2x)]}
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where K is a Poisson (6’D~'0/2) random variable. Furthermore, by Lemmas 3
and 4, Appendix, and setting a(6) = 6'0/6'D*0,
R@,0) —tr D
= o(tr D)E[r(x;_s+ax)(P + 2K)7(p — 2 + 2K)7H{(c - 7(Xp-2+2x)
— 215-24ax)(1 4 a(0)2K(tr D)) + 2K(tr D) 'a(0)2(p + 2K)}]
< ot D)E[r(1-asax)(P + 2K)7(p — 2 + 2K)7H2(1 + a(6)2K(tr D))
X (P =2+ 2K — Lpossax) + (¢ — 2(p — 2)) + a(6)2K(tr D)™
X (¢ = 2(tr D(«(0))™ = 2))}]
(since r(-) < 1). Since ¢ < 2((tr D)d,™' —2) < 2((0((0))‘l trD—2)and ¢ <
2(p — 2) (because tr D < pd;),
R(6, 6) — tr D < (tr D)CE["(£3—asax)(p + 2K)X(p — 2 + 2K)™*
X 2(1 4 a(O)2K(tx DY) (p — 2 + 2K — L3ayar)]
<0
(by Lemma 5, Appendix). []

For p > 2 and 6,(X) = (1 — ¢«(X’D'X)" 1)X Theorem 2 implies that 8, is
minimax if 0 < ¢ < 2((tr D)d,~* — 2). If D = I, then 6, is the estimator given
by James and Stein [9], which dominates the usual one, g. Theorem 3 shows
that the bound on ¢ given is precise.

THEOREM 3. Let 0,(X) = (1 — ¢(X’D~'X)"*)X and tr D > 2d,; then 0, is not
minimax if ¢ > 2((tr D)d,~* — 2) and p > 2.

Proor. Assume 6’D-' > 0 is given and choose 6 so that ¢'6/6'D~'0 = d,.
Then as in the proof of Theorem 2 with r(.) = 1,

R(8,, 0) — tr D = E[c(tr D)(p + 2K)(p — 2 + 2K)(c — 2(p — 2))
+ d,(tr D)2K(c¢ — 2(tr Dd,~' — 2))}]
= E[c(tr D)(p + 2K)(p — 2 + 2K)(p + 2 + 2K)™!
X {(c —2p = 2))(p + 2 + 2K)
+ d,(tr D) Y(p — 2 + 2K)0'D~0(c — 2(tr Dd,~* — 2))}],
(by Lemma 3, Appendix). This is clearly positive if /D¢ > 0 and ¢ >
2(p — 2) even if tr D < 2d,. Assume ¢ < 2(p — 2). Then
R(6,, ) — tr D = E[e(tr D)(p + 2K)(p — 2 + 2K)"'(p + 2 + 2K)~*
X {=4@2(p—2) -9
+ d,(tr D) Y(p — 2 4 2K)0'D~'0(c — 2(tr Dd,~' — 2))
— (2(p — 2) — O)tr DE'D70)"d, )]
> E[c(tr D)(p + 2K){(p — 2 + 2K)™*
X(p+2+2K)7H{—-42p—2) — )
+ d,(tr D) Y(p — 2 + 2K)§0'D~'0(c — 2(tr Dd,~* — 2))}]
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if 'D='0 > 8(2(p — 2) — c)(tr D)(¢ — 2(tr Dd,~* — 2))~*d,~*. Thus R(0,, 6) —
(tr D) > 0 if 0'D~'0 > 8(2(p — 2) — c)(tr D)(c — 2(tr Dd,~ — 2))~'d,~", since
p—24+2K)=1.[

For (tr D/d,) > (p/2) 4 2, the following estimator 4, is an example of a
proper Bayes (and, thus, admissible) minimax spherically symmetric estimator.
It is a generalization of the estimator given by Strawderman [9] for D = I,.
Let the conditional distribution of @ given 2 be p-variate normal with zero mean
and covariance matrix D(1 — 2)2~* where the unconditional density of 2 is given
by 27%(1 — a) for 0 < 2 < 1. Let a be chosen such that a < 1 and such that
(tr D/d.) = p/2 + 3 — a. The proper Bayes estimator with respect to this prior is

5,0X) =[1_<p+2—2a_ 2 exp [—3X’D'X] >]X
' X'DX  (X'DIX){\} A®=9 exp [— AX'D'X /2] dA}

It follows from Theorem 2 that d, is minimax, setting r(y) = 1 — [(p/2 + 1 — a)
§o 2722 exp[(1 — 2)(y/2)dy]™ for y 20 and ¢ = p + 2 — 2a. Theorem 4
demonstrates that the restriction on tr D/d, is necessary.

THEOREM 4. No spherically symmetric estimator is proper Bayes minimax if
tr D/d, < (p/2) + 2.

Proor. Let d(X) = A(X'D~'X)X where A is a real-valued function and define
o(+) =1 — h(+). If 6 is minimax
02 R(3,0) — tr D = E[@(X'D"'X)X'X] — 2 tr DE[0(43,0p-10)]
— 20"0E[0(xtp+4,00-10))] + 20'0E[0(x%, 13,00-10))]

(by Corollaries 1 and 2, Appendix). Thus by Jensen’s Inequality and Corollary
1, Appendix,

0= (E[w(X?p+2,0’D_10))])20’0 —2tr DE[o(xt;+2,0'0-1))]
— 20'0E[@(xX}psa,0:0-10))] + 20'0E[0(X}p12,6'0-10))] -

For a given value of §’D-'¢ we may choose 6 such that 6’6 = d,6’D-'6 and the
above inequality becomes

0= dL(E[‘”(X?pH,0'D—10))])20'D-10 —2tr DE[w(xfp+2,0'D—10))]
- 2dL0ID_10E[(D(X??+4,0'D‘10))] + 2d, 0'D_10E[‘”(X?p+2,0'1>—10))] .

Define ¢(2) = AE[w(x},42,2,)]- Then
£ G@) = E[0(ya )] + o (Bl )] — E00Lpe0)])
so that the above inequality implies
d $(2) — -
= @) z T2 (¢@) — 2(tx Djd, — 2)).

Replacing “p” by “tr D/d,” in the proof given by Strawderman [12], it may be
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shown that

0 < E[0(¢y1500-10)] < 2(tr DJd; — 2)(0'D0).
Furthermore, using the above inequality, the proof for Theorem 2 of Straw-
derman [11] implies that no estimator of the form A(X'D~'X)X is proper Bayes
minimax if tr D/d, < p/2 + 2. More detail is given in Bock [5]. []

The results of Brown [7] imply that the estimator 6 of Theorem 2 is admissible
if and only if § is generalized Bayes and lim,_ cr(f) = (p — 2). Thus the
estimator 4, is an admissible generalized Bayes spherically symmetric minimax
estimator if the unconditional prior “density” for 2 is 2~ for 0 < 2 < 1 and
a < 2. Sofortr D/d, = p/2 + 1, there exist admissible spherically symmetric
minimax estimators.

Note that for other forms of loss functions such as the ones considered by
Basar and Mintz [3], one may find proper Bayes estimators which are minimax
because they are least favorable. No least favorable distribution for 6 exists here.

3. Unknown covariance matrix. Assume X hasa p-variate normal distribution
with mean vector 6 and covariance matrix ¢?D where ¢* is an unknown positive
constant, D is a known nonsingular matrix and p > 2. Let S be an independent
random variable such that (S/¢?) has a chi-square (n) distribution. (Regression
is an example of this.) Redefine the risk for an estimator G of 9 to be

R\(0; 6, 0*) = E (0 — 6)(0 — 0)[°].
Let g(X) = X and note that g is minimax with constant risk, tr D. The esti-
mators given in Theorem 5 dominate g or have the same risk function.

THEOREM 5. Assume r: [0, co] — [0, 1] is monotone non-decreasing. Let 0 <
¢ < 2(tr D/d, — 2)(n + 2)~* and assume tr D > 2d,. Then 6 is minimax where
6(X) = (1 — r(X'D'X/S)(X'D'X/S) ") X.

Proor. It snffices to show R,(f; 0, ¢%) < tr D for all (0, 6%). Setting a(6) =
0'6/0’D'6 and letting K be a Poisson (6'D~'6/20%) random variable, as in
Theorem 2,

R,0; 0, 6% — tr D
< ctr DE[r(xy-spax/2I0NP + 2K)7H(p — 2 + 2K)7!
X {2(1 + a(0)2K(tr D)) (p — 2 + 2K — Yp-s12x)
+ (exa* — 2(p — 2)) + «(0)2K(tr D)(cy,’ — 2(tr D(a(6))™" — 2))}]

= o(n + 2) 1 DE[ Wtsssslthe)(p + 2K)7(p — 2+ 2K)
x {21 + a@2K(tr D)) ((p = 2+ 2K = 2h-ssan)
+ = (14 2)) Heln +2) —2p — )

+ a(6)2K(tr D)-c(n + 2) — 2(tr D(a(6))"* — 2))”
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by Lemma 4, Appendix. Applying Lemma 5, Appendix, to the above
Rl(é; 0, 0%) — tr D < ¢(n + 2)tr DE[r(x;—spax/2n+a)(p + 2K)7H(p — 2 + 2K)™
X {e(n + 2) — 2(p — 2) + a(6)(tr D)"2K(c(n + 2)
— 2(tr D(a(@)) — 2))}] -
The above expression is < 0if 0 < ¢ < 2(tr D/d, — 2)(n + 2)7*. ]
For D = I, the theorem is given by Baranchik [2].

The following theorem shows that the assumption that tr D/d, be greater
than 2 is necessary for the minimaxity in Theorem 5 unless 4(.) = 1 a.e.

THEOREM 6. If p > 2 and tr D < 2d; and h is a real-valued function, no esti-
mator of the form 5(X S) = W(X'D'X/S)X is minimax for 0 under the quadratic
loss function (0 — 6)( — )0 unless h(+) = 1 a.e.

ProOOF. Assume tr D < 2d,. Using the proof of Theorem 1, it may be
shown that for ¢2 = 1 there is a value of # for which R,(9; 8, 1) > tr D unless
h(s) =la.e. []

Theorem 5 and a proof similar to that of Theorem 3 gives the following theorem.

THEOREM 7. For p > 2, let (X, S) = (1 — ¢S(X'D'X) ™)X and tr D = 2d,
and ¢ > 0; then 0, is minimax if and only if ¢ < 2(tr D/d, — 2)(n + 2)~.

6, is the estimator given by James and Stein [9]if D = I,. Alternative forms of
estimators have been given by Bhattacharya [4].

As an aside, consider the case where X has p-variate normal distribution with
unknown mean ¢ and unknown covariance matrix D. Let & be a random
matrix having independent Wishart distribution with m degrees of freedom and
ES” = mD where m > p — 1. Define the risk of an estimator 4(X, &) of 8
to be

Ry(; 6, D) = E, ,[(0(X, &) — 0)Y((X, &) — 6)[tr D] .

Then g(X, &) = X is minimax with constant risk, 1, but estimators of the form
6(X, &) = h(X"#~'X)X where h is real-valued are not minimax unless A(+) = 1
a.e. This may be seen by noting that X’.”~'X is distributed as X"D~*X/S where S
is independent of X and has y2 _,,, distribution, according to Wijsman [13]. As
in the proof of Theorem 6 (with n =m — p 4 1, ¢* = 1) for D such that
tr D < 2d,, there is a value of 8 for which Ry(f; 6, D) > 1. Thus the estimator
g is essentially the only minimax estimator of the form A(X'&7'X)X.

Acknowledgment. The author wishes to thank George Judge for comments
and discussions. Thanks are due also to Larry Brown for helpful suggestions.

APPENDIX
Other authors seem to be aware of these corollaries but we are unaware of
proofs of results as general as those given here.?

2 Assume throughout that x‘f 7, has a chi-square (j) distribution with noncentrality parame-
ter 4.
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THEOREM A. Let Y have p-variate normal distribution with mean 7 and identity
covariance matrix. Let h: [0, co) — (— oo, +o0). Then fory = [y, ---, n,] and
Y =[Y, -, Y,], E[l(Y'Y)Y}] = WiEh(X%pH,q'm)'

Proor. The Y,’s are independent. Therefore,
E[K(Y'Y)Y,]
= E{(E[A(Y + 2z Y)Yi| s Y1}

= e (§ bt 4 S ) 2 )|
= 22’“)% {55 10 + Due Ve — eonaty D1
—E ;(; n {580 + i ¥ (Si %) ar} |

/B
< > y[(zk+3)/2]—1e—y/2
k! T <2k + 3) 9 (2k+3)/2
2

=nE| ¢y + D Y)e il D2 dy
(because I'(2k) = TI'(k)['(k + %)2*~'/xt). Thus
E[KY'Y)Y;] = %E[h(X?s,qiﬁ) + i Y] = WiE[h(st,niZ) + Xfp—1,zj¢i ,752))]
= 77iE‘[h(X%p+2,17'7)))] . D

COROLLARY 1. Let X have p-variate normal distribution with mean 6 and non-
singular covariance matrix D. Let h: [0, c0) — (— o0, +0c0). Then

E[KMX'D7'X)X] = OEh(xiy42,00-19)) -
THEOREM B. Given the hypotheses of Theorem A, we have
E[A(Y'Y)Y?"] = E[A(Xpsa,0)] + DELA(X G ra,m)] -
Proor. Note that Y;?’s are independent. Therefore,
E[W(Y'Y)Y?]
= E{E[MY + 2z YO)Y?| Zjus Y71}

2 2 k
=F {8_”213/2 im0 %-)*— E[h(3 o + Zjaei sz)XfHkI Zjaei szl}
—E {e—vimzw 2" (1 4 2k E[A(m + Tsus Y| X Y“]}
= k=0 T X(3+3k) et 1j jei L
219\k
= Eh(np + e Y21 + e S WY @OERGL + T0 Y1)
= E[h(xz(’s,w?) + Zjaei Ya‘z)]

+ {erinne BE EZ/_Z )1)_v BlAG s + Zses Y]}
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= E[h(Xipr2.p)] + 0DE(LG 50 + 2igee ¥)]
(because 37 ;.; Y;* ~ X?p—l,z#mﬂ) and
because )., Y,? and Y;? are independent)

= E[h(X%p+2n]'7)))] + (viz)E[h(X?p-H,r;’r)))] ’ i= 19 DR} p . I:l

COROLLARY 2. Let W be a p X p positive definite matrix and assume the hypo-
theses of Corollary 1. Then

E[h(X'D'X)X'WX] = tr (WD)E[h({p+2,0:0-10))] + O WOE[A(Xip+4,0:0-10)] -

LEMMA 3. Let ¢ be a real-valued measurable function defined on the integers.
Let K ~ Poisson (2/2). Then if both sides exist,

AE[$(K)] = E[2K$(K — 1)] .
LemMA 4. Let h: [0, 00) — (— o0, 4-00). Then if both sides exist,

E[h(*n)] = E [ MA(Lim+2) ] .

2
Xim+2)

LeEMMA 5. Let s: [0, c0) — (0, o0) and t: [0, co) — [0, o) be monotone non-
decreasing and monotone non-increasing functions, respectively. Let W be a
nonnegative random variable. Assume E(W), E(s(W)), E(Ws(W)), Et(W)),
E(WH(W)) exist and are finite. Then

E[s(W)(E(W) — W)] < 0 < E[t(W)(EW) — W)] .
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