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CONTRIBUTIONS TO THE THEORY AND CONSTRUCTION
OF BALANCED ARRAYS

By J. A. RAFTER' AND E. SEIDEN’
Michigan State University

Balanced arrays were introduced and first studied by 1. M. Chakravarti
and called partially balanced arrays. J. N. Srivastava and D. V. Chopra
have recently made major contributions to the theory and construction of

- these arrays. They suggested dropping the adjective ‘‘partially’’ and we
have followed their lead. Whereas their work has been concerned mainly
with arrays of strength four with two symbols, we are here concerned pri-
marily with arrays of strength two with two symbols. However, when the
proofs can be carried out as easily for any strength and any number of
symbols, we do state the theorems in full generality.

We are concerned here with finding bounds on the maximum possible
number of rows and with the problem of constructing balanced arrays for
given sets of parameters. Analogous to the problem of constructing other
combinatorial configurations, we investigated whether some schemes, i.e.
some subsets of columns of balanced arrays, could be extended to full bal-
anced arrays. It is shown, analogously to orthogonal arrays, that balanced
arrays of even strength, say 2u are extendable to arrays of strength 2u + 1.
A new technique of construction of balanced arrays with the maximum
number of constraints is also described. It is shown that BIB designs with
2 = 1 can be utilized for constructing balanced arrays with the number of
symbols equal to the block size of the BIB design.

For completeness we include an example of the analysis of a partially
balanced array of strength two with two symbols when it is used as a frac-
tional factorial design. We exhibit in this way an explicit method of esti-
mating main effects when higher ordered interactions are assumed to be
negligible.

1. Introduction. The concept of balanced arrays as introduced by I. M.
Chakravarti (1956) has served a dual purpose. First, it has served to unify the
study of several areas of combinatorial theory. For example, the incidence ma-
trices of BIB designs and doubly balanced designs as defined by D. Raghavarao
and S. K. Tharthare (1967) are balanced arrays with proper specifications of the
parameters involved. Also, orthogonal arrays can be studied as a special case
of balanced arrays.

Unification is not the only merit of ‘this concept. In fact, the main purpose
for studying balanced arrays is their usefulness in the construction of symmetri-
cal and asymmetrical confounded factorial experiments and fractionally repli-
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cated designs. In comparison to designs derived from orthogonal arrays, for
example, designs derived from balanced arrays require fewer observations to
accommodate a given number of factors. Theorems relating the estimability of
interactions up to certain orders to the strength of an orthogonal array also apply
to balanced arrays.

We shall begin with the definition of balanced arrays as it is known in the
literature.

DEFINITION. Let 4 be an m X N matrix, with elements0, 1,2, ..., ors — 1.
Consider the s* (1 x #) vectors, X’ = (x,, - - -, x,), which can be formed where
x;=0,1,...,5s—1;i=1,...,¢t, and associate with each (z x 1) vector X a
positive integer A(x,, - - -, X,), which is invariant under permutations of (x,, - - -, x,).
If for every t-rowed submatrix of 4 the s* distinct (# x 1) vectors X occur as
columns i(x,, ---, x,) times, then the matrix A is called a balanced array (BA)
of strength ¢z in N assemblies with m constraints, s symbols and the specified
A(xy, - -+, x,) parameters.

When one or more A(x,, - - -, x,) is zero, 4 will be called degenerate. When
A(xy, + -+, x) = A forall (x,, -+, x,), 4is called an orthogonal array of index
2.

In view of the fact that A(x, ..., x,) is invariant under permutations of
(%5 - -+, x;), one can denote by ,Z?lizzlxr the number of repetitions of a fixed
column of any 7 X N subarray of 4, where the column contains i, x,’s, i,x,’s, - - -
and i, x,’s. (x;=0,1,...,5—1, 3% ,i; =t r=min{s, t}).

The set of all ;22" " °s of an array of strength 7 in s symbols will be called
the index set of the array and will be denoted by A,,. The array 4 will be
represented as the BA (m, N, s, r) with index set A, ,.

In case s = 2, we will denote 4 by ), ..., 235" by g, ..., and 1,* by
¢.?. Where no ambiguity can arise, we will omit the superscript 7 from g,
and write simply g,. Clearly, y, is the number of times a fixed column contain-
ing i ones occurs in any 7 X N submatrix of 4. Finally, we will refertoa s x 1
column as a t-tuple.

Several properties of BA’s follow immediately from the definition. For ex-
ample, it is easily shown that the number of elements in the index set A, ,, is
equal to (**!*'). Second, a subarray of a BA of strength  consisting of at least
t rows is also a BA of strength ¢ with the same index as the original array. This
property is used occasionally to show the nonexistence of a BA with, say, m
rows by establishing the nonexistence of a subarray with the same index set. A
third property is that a BA of strength ¢ is also a BA of strength less than ¢ with
appropriate index set. This observation is especially useful in establishing a
recurrence relation between the elements of the indices of BA (m, N, 2, r) and
BA (m, N, 2,t — 1). Namely g,V = p 4+ pi; i =0, ...,t— 1. This is
easily seen by noticing that ina s — 1 rowed subarray a (+ — 1)-tuple containing
i ones must have either i or i 4 1 ones when the subarray is extended to ¢ rows.
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By repeated use of this recurrence relation we obtain:

#i(m — th-;tl—2 (tj—_ﬁi)#j(t) , | = 0, 1, 2.

We are concerned in this paper predominately with BA’s having two symbols
and strength 2. When used as fractional factorial designs they enable the experi-
menter to estimate the main effects when interactions can be assumed to be
negligible. It seems therefore worthwhile to present the analysis of a BA (m,
N,2,2). A more complete discussion can be found in Bose and Srivastava
(1964).

Consider a complete 2" factorial experiment where Fy, i = 1, ..., mrepresents
the ith factor and f; represents the second of the two levels at which F; can
occur. Let f denote the column vector of all treatments, where [’ = [(1);
fosfos oo s fifsfiffos ooes ooy e fifao fu]- LetF denote the column vector
of F’s in the same order where the first position represents the mean, px. It is
well known that each main effect and each interaction can be expressed as a
linear contrast of all treatments. We can represent these contrasts in matrix
notation as:

(1.1) F=&f

where &’ is a 2™ X 2™ matrix of plus and minus ones, and (1/2")&Z” = I.
Multiplying both sides of (1.1) by (1/2")& gives

Lor.

2m

Let 4 = (m, N, 2, 2,) be a BA with index set {z, 14, ¢,}. Each column of A4
represents a treatment, where if there is a one in row i, then the corresponding
treatment will have factor i at the second level, and if there is a zero in row i,
factor i will be at its first level. Let y be an N rowed column vector, where the
ith entry in y represents the yield of the treatment which corresponds to the ith
column of A4.

Using 4, we wish to estimate the mean and the m main effects under the as-
sumption that no interactions of two or more factors are present. Thus F' =
(8, I)) where B = [p; F, F,, - -+, F,] and [, is a vector of all zeros. Let &, be
the matrix which contains the first m 4 1 columns of &, then from equation
(1.2) we have l

1
T m

(1.2) f=

Z08 .

It is seen from this equation that each entry in f corresponds to a row of &.
That is, (1) corresponds to the first row of &, f, to the second row, and so forth.
Using this correspondence, we generate an (N X m + 1) matrix X as follows.

Consider the jth column of 4. Then this column corresponds to a particular
treatment,  (say). We take as the jth row of X the row in &, which corresponds
to treatment ¢.
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Let us make the assumption that the application of the treatments represented
by the columns of 4 is done using a completely randomized design with one
replication per column. Thus we may assume that there are no block effects.
We further assume that Var (y) = ¢%/,, and that the effects are additive. The
construction of X then gives that the expected value of y, written E(y), is equal
to (1/2™XB. '

The normal equations are

(1.3) ;_mX'XB = Xy,
so that if (X"X)~! exists, the least-square estimates are given by
(1.4) B =2"X"X)"'X"y.
Following the discussion in Bose and Srivastava (1964) one can show that
X’X:[N aj ”i\(m+1xm+l), J=(, 1)
af' (N — b)l + bf)j

where a = p, — p,and b = py — 2p, + p,. It is then a straightforward calcula-
tion to find (X’X)~'. The interested reader may check to see that (X’X)~! is
given by the following:

(U E g 4 mim —19) =L (g 4 (m— 1)

(X' Xy =
— 4 @+ (m— 1))’ (9 — NI+ 1)
where
g = N? — a*(m — 1) 4+ (m — 2)Nb and
(N* — @®m 4 (m — 1)Nb)(N — b)
e (Nb — a?

(N* — a’m 4 (m — 1)Nb)(N — b)
The sum of squares due to error, S,% is given by
(1.5) S}=yy—yXp.
The number of degrees of freedom for error is N — (m + 1). The expressions

(1.3) and (1.4) can be used, for example, to carry out r-tests for hypotheses that
any individual effect is zero.

2. Diophantine equations. In this section we will be concerned with a set of
diophantine equations, which form a set of necessary conditions for the existence
of BA’s.

These equations are given by

Lemma 2.1. In the BA (m, N, 2, t) with index set {y,, ---, p,}, let n;” be the
number of i-dimensional columns which contain exactly jones, i =t, ..., m, j =
0,---,i. Then

OOy = 252 HEHn D,
where | = 0,1, ..., ¢t
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Chopra (1967) has given a very simple straightforward proof for the above
when i = m. The proof also applies when ¢ < i < m, so that no further work
is needed. We shall be concerned with the above equations in a slightly different
form and in less generality, so we give the following corollary.

COROLLARY 2.2. In the BA (m, N, 2, 2) with index set {py, 1., tt,}, the following
are true.

(i) i (m® = Qs
(i) Xioojm'” = i(py + ) 3
(iii) Z§'=oni(i)=ﬂ0+2ﬂ1+/‘z’ i=2..-,m.

The proof of this corollary can be obtained independently using the usual
counting procedures.

Corollary 2.2 provides information regarding the structure of BA’s. We shall
summarize some of this information for BA’s of strength 2 and indicate further
possibilities regarding arrays of higher strength.

THEOREM 2.3. Let A be a BA (m, N, 2, 2) with index {s,, p,, s}, For m = 3
we have

(i) m £ po + p, with equality if and only if n/® = n,® = 0.
(i) gy, = p, if and only if n,® = 3n®. p, = p, if and only if n,”® = 3n,®.
(iii) Let pt, = po + pto. Then m < 4 with equality if and only if p, = p,.
(iv) Let py = py + p,and m = 4. Then A is a BA of strength 3 with index
{6 = 0, 1, = 1@, 1y = pe®, ps® = 0}.

Proor. (i) Corollary 2.2 with i = 3 gives n, = py — #, + p, — n,, and thus
i = po + p, if and only if ny = n, = 0.

(ii) This follows in a manner similar to (i).

(iii) Since by (i) n, = ny, = 0, it follows that any column of A4 can have at
most two zeros and two ones. Thus m < 4. Now suppose m = 4, then using
Corollary 2.2 we find g, = 2p,. Since g, = p, + p,, this gives g, = p,. Con-
versely, suppose that g, = p, = ¢ so that 4, = 2c, then 4 can be written as the
juxtaposition of ¢ arrays of the form

00101 1
0101 01
B=1 900110
1 11000

Clearly, m = 4.

(iv) Since B above is a BA of strength 3 with 4,® = 0 = ® and ¢, =
1,® = 1, the juxtaposition of x, B’s will be a BA of strength 3 with the indicated
index set.

We shall conclude this section by showing how Corollary 2.2 can be used to
construct a BA step by step.
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ExAMPLE 2.4. We wish to construct a BA (m, 5, 2, 2) with index set {¢, = 2,
# = 1, p, = 1} with as many rows as possible.

(i) Without loss of generality we can write down the first two rows as

0 0 01 1
0010 1.

(ii) For i = 3, the equations in Corollary 2.2 give just two solutions. They
are
ng n, n, ng
@ 1 3 0 1
() 2 0 3 0.

The resulting arrays can be written as

@ 0 0011 (b 00011
00101 001 0 1
01001 001 1 0.

(iii) Similarly for i = 4 the solutions are

ny ny ny n; n,
(c) 0 4 0 01
d 1 2 0 2 0.

Solution (d) is not compatible with solutions (a) and (b), and solution (c) is not
compatible with solution (b). But using solution (a) we find

) 0 0 0

1 1
01
01
0 1.

-0 O
(=R =)
(= =

(iv) Corollary 2.2 with i = 5 gives only one solution namely n, = 1, n, = 1,
n,=1,n,=1, n, = 1and n, = 0. But this is incompatible with the array (c).
Hence the maximum possible value of m is 4, and BA (4, 5, 2, 2) is unique and
given by (c).

3. Bounds on the maximum number of constraints. A BA is characterized by
its index A, , and the four tuple (m, N, s, ). However, the index A, , determines
N, s and . We may ask, “How big can m be for a given A, ,?” As a first step
in this direction we shall investigate the upper bound for m in case s = 2. The
justification for this is twofold. Firstly our results apply mostly to this case.
Secondly these bounds will provide us with bounds, possibly rough, for any s
by identifying the s elements with two distinct elements.

Notice first that m < N for all BA’s. This can be seen from the following
lemma

LemMA 3.1. Let A be a nondegenerate BA (m, N, 2, t) with index set A,, =
{e. i =0, --.,t}. Then the eigenvalues of AA' are b 4+ mc with multiplicity one
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and b with multiplicity m — 1, where
b= D (Y ¢ = Dha (e

Proor. Clearly any two rows of A4 contain b times the 2-tuple ({) [or (})] and
c times the 2-tuple (}). Hence

AA" = bI, + cJ,, .

Since 4’4 and AA4’ have the same m nonzero eigenvaluesand A’4isan N X N
matrix, m < N. When s > 2 the result follows by replacing each nonzero element
in 4 with a one.

A reader familiar with factorial experiments will notice that the inequality
m < N can be obtained from the fact that a BA (m, N, s, ) can be considered
as N treatment combinations out of an s™ factorial design capable of estimating
at least m parameters.

THEOREM 3.2. Let AbeaBA (m,N,2,2) withindex set {t,, tty, tta}. If p1,® > po s,
then
Ny
e — oty

with equality if and only if the number of ones in each column of A is the same.

m

IA

Proor. Let #; be the number of columns of 4 which contain j ones, and let
J =~ Spng
N I= J

Since n; = 0 for all j, it follows that

0= X7ro(j—J)Vnj = Z7= ) — N(J)*.
Using Corollary 2.2, we see that

J= %(‘ul + ) and

Dra g = m(m — Dy, + m(py + )
Thus

1
0= m(m — V)py + m(p, + pa) — N (m(ey + 1))’

2 m? 2
= nmip, + mp, — W(#l + m) .
Since m > 0 this reduces to
m(p® — pots) < Ny,
Since by hypothesis z,> — g, > 0,

N,y

R
H1 — Polts

IA
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Suppose that the number of ones in each column of 4 is the same and equal
to k. Then, k = j, and replacing < with = in the first part of this proof gives,

m —= __iﬂl___ .
B = oty
Suppose
m = ___]!‘u_l___ .
' — totty

Then, replacing < with = in the first part of this proof and following the
argument in reverse order, it is clear that

Zie (= J)n; =0,
so that the number of ones in each column of 4 is the same and equal to j.

As mentioned in the introduction, the incidence matrix of a balanced in-
complete block (BIB) design is a BA.

CoROLLARY 3.3. A BA(m, N, 2, t) which is also the incidence matrix of a BIB
design (m, N, r, k, ) with k < m has the maximum possible number of rows.

Proor. We need only show that m is a maximum when the BA is considered
to be of strength 2. As an array of strength 2, the BA has index set {¢, = N —
2r+ 2, 4y =r— 2,y = A}. Thus

' — oty = (r — A — AN — 2r + 2)
—Ner—-n>o,
m
where we have used the well-known results that for a BIB design, Nk = rm and
r(k — 1) = A(m — 1). Now, since the array has k ones in each column, Theorem
3.2 implies that m is the maximum number of rows possible.

The corollary implies the following interesting property. Let 4 be a BA of
strength ¢ in 2 symbols. If, when A is considered to be a BA of strength 2,
2% < popty, then A cannot have the same number of ones in each column. This
follows, since, if 4 had k (say) ones in each column, the proof of the corollary
would give #,> > p,¢,, a contradiction.

(In the above corollary and property we exclude the case m = k, which would
mean p, = ¢, = 0 and p, = N.) '

THEOREM 3.4. Let A be a BA (m, N, 2, 2) with index set {p,, py, tts}. If p® =
Uoltas thenm < N — 1.

Proor. With each column of 4 we associate a distinct variate. With the
column of A, which contains x,, - -, x,, (x, =0, 1;i =1, - .., m) in this order,
we associate the variate f(x;, - - -, x,,). We consider certain linear functions of
these N variates.

Denote by 3}, the summation over all columns of 4. Then, we define the
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Oth stage function to be
ZN (xl’ : ",Xm) )

the sum of all the variates.
Consider two numbers, ¢, and ¢,, such that

(1) (&0 + 1) + (1 + ), =0 and
(2) PoCo’ + 2,606, + pac® = 0.

Choose any row, r, of A. Corresponding to this choice, we can construct the
linear function

D e(Nf(x, -5 x,) -

In the column of A corresponding to the variate f(x,, -- -, x,,), the symbol oc-
curring in row 7 of the array is x,. In the linear function constructed, we make
the coefficient of f(x,, - - -, x,,) equal to ¢, if x, = i, i = 0, 1. The linear func-

tions so defined are called first stage functions. Clearly, there are m first stage
functions, one for each row of 4.

Provided ¢, and ¢, are not both zero, equation (1) above implies that the first
stage functions are orthogonal to the Oth stage functions. Equation (2) implies
that each first stage function is orthogonal to each of the other first stage func-
tions. Thus, the m + 1 functions defined above are all mutually orthogonal
and therefore independent. Since the maximum number of independent linear
functions of N variates is N, it follows that N> 1 + morm < N — 1.

We now show that not both ¢, and ¢, are zero. Equation (1) gives

R e
= —2 1 2¢ = —Kc (say)
T et L
Equation (2) gives
e (K'pty + 1o — 2Kp1y) = 0.
Thus, ¢, = 0 as well as ¢, = 0, unless K’y + p, = 2Ky, But as the following

shows K*u, + g, = 2Kp, if and only if p,* = p,p,, so that by hypothesis there
exist ¢, and ¢, not equal to zero.

2K = Ky + py

2
iff 2 #1+#2:#(#1+#2)+ﬂ

1 Ko+ th 0(/"0 + ) ’
iff = oty

THEOREM 3.5. Let A be a BA (m, N, 2, 2) with index set {yu,, 1, u,}. Then the
maximum value of m is m’ = max{u,, .} + 2 and (m’, N, 2, 2) exists.

Proor. Without loss of generality, we write the first two rows of A4 as

L s
0 0 0 1 1 1
0...0 1 0 1...1.
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Since x;, = 1, the third row must have exactly one one in a column of 4 which
has a zero in the first row of 4. Call this column ¢,. Likewise, the third row
must have exactly one one in a column of A4 which has a zero in the second
row of A. Call this column c,.

Case 1. Suppose that ¢, and c, are different columns. Then, without loss of

generality, we write the first three rows of 4 as
Ho 6 ¢ ¢ p—1

0 0 01 11 1

0 01 0 11 1

0...0 1 1 0 1...1.
In adding a fourth row, we note that there cannot be more than one one in the
first 4, columns, else x, = 1 would be contradicted. Suppose there is one one
in the first g, columns. Then, since ¢, = 1, there cannot be a one in column
¢, ¢, or ¢;. But this leaves only p, — 1 places in which to place z, ones. Thus,
in the fourth row we must put zeros in the first x#, columns and one zero and
2, + 1 ones in the last g, + 2 columns.

Suppose we place the zero in one of ¢, ¢,, or ¢; (¢, say). Then the number of
8)’s occurring in the first and fourth rows of 4 is y, + 1, a contradiction. It
therefore follows that the zero must be in a column which has ones in the first
three rows.

Using similar arguments, we can continue to add rows as long as there are
columns containing all ones. A4 will thus have the form of y, columns of zeros
and z, + 2 columns containing one 0 and the rest ones, where each row has
exactly one zero in the last ¢, + 2 columns. Clearly the number of rows of 4
is py + 2.

Case 2. Suppose ¢, and ¢, are the same column. Then without loss of gener-
ality, we write the first three rows of 4 as

Uy — 1 )
0 0001 1 1
0 00101 1
0...0 1 0 0 1...1

Using similar arguments to those used in Case 1, we see that 4 has the first
#o + 2 columns with one one and the rest zeros, where each row has exactly
one one. The remaining z, columns contain all ones. Clearly, the number of
rows of A4 is p, + 2.

Since Cases 1 and 2 are the only ones possible, the theorem follows.

ExampLE. Recall Example 2.4. A4 is a BA (4, 5, 2, 2) with index set {2, 1, 1}
and was shown to have the form

-0 OO
o - OO
o O =0
SO O~
—
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THEOREM 3.6. Let A be a BA (m, N, 2, 2) with index set {2, 1, tt5}. If | is the
number of ones in some column of A, we have
0 < m(ptopty — p1* — fta) + mn(N — 1) + 2mlQ2p? — 2popty + s — h)
+ Pdpops — dp” — o+ 2t — tho) -
ProoF. Pick a column with / ones. Count the number of 2-tuples belonging

to the remaining columns which coincide with each 2-tuple of the chosen column.
The details of the proof are available in Rafter’s thesis.

COROLLARY 3.7. Let A be a BA (m, N, 2, 2) with index set {1, 1,5 s} then:
(i) If1=0,

méﬂz(N;(;)ﬂll provided p* — py(prg— 1) > 0.
1 T F\Fo —
(i) Ifl =m,

m< (=D provided  p* — pop; — 1) > 0.

pt — ot — 1)

ExAMPLE. Let 4 be the BA (m,9,2,2) with index {3,2,2}. Then Theorem 3.6
gives

0< 16m — 8ml + 7.

It is seen that for [ = 0, 1, 2 the inequality holds for any m. Forl = 3,4,5,6,
m < 7and for [ =7,8,9, m may exceed 7. Hence if we could construct an
array with more than 7 rows the columns of the array must have the number
of ones either not exceeding 2 or exceeding 7. Suppose now that we could
construct such an array with m = 8 rows. From the index of the array we see
that each row has to have 4 ones. Thus the total number of ones of the array
is 32. Consequently the array must contain at least two columns with [ > 7.
This in turn implies that a four-rowed subarray contains two columns of all
ones, which contradicts the equations of Corollary 2.2 with i = 4.

We shall present an array with m = 7 satisfying the above conditions, showing
that the maximum can in fact be achieved.

000001 111
000110011
011000011
4=00 10101 01
010100101
010011001
001101001

We conclude this section with a theorem and an example related to BA with
s = 2 symbols and strength ¢ = 2.

THEOREM 3.8. Let A be the BA (m, N, s, t) with index set A, ,. Then A contains
s BA’s, where each array is of strength t — 1 in s symbols.
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Proor. Choose any row, r, of 4. Divide the columns of A4 into s sets, so that
each column in a given set has the same number in row r. Exclude row r, and
call the m — 1 rows of the set, which has jin row r, 4;. Let N; be the number
of /’sin row r, then 4; has N; columns. Weshow 4;isaBA(m —1,N,,s,t —1).

Excluding r, choose any t — 1 rows of 4. By definition, every possible (¢ — 1)-
tuple must occur in these ¢+ — 1 rows with the ;s of row r. Moreover, for 4;,

JUDiL iy ALy
ESTRRRIr N = Ym0

where p = min{s,t — 1}, x;, =0,.--,s—1,i; =0,1,..-,t — l,and };2_,i; =
t— 1. Ifj=x,e{x, -, x}),

Z(t)’l'il""'ip _ /z(t)il"""lc'*']""vip
j’xlv""zp el le""“’k""v“’p .

Thys 4, j=0,...,5s— 1, is a BA.
This theorem can also be established from the usual partitioning of the total
degrees of freedom in the ANOVA table of the specific design BA (m, N, s, 7).
The bounds derived in Section 3 can also be useful when directly applied to
BA’s of strength 2 in more than 2 symbols. For example, let 4 be the BA (m,
20, 3, 2) with 2, =4, 2, = 3, 2, = 3, 4, = 1, 4, = 1 and 2, = 1. Replacing
all nonzero elements in 4 with 1 gives a BA (m, 20, 2, 2) with g, =4, ¢, = 6,
#, = 4. By Theorem 3.2 m < 20(6)/(36 — 16) = 6. Thus A4 can have at most
6 rows.
Indeed 4 can be expressed as follows:

000O0O0O0O0O00O0O0O0T1T1 1112227272
000011 1222200O012200U01 2
A—O 21 112020O0O0O07201W0?21H0F0
212100120021 400000021
211000201 20021010200
1 00212001 22140O0O021000

4. Construction. The problem of actual construction of BA’s is very complex.
The algebraic conditions described thus far can be used to analyze some prop-
erties of BA’s. However, the algebraic conditions neither ensure the existence
of BA’s nor give any clue as to how to construct them in-case they do exist.
The main difficulty in construction is due to the fact that the number of columns
of the array determined by the index A, , grows very fast with s or 7.

One possible attack on the problem which arises naturally is to construct some
smaller number of columns which generate the whole array. We call such col-
umns a scheme for the array and shall describe presently one way of searching
for a scheme.

This terminology was introduced by R. C. Bose (1939) and used by many
other researchers, e.g. Seiden (1954). Recently some authors Webb (1968) and
Margolin (1969 a, 1969 b) called such techniques fold-over techniques. It will
be shown here that this method works also for balanced arrays.
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Let S be an ordered set of s elements, e, e,, - - -, e,_,. For any positive integer
t, consider the s* different ordered z-tuples of the elements of S. Then these can
be divided into st~! sets, each set consisting of s t-tuples and closed under cyclic
permutations of the elements of S. We denote thesesetsby S;,i = 1,2, ..., 5%

We can define the sets S,, i = 1, - .., st!, as follows. Consider the st~ distinct
(t — 1)-tuples formed from elements of S. Let the first z-tuple of each S, be
(e;eis --seq, ) where e is a fixed element arbitrarily chosen from S, and
(€is - -+ €,_,) is one of the distinct (¢ — 1)-tuples formed from elements of S.
The additional s — 1 t-tuples of each of the sets S, are obtained from the first
by cyclic permutation of the elements of S.

A matrix T of m rows with elements in S will form a scheme if in every ¢-
rowed submatrix of 7 the number of columns belonging to an S, is a positive
integer, with the restriction that if §; contains a column which is a row wise
permutation of a column in S,, then the number of columns occurring in at-
rowed submatrix from S; is the same as the number of columns occurring in a
t-rowed submatrix from S,.

We may now state the following theorem.

THEOREM 4.1. A4 matrix T which forms a scheme as described above can be used
to construct a BA (m, N, s, 1).

Proor. Append to the columns of the scheme T all transformations of these
columns consisting of cyclic permutations of the elements of S. The result will
clearly be a BA (m, N, s, t) with the index A, , determined by T.

ExampLE. Let S = {0, 1} and ¢t = 3. The four distinct 2-tuples, which can

be formed from S are (§) (3) (}) (). Pick O as the element e of the above discus-
sion, then

0 1 0 1 0 1 0 1
S, =40 1\, 8§ =10 1}, S,=1{1 0 and S, = {1 0}.
0, 1 1, 0 0, 1 1, 0

Let
0000 O0O0OT1 111
T 0001110001
0110010010
1101001000
and let s; be the number of times columns from S, occur in any three rows of 7.

1

Then one can check that
S1=1 and 52=S3=S4:3.

Thus we have a BA of strength 3 given by

0000001111111 11140°0°00
A—O 00111000111 100O01T1T1FP0
011001001 010O0T1T1O0T11°01°
1101001 0O0O0OO0OO0OT1 0110111
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A close look at T in the above example reveals that it is a BA of strength 2.
We may thus ask whether it is always true that a BA of strength 2 forms a
scheme for the construction of a BA of strength 3. This is answered by the
following.

THEOREM 4.2. Let t = 2u. Then a BA (m, N, 2, t) with index set {§,'¥|i =
0, ..., t} forms a scheme for the construction of a BA (m, 2N, 2, t 4+ 1) with index
set {p, Vi =0,...,t4 1}, where

(E+1) — ,,(t+1) t—2k 1,,(t)
i = pfile = 25 (= )'eids k<u.

PROOF. A set S, is composed of vectors

V= (X, c ey X)) and
’v* = (x1*9 ey x;“_H) s
where if v has k ones, then v* has ¢t + 1 — k ones.

Suppose v contains k ones, then, v will appear in ¢ + 1 rows of (m, N, 2, t)
m, times, and v* will appear in those ¢t + 1 rows m,,,_, times. Moreover,

m, = 2% (=1)pd, + (=D m, ., where 2k < t¢.
Since t — 2k 4+ 1 = 2(u — k) + 1 is odd, we have
my, + myq = D5 (=)
which is independent of the ¢ 4 1 rows chosen from BA (m, N, 2, 1).
Suppose S; contains a permutation of v. Call it . Then u* is a permutation

of v*, and, since m, and m,,_, are independent of order, the number of columns
of §; occurring in any ¢ 4 1 rows of BA (m, N, 2, 1) is

= (=D, 2k,

the same as for ;. Thus BA (m, N, 2, t) forms a scheme satisfying Theorem 4.1.

" It is clear from the construction of BA (m, 2N, 2, t + 1) that a (¢ 4 1)-tuple
containing k ones will appear m, + m,,,_, times. Likewise, a (¢ 4 1)-tuple con-
tainingt + 1 — k ones will appear m,,,_, + m, times. Thus, wherek < /2 = u,
we have

mY = pit = 2t (=1)ypd .
COROLLARY 4.3. ABA (m, N, 2, 2) with index set {1, 11, p1,®} forms a scheme
for the construction of a BA(m + 1, 2N, 2, 3) if either 1,'® = p,® or p,® = p,®.

Furthermore, if m' is the maximum number of constraints of BA (m, N, 2, 2), then
m’ + 1 will be the maximum number of constraints of BA (m + 1, 2N, 2, 3).

Proor. Without loss of generality, we assume g, = p,®. (If 1, = p,?,
we can interchange zeros and ones in BA (m, N, 2, 2) and obtain an array where
t'? = ™)

Let T be the BA (m, N, 2, 2) and T* be the array obtained from T by inter-
changing zeros and ones. Let TT* represent the juxtaposition of 7 and T*, then,
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by Theorem 4.2, TT* is a BA (m, 2N, 2, 2) with index {¢,® = p,®, p1,® = p,?,
1 = g5 1 = p,}.

We add the (m 4 1)st row to TT* by placing a zero in each column of T*
and a one in each column of 7. Call the resulting array 4. It is easy to see
that 4 isa BA (m + 1, 2N, 2, 3). The remainder of the theorem follows from
Theorem 3.8.

ExaMpLE. Consider 4 in the example following Theorem 4.1. A is a BA (4,
20, 2, 3) with index set {1, 3, 3, 1}. By placing ones under the first 10 columns
of 4 and zeros under the remaining 10 columns, we obtain a BA (5, 20, 2, 3)
with index set {1, 3, 3, 1}.

Corollary 4.3 has application in the following kind of situation. Suppose that,
after an experiment has been performed, it becomes desirable to include an ad-
ditional factor, where the original design was a BA (m, N, 2, 2). Then instead
of performing an entirely new experiment, we consider the original experiment
to be half of an array, BA (m + 1, 2N, 2, 2) and add the remaining half in which
the new factor will appear constant at the 1 level.

The problem may arise that, while, in the original experiment, there were
no interaction effects, the introduction of a new factor makes this assumption
questionable. The corollary shows that the additional treatment combinations
may be designed so that the augmented experiment is of strength 3, which will
allow estimation of main effects in the presence of first order interactions.

We now turn to the construction of BA’s in more than two symbols. Since
we will be concerned with arrays of strength two, we write )} as 2, ;, i,j =
0,1, ...,2s — 1.

We have shown previously that the incidence matrix of a BIB design is a BA
with the maximum possible number of rows. We now show the following:

THEOREM 4.1. Consider a BA which is also the incidence matrix of a BIB design
(v, b, r, k, 2 = 1). The existence of this array is equivalent to the existence of a BA
A= (m, N, s,2) with index set A,,, where m=r, N=b—r, s=k, 2=
b—r—(k—-—0H2r—k—=1, 2y=r—k, i=1,...,k—1, 2;=1, i,j=
1, .-, k—1.

Proor. Let T be the incidence matrix of the BIB design (v, b, r, k, 1). Then
T isa BA (v, b, 2, 2) with index set {py=b6 — 2r + 1, s, = r — 1, p, = 1}.

Interchanging columns and rows as necessary, we can put 7' into the follow-
ing form. Fori =1, ..., r, the ith column of T contains a one in its first row,
ones in rows i(k — 1) — (k — 3) through i(k — 1) 4 1, and zeros elsewhere.
Next, let K, represent the k — 1 rows from row i(k — 1) — (k — 3) through row
i(k—1)+1,i=1,...,1,r. Considercolumnc;,j=r+1,..-,b. Sincep, =1,
¢; can have at most one in the rows of K;, where the other entries are zero. If
the one occurs in the first row of K;, enter a one in row i and column j — r of
A. If the one occurs in the second row of K, enter a two in row i and column
j — r,and so on. If no one occurs in the rows of K;, enter a zero in row i column
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j—rof A. Clearly, m =r, N=b — r, and s = k, so that we must now show
that 4 is a BA of strength 2 with the indicated index set.

Consider K, and K, u,v =1, ---, r, u #+ v. Each row of K, (K,) contains
r — 1 ones in the columns from r 4 1 through 4. Since y#, = 1, each row of
K, must have exactly one of these ones in common with each row of K,. Thus
for rows u and v of A4,

;=1 ihj=1,--,k—1
and ,
Qy=r—1—(k—1)
=r—k, i:l,"',k—l.
Moreover,
Qo= (b—1r)— 238324, — 2 Z?;l A

=b—r—(k—1)Q2r—k—1).

Since u and v were arbitrary, the A’s are independent of the two rows of A.
Thus A is a BA with the indicated index set.
Given the BA, A4, we can reverse the construction and derive T.

ExampLE. Consider the BIB design (13, 26, 6, 3, 1), then we write T in the
indicated form and 4 below T, where K, contains rows two and three, K, contains

rows four and five, ..., and K, contains rows 12 and 13.
11111100000000000000000000
10000011111000000000000000
10000000000111110000000000
01000010000100001110000000
01000001000010000001110000
00100001000001001000001100

T=00100000100000100101000010
00010000010010000010001010
00010000001100000001000101
00001010000000010000100110
00001000100001000010010001
00000100010000101000100001
00000100001000010100011000

1 11112222 24000UO0UO0UO0OO0OO0OTO0T0

120001 200O0O0T1T1T1U22%22W50W0TU0F0

A_01200001201202001120
0001 22100O0O0OO0OT1 200121 2°

1 02 0000201 00O02012W0T1T172

0001 200O0OT12120W0T122PW0TPDO0:1

Clearly 4 is a BA(6,20,3,2) with 2,=4, 2, =3, i=1,2 and 2; =1,

ij=1,2.
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COROLLARY 4.5. A4 BA constructed by the method of Theorem 4.4 has the maxi-
mum number of rows.

Proor. Replace all nonzero elements by 1. The resulting array will then
represent an incidence matrix of BIBdesign [r, b — r, (k — 1)(r — 1), k, (k — 1)*],
where r, b, and k relate to the array with 2 = 1 which was used for the con-
struction. Hence the conclusion.

REMARK. It is worthwhile noticing that 2,; = 1, hence a constant for all i
and j different from zero. 2, and 2, depend on the parameters of the BIB used
for construction. Setting r = k, 2, = 0 and 2,, = 0 for all i will yield N =
b—k=(k—1? Fork=s+1,b=s 4 s+ 1. Hence if we start with a
v X b incidence matrix of a projective plane, 4 will become a (s 4- 1) X s* or-
thogonal array with rows forming the s + 1 orthogonal squares of s symbols.
This is an alternative proof of the equivalence of the two representations of
projective planes.
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