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CONTROL CHARTS BASED ON WEIGHTED SUMS!

By TzeE LEUNG LAl
Columbia University

In a continuous production process, samples of fixed size are taken at
regular intervals of time and a statistic X, is computed from the nth sam-
ple,n =1,2, ---. Inthis paper, we study process inspection schemes which
stop the production and take corrective action with N = first n = 1 such
that 137, ca—i X; = h, where h is a preassigned constantandco 2 c1 = --+ =
¢k—1> 0 = ¢k = ck+1 = -+~ is a suitably chosen sequence of weights. The
average run length of such procedures is examined, and in the normal case,
numerical comparisons with the average run length of the usual Shewhart
Chart are given. In connection with the normal case, the first passage times
of more general Gaussian sequences are studied and an asymptotic theorem
is obtained. The first passage time N for more general weighted sums,
where the sequence (c,) is not assumed to be eventually zero but is assumed
to be at least square summable, is also considered.

1. Introduction. An important industrial application of statistics lies in the
area of quality control. In a continuous production process, the quality of the
output may be assessed by some characteristic (e.g., the mean life of light bulbs
or the fraction of defectives of the output), and we may assign a quality number
6 to the characteristic. We are interested in detecting the change in 6 once the
production process gets out of control. A widely used process inspection scheme
is the Shewhart control chart (see [13]), where samples of fixed size are taken at
regular intervals of time and a statistic of the sample (e.g., the mean or the
number of defectives) is plotted on the chart. If the sample point falls outside
the control limits drawn on the chart, rectifying action is taken. This scheme
is sometimes referred to as a single-sample scheme, since the decision whether or
not to take action is based on a single point on the chart. Although the results
of previous samples are recorded on the chart, none is used by this single-
sample scheme.

It is conceivable that by a judicious use of observations in the immediate past,
we may be able to achieve greater efficiency in the process inspection scheme.
One method which uses previous observations is suggested by Dudding and
Jennett [4] and has been occasionally used. Warning lines within the control
limits are drawn on the chart and rectifying action is taken if any point falls
outside the control limits or if k out of a sequence of n consecutive points fall
outside the warning lines, where k and n are preassigned integers. Such schemes
are called control charts with warning lines. Performance characteristics of these
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schemes have been studied by Page [12] in the case k = 2 and any n and also
in the case k = n.

In utilizing previous observations for the detection of the lack of control, we
have to ensure that the “good old days” of the machine would not outweigh its
present misery. To illustrate this, suppose we want to control the mean # of a
normal population N(@, ¢*), where # may be changing over time, and production
is out of control if § > 6,. Suppose one uses cumulativesum S, = Z, +---+ Z,
based on all the observations Z,, ..., Z, collected so far (since action was last
taken) and takes corrective action if Z, = S,/n falls beyond 6, + Ko /n*. Suppose
Z, has mean 6, — 1 for i < v and then the mean leaps above #,. If v is large, it
may take very long to detect the change in #. To remedy this, Page [11] pro-
posed to consider S,’ — min,_,, S, instead and to take rectifying action as soon

as S, — miny,_, S/ = h, where S,’ = X7 (Z;, — 6,) and k is a suitably chosen
positive constant. By subtracting min,,_, S, from §,’, the effect of the good
old days is somehow eliminated.

Another way to avoid the shortcoming of the S, procedure referred to in the
preceding paragraph is to sum a certain preassigned segment of the past instead
of the entire past, or more generally to take a weighted sum of the entire past
putting most weight on the immediate past and zero weight on the remote past.
Page ([11], page 100) has pointed out that the performance of such rules based
on moving averages is generally difficult to evaluate. In this paper we shall study
the performance of this class of rules. Section 2 deals with bounds on the aver-
age run length and Section 3 treats the normal case in detail. Section 4 examines
the asymptotic behavior of the first passage times for a class of Gaussian sequences
related to Section 3, while Section 5 considers the problem of first passage times
for more general weighted sums.

2. The average run length. Either in the Shewhart control charts, or in the
Page cusum charts, or in the moving average inspection schemes of the preceding
section, there is probability one that some point will eventually fall outside the
control limit and action will be taken even though 6 has constantly remained in
control. The S, procedure referred to in the previous section does not have this
property when ¢ remains < §,, but the detection of the deterioration of # into
the out-of-control state becomes slow, particularly when the deterioration occurs
late. To achieve quick detection of the deterioration of @ irrespective of when
such a deterioration occurs we have to tolerate the property of probability one
of false alarms.

In evaluating the performance of process inspection schemes Aroian and
Levene [1] propose the use of the average efficiency number, now more commonly
known as the average run length (abbreviated ARL), which is the expected num-
ber E,T of articles sampled before action is taken when the quality level has
remained constantly at #. When the quality level 6 is satisfactory we want E, T
to be large. When the quality level ¢ is poor we want E,T to be small. For
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procedures whose performance is not or little affected by when (i.e., at what
time point) 6 becomes out of control, the ARL is a good measure to evaluate
these procedures. In this connection it should be pointed out that for procedures
whose speed of detection depends heavily on when the change in # occurs, such
as the S, procedure referred to in the preceding section, the ARL does not re-
flect this dependence, since in the ARL we assume that 6 stays constantly at a
fixed quality level.

We now study the ARL of the moving average inspection schemes. Suppose
production is out of control when the quality level # exceeds §,. Samples
B,, B,, - - - of size m are taken successively at regular intervals of time since the
previous rectifying action, and a statistic X; = f(B,) is computed from B,. If 6
is the quality level when the sample B, is taken, then X, has distribution function
F,, and we assume that the family {F), —co < 6 < oo} is stochastically increas-
ing. Choose a sequence of weightsc, > ¢, > -+ = ¢,.,>0=¢c, =c,,, =---.
Stop the production and take corrective action with N = first n > 1 such that
2ii=1 €y Xy = h, where k is a suitably chosen constant.

Since the family {F,} is stochastically increasing, the average run length mE, N
is a decreasing function in §. We want E, N to be large for § < 6, say E,N > K
if & < 6,, where K is a preassigned number. Subject to this constraint, we desire
E, N to decrease rapidly for 6 > 6,.

Let Y, = 7., c,_; X;, where X, X,, - .. arei.i.d. with a common distribution
function F,. Unlike the sequence Y7, ¢, X, the sequence Y, is not a Markov
chain, nor does it admit a Wald-type argument to study first passage times. We
have shown in [2] that in a limiting sense, the behavior of the sequence Y,
resembles that of a sequence of independent random variables. Such limiting
behavior manifests itself in the asymptotic behavior of the ARL, as we shall
see in the later sections.

With the above remark in mind, we now find a lower bound for E,N. The

random variable Y, can be written as a function of (X}, - .., X,) which is non-
decreasing in each argument. Therefore it follows from Theorem 5.1 of [5] that
@) PlY, < by oo Yo < H] 2 TG PolY, < A] .

Let p, = P)[Y; < k]fori =1, ..., k. Wenote that forj > k, P)[Y; < k] = p,.
Hence (1) implies that

2) E;N = 32,0 P[N > n]

zl+p+ppt -+ A =p)p Py (k>1).
An upper bound for E, N can be easily obtained by noting that for n > k,
Po[Yl<h’ R Y”<h]§P0[Yl<h, ] Yn—k<h, Y’n<h]
) =pPlYi <k - Y, < H].
From this we obtain that

(3) E,ZNS (A —p)™l + D P[Yi <k --o, Y, < A}
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Setting p, = 1, we have therefore shown that
(4) Po Pl = p) 'S E, NS k(1 —p)7* .

The above upper and lower bounds of E, N are thus multiples of (1 — p,)~*, and
they are equal when k = 1. In the following section, by sharpening these argu-
ments in the normal case, we shall improve inequalities (2) and (3) and obtain
upper and lower bounds which differ little from each other and which are
asymptotically equivalent.

3. The normal case. Suppose X, X,, - - - are i.i.d. N(0, ¢*). For simplicity,
instead of considering the stopping rule N, let us consider

No=inf{n = k:c,, X, 1+ -+ + X, = h}.

Lethy = h — Y*2¢,0,Y, = Y tey(X,_; — 6). ThenY,', Y/,,,- - is astation-
ary Gaussian sequence with means 0 and Cov (Y,’, Y;,,) = 0if a = k, and =
o* Yk c,0,,, 1f0 < a < kand n = k. Tt is well known (cf. [3], [14]) that if
o(x;, - -+, x,) is the density function of the multivariate normal distribution
with means 0, variances 1 and correlation matrix (r,;), then
) L
or,;  0x,0x;

Let Q, = P[Y,' < hyy -+, Y)_, < by, Y,) = hy], n = 2k. It follows easily from
(5) that Q, is a non-decreasing function of Z,; for k <i < j<n — 1, where
A, is the correlation coefficient between Y, and Y;’. Since Cov (Y/, Y;) = 0,
we obtain that

6)  Quz PIYY < hy oo Yo, <BIP[Y i < by -, Y, 2 o]

Let 2(x) = 1, 2(x) = P[Y{,, < x, - -+, ¥, < x] (i = 1) and p,(x) = 4,_4(x) —
2(x). We now proceed to prove
(7 k(1 — ()™ = Ey N, < k + (A(hy)[pi(By)) -

To obtain the upper bound in (7), we write a, = P[Y,’ < hy, - -+, Y, < hy),
n = k. Then for n = 2k, it follows from (6) that

i j.

a, =a, , — Qn é Ayy — Qe pk(h0) .
Therefore Z:=2k an é Z::?k—l an - Z:’=k an Pk(h0)9 implylng that
E;N, =k + X0, < k + (aya/oi(hy) = k + (A(ho)[pi(ho)) -

To obtain the lower bound in (7), for n = 1,2, - .., we define the events
A, ={Y; < h, for all nk < j < (n + 1)k}, and let 4,° denote the complement
of A,. Define M = inf{n > 1: A,° occurs}. Since P[Y, < hy, ---, Y, < hy]
is a non-decreasing function of the correlation coefficient 2,; between Y,” and
Y/ for k <i < j< n, it follows that

P(ﬂ?=1 Ai) =z [[i-. P4, = (Zk(ha))“ s
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and so EM =14 Y= P(N%, 4,) = (1 — 2,(h,))"". The desired conclusion
then follows since N, = kM.

The upper and lower bounds in (7) are equal when k = 1. As k) — —oo,
obviously E, N, — k and it is easy to see that both bounds in (7) also tend to k.
As h, — oo, both bounds in (7) are of the order {1 — ®(h, (3% ¢ 0®) 1)},
where @ is the distribution function of the standard normal distribution, and
therefore E, N is of the same order. Hence the bounds in (7) are asymptotically
sharp.

When k = 2, by using tables of the bivariate normal distribution function
(see [8]), the upper and lower bounds in (7) can be readily computed. The fol-
lowing table gives some numerical values in the case ¢ = 1, ¢, = ¢, = 1:

TABLE 1
he/2} Upper bound of Ep Ny Lower bound of Ey N
3.5 4425 4357
3 787.4 763.4
2.5 180.3 170.2
2 53.26 48.25
1 9.75 7.84
0 4 3
-1 2.65 2.13

We note that the upper and lower bounds in Table 1 differ little from each
other.

In controlling the mean of the normal population N(8, ¢*) where production
is out of control when & > 6,, samples B, = {Z,", -.., Z "}, B, = {Z,*, - - -,
Z,®}, --- are taken successively at regular intervals of time and we compute
the sample mean X, = Y™, Z,/m at each stage. A widely used Shewhart chart
is to take rectifying action at stage N* = inf{n > 1: X, — 6, = 3¢/m?}. For
6 < 0,, we have E,N* = 740.7. Defining

N, =inf{n>2: X, , + X, — 20, > 3t(2/m)}},

we find from Table 1 that E, N, = 763.4 for § < 6,. The following table gives
a numerical comparison between E, N, and E, N* for § > 6,:

TABLE 2
mi(@ — o)/t EgN* Upper bound of Eg Ni
2%/4 248.5 180.3
242 91.5 53.26
2% 17.7 9.75
32)4/2 5.28 4

2(2)% 2.31 2.65
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In [15], Weiler discussed the choice of the sample size m when the control
limit of the Shewhart chart is specified beforehand in order that a deterioration
of given size from 6, can be detected as soon as possible. He pointed out that
larger samples than usually taken in industry should be used when it is important
to detect small changes in the mean, although small frequent samples of the sort
usually taken in industry may be satisfactory for detecting large changes. In
[10], Page considers the problem of choosing both the sample size m and the
control limit in the Shewhart chart, and his results support Weiler’s advocacy
of large m and show further that it is often advantageous to set the control limit
lower than is usual in industrial practice. The following table shows that the
ARL of our procedure N, compares rather closely with that of the Shewhart
chart taking samples of size 2m at each stage and stopping the production at
stage N = inf{n > 1: X,/ — 6, = 2.79t/(2m)}}, where X,’ is the mean of the
2m observations taken at the nth stage. We note that while mE, N, is the ARL
of the N, procedure, the ARL of the above Shewhart chart is 2mE, N'. Now
2E,N' = 763.4for § < 6,and the values of 2E, N’ for § > 6, are compared with
those of E, N, below:

TABLE 3
mi(@ — 6o)/r 2E4y N’ Upper bound of Eg Ny
24/4 181.7 180.3
242 54.5 53.26
2% 9.31 9.75
3Q2)4/2 3.43 4
2(2)t 2.26 2.65

It should be noted as pointed out by Page [12], that although the theoretically
better sample size for the Shewhart chart is large, it may not be practically
convenient to take such samples; furthermore, because of the cost in man-hours
for quality inspection, there are economic advantages in using small samples
taken frequently. The same view is also shared by Weiler ([15], page 254) who
points out that in practice, other factors than the ARL would favor smaller
samples.

The choice of k in the moving average schemes depends on the sample size m
at each stage and how frequently the samples are collected, as well as on the
variance 6. When k = 3, one can use tables of the trivariate normal distribution
function ([9], pages 207-224) to compute upper and lower bounds of E, N,. For
example, when ¢ = 1, ¢, =¢, = ¢, =1, h, = 0, we find from (7) that 4.1 <
E,N, < 5.84. For higher values of k, though tables for our purpose are not
readily available, methods for the numerical evaluation of the multivariate
normal integral have been extensively studied, and Gupta’s bibliography [6]
contains a detailed account of the work along these lines up to 1963. In a
recent paper, Milton [16] has given an algorithm for the computer evaluation
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of the multivariate normal integral for arbitrary mean vector, covariance matrix
and region of integration. His method is based on a modification of a multi-
dimensional adaptive Simpson’s quadrature with error control, applied to the
iterated integral. For the ease of computation, however, the following cruder
bounds can be easily calculated from the available tables and can be used to
give us some feeling of what E, N, looks like:

®) k=141 —¢h)" < EyN,
< min {k(1 — ¢(hy)) ™" k + 7. 7(ho)}
where 7, is the smallest integer > k/2,

$(x) = P[Vy < x],7(x) = PV < x, V, < x]/P[V, < x, V, = «],
and (V,, V,) ’have a bivariate normal distribution with means 0,
Var V, = Var V, = ¢* Yl c?,
Cov (V, V,) = o® Yzt cyc,

s/ F
To prove (8), we define M, = inf{j >1:Y/, = h,}, M,=inf{i > 0: Yiiiy, Z ho}
Then N, < kM, and N, <k + 5, M,. Obviously EM, = (1 — ¢(h,))*, and similar
arguments as in the proof of the upper bound of (7) give us that EM, < 1 + y(h,).

To obtain the lower bound in (8), we note that

E,N, = k + X5, P[N, > n]
=k + N5 PIYS <h]--- PIY, < hy]
k=14 (1= g(h) "

We note that the lower bound in (8) is asymptotic to E, N, as h, — oo or
hy — —oo.

4. An asymptotic theorem. In the preceding section, we have seen from (7)
that
E,N, ~ {1l — O(h($t5) cio?) ) as hy — co..
Actually this is a special case of the theorem below on the asymptotic behavior
of first passage times for Gaussian sequences. A function R(n) on {0, 1, 2, - ..}
is said to be nonnegative definite if for any finite subset {x,, ---, x,} of real
numbers, 35, >4, x,x;R(|i — j|) = 0. As is well known, such a function cor-
responds to the covariance of a stationary Gaussian sequence. Obviously, if R
is nonnegative definite, then so is the function R, for any 0 < ¢ < 1, where
R,(0) = R(0) and R,(i) = eR(i) for i > 1.

THEOREM. Let Y, Y,, --- be a Gaussian sequence with EY, =0, EY, Y, =r,;
and lim,_,, r,; = 6 > 0. For any real number c, define
%) Ne)=inf{n=1:Y, =c}.

@d) Iflim,_., SUP; _izmisziy Fi; = 0, then forv =1,2, ..., EN*(c) < co and
(10) 7 > 1/(20") = EN*(c) = o(exp(vyc?)) as ¢— oo .
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(ii) If r;; =20 forall j =i = iy, then forv =1, 2,

11 7 < 1/(20%) = lim__,, (exp(unc2))/EN"(c) =0.

(iii) Suppose there exist ¢ < 1 and a nonnegative definite function R(n) such that
SwR(n) < 00,6 =R0)>R(1)=R2)= --- =20and0 < r,; < eR(j — i) for
j>i=iy. Ifr, =od*fori =i, then forv=1,2, .

(12) EN*(c) ~ v! (27)*"*(c[a)* exp(vc?/(207)) as ¢— oo .

LemMma 1. Let (X,, ---, X,), (Yy, - -, Y,) have multivariate normal distributions

with EX; = EY, and Var X, < Var Y, for all i, and Cov (X, X;) = Cov (Y, Y})
foralli + j. Then given any real numbersc,, - - -, c,,

PIX,<¢py oo, X, <] = P[Y,<cpy --+, Y, <ec,].

Proor oF THEOREM. Without loss of generality, we shall assume throughout
the proof that ¢ = 1. Also we can assume without loss of generality that i, = 1,
for otherwise we can consider N(c) instead, where N(c) = inf {n = i;: Y, = c}.
To prove (i), given 7¢(0, §), we can choose n, = 1 such that sup; .., r;; <7.
Let {U, U,, U,, - - -} be a sequence of independent normal random variables with
EU = Eﬁi =0, EU? = y and EUi2 =1—-2y. SetU, =U + Ui. Then EU? =
1 —yand EU,U; = yfori # j. Letr, > 1 — yfori > i, and by our earlier re-
mark, we can assume i, = 1. DefineY,* = Y,,,n=1,2,.... Then VarY, * >
1 —y = Var U, and Cov (Y;*, Y;*) < y = Cov (U,, U)) fori # j. Hence defin-
ing N¥(c) = inf{n = 1: Y,* = c}, we have by Lemma 1 that

PIN*(¢) > n] = P[Y,* < ¢, -+, Y,* < c]
(13) SPU e, -, U, < (]
< §2. @%((1 = 2n)7He — r*x))e(x) dx
where ¢ is the standard normal density.
We note that N(c) < n,N*(c). From (13), it follows that

EN*(c) = 1§ P[N*(c) > n]
(14 S §2. {1 — @((1 — 2n)74c — r*x))}p(x) dx
= (1 —@2)7" §G-ns o(x) dx

+2(1 = 27yt et (e — i) e"P{ 77 (z%—*}%} g

Since y < 1 — 2y, it is easy to see from (14) that EN*(c) < co and therefore
EN(c) < oo. Also given » > 4, we can choose y sufficiently small so that
27> =27+ (1 =37
Then (14) implies that EN(c) = o(e"’) as ¢ — oo.
Forv =2,3, ---, to prove EN*(c) < oo, we note that
(15)  EN'(c) = %¢ n"P[N(c) = n]
=14+ 3 {On + -+ 4 (o + 1JP[N() > n].
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Also it follows from (13) that

i, an(n—1) ... (n — v 4+ 2)P[N*(c) > n]
(16) < §%0 Soan(n — 1) - (n— v + 2)
X Q" (1 = 27)7H(e — 7ix))p(x) dx

= (v — D! §2a {1 — O((1 — 2)7Hc — 1Ax)}~ (x) dx

= Ic;r), say.
By a similar argument as before, I(c; ) < oo if vy < 1 — 2y. Alsogiveny > 4,
we can choose 7 sufficiently small so that I(c; y) = o(exp(vyc?)) as ¢ — oco. Hence
by induction, we obtain from (15) and (16) that fory = 1,2, ..., EN*(c) < o
and (10) holds.

Now assume that 7,; > 0 for all i, j. By Lemma 1, we have

i =

(17) P[Y,<c, -, Y, <c]l=TIr PIY: < c].

First consider the case where r,, = 1 for i = 1. In this case, (17) reduces to
PlY,<e¢, -+, Y, <c] = D*c). Hence as ¢ — oo,

(18) EN‘(c) = (1 + o(1))! (27)"%c* exp(uc*2) .

In the more general case where lim,__, r,, = 1, (17) leads to the relation (11).
Now assume the conditions of (iii) with i, = 1, ¢ = 1. We shall prove that
as ¢ — oo,

(19) EN"(c) < (1 + o(1)! (27)"%c” exp(vc*/2) .

Let ¢ <0 <1 and let X, X,, --- be the stationary Gaussian sequence with
means 0, variances 1 and Cov (X, X;) = 6R(|i — j|) for i # j. Define

fule) = go(c) =1

(20) fie) =PVi<¢, .-, ¥, <]
g.(c) =P[X,<¢, -+, X, <], n>1
M) =inf{n=1: X, = c}.

The conditional distribution of (X, ---, X,_;) given X, = x is the same as
the unconditional distribution of (Z, + 6xR(n — 1), ---, Z,_, + 0xR(1)), where
(Z, -+, Z,_,) has a multivariate normal distribution with means 0, Var Z, =
;=1 — 8*R¥n — i) and Cov (Z,, Z;) = A;; = OR(j — i) — 0°R(n — i)R(n — )
for j > i. We obtain

9.(€) £ goic) — P[X; <, -+, X,, <¢c,c =X, Sc+ 1]
=gn—l(c)
@y — §P[Z, < ¢ — 6xR(n — i) for i=1,...,n— 1]p(x)dx

< gualc) — P[Z,<c—0(c+ DHR(n—1iQ) for i=1,.--,n—1]
X Ple< X, <c + 1].
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Let Z, = 2;'Z,. Then VarZ, =1=r, Since lim, . R(n) =0, r;=<
eR(j — i)and R(j — i) = R(n — i) for n = j > i, it follows that we can choose
k = 2 such that
(22a) Cov(Z,2)=r,; whenever n—j>k and j>i,

(22b) OR(i) <} for i=k.
By Lemma 1, we have for n > k
P[Z, <c—0d(c+ 1)R(n—1i) for i=1,..-,n—1]
=>PlZ, <c—0(c+ 1)R(n—1i) for i=1,..-,n—k]

X ©¥Y(c — d(c + 1)R(1))

P[Z, < ¢ — d(c + 1)R(n — i)} for i=1,.---,n— k]

X @ =Yc — d(c + 1)R(1))

= PIY, < 4;c — 6(c + 1)R(n — i)} for i=1, ..., n— k]
X @Y — d(c + 1)R(1)) .
From (21) and (23), we have for n > k
9u(€) = 9ua€) — (Pe + 1) — D(e))P (e — d(c + 1)R(1))
(24) X P[Y, < (1 — 0°R¥n — i)~}
X {c —o(c + 1)R(n — i)} for i=1,.-.--,n—k].

(23)

Given any integer N > 1, take r, > 0 such that (1 + 7,)’ < (N + })/N.
Choose an integer m > 2 such that (1 — ¢R*(m))~* < min (d/¢, 1 4 7). Denoting

Le)) = (1 — *RY(j))He — d(c + DR())},
we note that
PlY, <{(c,n—i) for i=1, ..., n— k]
(25) = PlY,<c for i=1,...,n—k]
— 2"k P[lec,n— ) Y;<c, and Y, <c
forall i=1,...,n—k with |i — j| = m].

For fixed j =1, - .., n — k, the conditional distribuion of {Y;: |i — j| = m,
i=1,...,n—k}given Y, = y is the same as the unconditional distribution of
Vi+yr,;: li—jl=zm,i=1,...,n— k}which has a normal distribution with
EV, =0 and Cov (V,, V,) =r,, — r,;rs;. Setting V.= (1 — r})"*V,, we have
VarV,=1land fora # 8, |a — j|=m, | — j| = m,

Cov (V,, V) < (1 — i)~ — r2)~br,,
< (I — &@R(m))7'r,y < OR(Ja — f]).

Also (1 =)t < (1 —eRm))t < (14 7yt <147y Therefore using
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Lemma 1, we obtain for n > k + 2m
Pl{(c,n— )£ Y;<¢c, and ¥, < ¢
for i=1,...,n—k with |i — j| = m]
= $ten-n PIVi < ¢ —yr;
for i=1,...,n—k with |i — j| = m]e(y)dy
= {®(e) — (e, n — J))}P[V < (@ =riy)He —rlle, n — D}
(26) for i=1,...,n—k with |i — j| = m]
= (@) — (e, n — JPLV: < el + 1)
for i=1,...,n—k with |i — j| = m]
< {D(e) — @(E(e, n — DIPIX; < (1 +7x)
for i=1,...,n—k with |i — j| = m]
< {@(c) — (e, n — /)
X PLXy < e(l +7x)s o0 s Xuopoam < (1 +74)] -
The last inequality above follows from Lemma 1 and the fact that R(n) is non-
increasing in n. From (24), (25) and (26), we have for n > k 4 2m
94(6) £ 9u-a(€) — (P(c + 1) — D(e)) P (e — d(c + 1)R(1))
(27) X {fa-i(€) — T3zt (D(e) — (e, n — )
X Gno—am(c(1 + 7))} -
Using the inequality ®(x) — @(y) < (¢(y) — ¢(x))/y for x = y > 0, together
with the inequality {(c, ) = ¢/2 for ¢ > 1 and i = k, we obtain for ¢ = 1,
Z3={@(e) — (e, n — )))}
= s e(es 1) — e(} (e, )
I\ o2 2 R2(;
= o(c) {exp( OR(i)c 0*R(i)

1+ 0R() 2(1 — 6°R(i))
_OR(@)c
%) T TF6RG) aR() }/ te )

o(0) T {exp(2AR()E/(1 + OR() — 1}

IA

[IA
SN ESEGEIN)

p(c)e™t Tz {1 — exp(—20R()’/(1 + GR())}
< (2/m)tce=*4 3221 26R()/(1 + OR(i)) < pee~',
where p = (2/7)* 3352, 20R(i)/(1 4 6R(i)). Hence it follows from (27) and (28)
that forc = 1 and n > k + 2m,
9a(€) = Guca(€) — (Pe 4 1) — Q(e))P*H(c — d(c + DR(1))f_u(c)
(29) + pce=(D(c + 1) — D(c))D*}(c — d(c + 1)R(1))
X Gn-i-m((1 + 78)C) -
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Summing (29) over n > k + 2m, we obtain that as ¢ — oo,
(30)  (@(c + 1) — D(e))@**(c — d(c + 1)R(1))
X {EN(c) — pee™*EM((1 + 1y)c) + O(1)} < gy 1am(c) -
We have proved that EN(c) = (1 + o(1))(27)c exp(c?/2). By (10),
pce~AEM((1 4 7y)c) = o(ce™?), since 3> (1 + 74?2 —1%.

Therefore (30) implies that (®(c 4 1) — ®(c))EN(c) < 1 + o(1), and so we have
established (19) for v = 1. Proceeding inductively with similar arguments, it is
easy to see from (29) together with (15), (18) and our result in (i) for M((1 + 7y)c)
that (19) holds for v = 1,2, ..., N. Since Nis arbitrary, (19) holds for all v. ]

As an application of the preceding theorem, let us consider the stationary
Ornstein—-Uhlenbeck process U(r), + = 0, which is stationary Gaussian with
EU(t) = 0 and Cov (U(?), U(s)) = pexp(—al|s — 1), o >0, a > 0. Let Y, =
Um),n=1,2,.... Take Be(0,a). Thenforn=1,2, ...

Cov (Y,, Y,,,) = pe~ < e~==PR(n)

where R(j) = pe #/ (j =0, 1,2, ...). Hence the conditions of the preceding
theorem are satisfied and so defining N(c) by (9), we have

(31) EN(c) ~ (27)¥(c/pt) exp(c?/(2p)) as ¢ — oo.
It should be pointed out that if we define T(c) = inf {t = 0: U(7) = c}, then
(32) ET(c) ~ a™'(2z)¥(c/p?)~' exp(c®/(20)) as ¢— oo

(cf. [7]). This shows that the mean first passage time of the discrete-time
Gaussian sequence Y, is not well approximated by that of the corresponding
continuous-time process U(f).

5. First passage times for more general weighted sums. For the quality con-
trol procedures in Sections 2 and 3, we have taken a weighted sum of the sample
scores over a certain preassigned segment of the past, i.e., we have chosen a

sequence of weights ¢, >a, > ..- >a,,>0=4a, =4a,,, = --- and have
considered
(33) N=inf{n=1: 37 a, X, = c}.

In this section, instead of summing over a preassigned segment of the past, we
shall consider weighted sums of the entire past which put very little weight on
the remote past. In other words, we shall drop the assumption that the sequence
(a,) of weights has to be eventually zero, but we shall assume that it is at least
square summable.

First consider the case where X;, X,, - -- are i.i.d. N(0, r?). Let (a,, n = 0)
be a sequence of nonnegative numbers such that 0 < ;5 a,? < co. Let o® =
?yrael Y, =2, a, X, and define N by (33). Then lim,_., EY,? = ¢%, and
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using the theorem in the preceding section, we obtain that EN* < oo for v =
1,2, ..., and that the asymptotic relations (10) and (11) hold.

Some interesting weighting sequences are:

(34) a, = pe~*", 0>0, a>0, n=0,1,2, ...
(35) a,=Mn+1)7*%, g>1%, n=20,1,2,.
The sequence (34) satisfies }] a, < oo, so that if X}, X,, --- are i.i.d. Mg, %)
and the first passage time N is defined by (33), then EN* < oo for any real
number ¢. On the other hand, for 8 < 1, the sequence (35) has the property
2. a, = oo. In this case, if X, X,, ... are i.i.d. Mg, v*) and N is defined by
(33), then EN< oo if =0 and EN = oo if 4 < 0. In fact, for 4 <O,
P[N = co] > 0 (cf. [7]). For the purpose of quality control, where production
is out of control if 4 = 0, the sequence (35) with 8 < 1 has the shortcoming of
putting too much weight on the remote past. Like the S, procedure discussed
in Section 1, if X; has a negative mean for i < m — 1, then it may take very
long after stage m to detect the change in 6 if production is out of control at
stage m and m is large.

Suppose X, X,, --- are i.i.d. but not necessarily normal random variables.
Take the weighting sequence (34) and define N by (33). It is interesting to ask
if EN is still finite. This is in general not true, but the following lemma gives a
sufficient condition for it to hold.

LEMMA 2. Suppose X,, X,, - - - are independent random variables such that X; =
—Ba.e. foralli. Let (a,, n = 0) be a sequence of nonnegative numbers such that
oo > Yi®a, = 1. Suppose liminf, _ P[X,=d] >0 and ¢ < d. Define N=
inf{fn>1: X% a, ,X,>c}. Then there exist a c(0,1) and 2> 0 such that
P[N > n] £ Aa™ for all n. Consequently Ee"~ < oo for all sufficiently small 6.

ProoF. Let ¢ < d, < d. Choose k =1 such that ¢ + B> 7 a, < d, and
Yea; > d,/d. Suppose P[X, =d]= > 0foralln = m. Thenforn=m + k,

PIN>n] < P[Sia; X, <c for j=1,-..,n—k,
and Zz n—k+1n— IX < ¢ — Z?;Ik an—iXi]
(36) < P[Yisa; X, <c for j=1,.--,n— k]

X P[Yicu i@ Xy S ¢+ B3 a]
SPIN>n— kP[Xl k1@ X, S d)].
Noting that }\* ,_,.,a,_, = X¢'a, > d,/d, we have forn > m + k,
(37) Bt PX, yuzd, -, X, 2d]
S Pk G Xy > )]
From (36)-and (37), we obtain for n > m + k,
(38) PIN > n] < (1 — f9P[N > n — k].

The desired conclusion then follows easily from (38). []
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Suppose in Lemma 2 we drop the assumption that the random variables are
uniformly bounded below. Then EN may fail to be finite, as shown by the
following example. Define n, = 2 and for k > 2, n, = 2™-1. Let X, X,, --
be i.i.d. random variables such that P[X, = 1] = }, P[X; = —n,] = 3/(z*k?),

k=1,2,.... Consider the weighting sequence (34) with p =1, a = log 2,
ie,a,=2" Let N=inf{n>=1: 3" 4, ,X, =0}. Then
(39) PINzn]z P[X,= —n, X, = —n, X, = —n,, .-+, X, = —n,,]

= (/=) ((k + 1))~
From (39) it is easy to see that }; P[N = n] = oo and so EN = co.
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