ASYMPTOTICALLY EFFICIENT ADAPTIVE RANK ESTIMATES IN LOCATION MODELS¹

BY RUDOLF BERAN

University of California, Berkeley and University of Toronto

This paper describes a new construction of uniformly asymptotically efficient rank estimates in the one and two-sample location models. The method adopted differs from van Eeden's (1970) earlier construction in three respects. First, the whole sample, rather than a vanishingly small fraction of the sample, is used in estimating the efficient score function. Secondly, a Fourier series estimator is used for the score function rather than a window estimator. Thirdly, the linearized rank estimates corresponding to the estimated score function provide the uniformly asymptotically efficient location estimates. These estimates are asymptotically efficient over a larger class of distributions than the van Eeden estimates and should approach their asymptotic behavior more rapidly.

1. Introduction. Suppose that $X_1, X_2, \dots, X_m, Y_1, Y_2, \dots, Y_n$ are random variables with joint density $\prod_{i=1}^m f(x_i - \mu_0) \prod_{j=1}^n f(y_j)$, where μ_0 is the difference in location of the two samples. Let F denote the distribution function corresponding to f and let $||\cdot||$ denote the norm in $L_2(0, 1)$. Under regularity conditions on F, there exists a rank estimate $\hat{\mu}(\phi_F)$ of μ_0 , depending upon

(1.1)
$$\phi_F(t) = -f' \circ F^{-1}(t)/f \circ F^{-1}(t) ,$$

such that the asymptotic distribution of $(mn/m + n)^{\frac{1}{2}}(\hat{\mu}(\phi_F) - \mu_0)$ is normal $(0, ||\phi_F||^{-2})$ (see Hodges and Lehmann (1963), Kraft and van Eeden (1970)). The estimate $\hat{\mu}(\phi_F)$ is asymptotically efficient in the sense that its asymptotic variance attains the Cramér-Rao lower bound.

Similarly, suppose that X_1, X_2, \dots, X_N are random variables with joint density $\prod_{i=1}^N f(x_i - \nu_0)$, where f is symmetric about the origin. Under regularity conditions on F, there exists a rank estimate $\hat{\nu}(\phi_F)$ of ν_0 , depending upon

(1.2)
$$\phi_F(t) = \phi_F(\frac{1}{2} + t/2) ,$$

such that the asymptotic distribution of $N^{\frac{1}{2}}(\hat{\nu}(\psi_F) - \nu_0)$ is normal $(0, ||\psi_F||^{-2})$ and the estimate is asymptotically efficient (see the references above).

In practice, a statistician analyzing data under a one or two-sample location model will have only approximate knowledge of ϕ_F . Even if ϕ_F is unknown, Stein (1956) noted the possibility of constructing nonparametric location estimates which are asymptotically efficient for all regular f. Uniformly

Received February 1972; revised March 1973.

¹ This research was partially supported by National Science Foundation Grant GP-31091X. AMS 1970 subject classifications. Primary 62G35; Secondary 62G20.

Key words and phrases. Adaptive rank estimates, location, asymptotically efficient.

asymptotically efficient rank estimates for location were first devised by van Eeden (1970). Her approach was to estimate ϕ_F from a vanishingly small fraction of the data, using a modified form of the estimator studied by Hájek (1962), and then find the Hodges-Lehmann rank estimate of location based upon the estimated score function and the remaining data.

This paper describes a new construction of uniformly asymptotically efficient rank estimates in the one and two-sample location models. The construction differs from van Eeden's in three respects. First, the whole sample is used in estimating ϕ_F . Secondly, a Fourier series estimator is used for the score function rather than a window estimator. Thirdly, linearized rank estimates corresponding to the estimate of ϕ_F provide the uniformly asymptotically efficient location estimates. These estimates are asymptotically efficient over a larger class of distributions F than the van Eeden estimates and should approach their asymptotic behavior more rapidly. However, the rate of convergence can still be very slow for particular F.

2. Estimation of ϕ_F . Suppose that the density f satisfies the following assumption:

A. f is absolutely continuous and $\phi_F \in L_2(0, 1)$. Since $\phi_F \in L_2(0, 1)$, it has the Fourier expansion

$$\phi_{\scriptscriptstyle F}(t) \sim \sum_{\scriptscriptstyle i|k|=1}^{\infty} c_{\scriptscriptstyle k} \exp\left(2\pi i k t\right),$$

where

(2.2)
$$c_k = \int_0^1 \phi_F(t) \exp(-2\pi i k t) dt$$
.

Let Z_1, Z_2, \cdots be a sequence of independent identically distributed random variables, each of which has density f. In view of (2.1), a plausible estimate for ϕ_F based upon $\mathbf{Z} = (Z_1, Z_2, \cdots, Z_N)$ is

(2.3)
$$\hat{\phi}_F(t) = \sum_{|k|=1}^{M} \hat{c}_k \exp(2\pi i k t)$$

where \hat{c}_k is an estimate of c_k based upon **Z** and $M \to \infty$ at a suitable rate relative to N. This section will develop a detailed version of this approach to estimating ϕ_F .

The first step is to estimate c_k , or more generally, a functional of the form

(2.4)
$$T(\phi) = \int_0^1 \phi(t) \phi_F(t) dt = \int_0^1 \left[\frac{d\phi \circ F(x)}{dx} \right] dF(x)$$

where ϕ is a real-valued function defined on [0, 1] that possesses the following properties:

B. ϕ is twice differentiable and ϕ'' is continuous on [0, 1]. The second expresssion for $T(\phi)$ suggests as an estimator

(2.5)
$$T_{N}(\mathbf{Z}, \phi) = \frac{1}{2N\theta_{N}} \sum_{i=1}^{N} \left[\phi \left(\frac{1}{N-1} \sum_{j \neq i} v(Z_{i} - Z_{j} + \theta_{N}) \right) - \phi \left(\frac{1}{N-1} \sum_{j \neq i} v(Z_{i} - Z_{j} - \theta_{N}) \right) \right],$$

where

$$v(x) = 1 \quad \text{if} \quad x \ge 0$$
$$= 0 \quad \text{if} \quad x < 0,$$

and $\theta_N = N^{-\frac{1}{2}}\theta$ for some $\theta \neq 0$.

THEOREM 2.1. Under assumptions A and B, the asymptotic distribution of $N^{\frac{1}{2}}(T_N(\mathbf{Z}, \phi) - T(\phi))$ as $N \to \infty$ is normal $(0, \sigma^2(\phi))$, where

(2.7)
$$\sigma^{2}(\phi) = \int_{0}^{1} \int_{0}^{1} [\min(s, t) - st] [2\phi'(s)\phi_{F}(s) - \phi''(s)f \circ F^{-1}(s)] \times [2\phi'(t)\phi_{F}(t) - \phi''(t)f \circ F^{-1}(t)] ds dt.$$

Moreover

(2.8)
$$\lim_{N\to\infty} NE[T_N(\mathbf{Z},\phi) - T(\phi)]^2 = \sigma^2(\phi).$$

The proof of this theorem depends upon two lemmas and the following well-known result due to Skorokhod (1956). Let F_N denote the right continuous empirical distribution function based on \mathbb{Z} , let

$$(2.9) W_N(t) = N^{\frac{1}{2}} [F_N \circ F^{-1}(t) - t],$$

and let W(t) be the standard Brownian bridge. Then there exists a probability space $(\Omega, \mathcal{A}, \mathcal{P})$ and versions of W_N and W defined on that space such that

(2.10)
$$\lim_{N\to\infty} \sup_{0\leq t\leq 1} |W_N(t) - W(t)| = 0$$

and the sample paths of W are all continuous. These uniformly convergent versions of W_N will be used as needed in the proofs.

Define G_{N1} , G_{N2} by

(2.11)
$$G_{N2}(x) = \frac{NF_N(x)}{N-1}, \qquad G_{N1}(x) = G_{N2}(x) - \frac{1}{N-1}.$$

Then

(2.12)
$$T_N(\mathbf{Z}, \phi) = \frac{1}{2\theta_N} \int \left[\phi \circ G_{N1}(x + \theta_N) - \phi \circ G_{N2}(x - \theta_N) \right] dF_N(x).$$

Let

$$T_{N1} = \frac{1}{2\theta_{N}} \int [\phi \circ F(x + \theta_{N}) + (G_{N1}(x + \theta_{N}) - F(x + \theta_{N})) \phi' \circ F(x + \theta_{N}) - \phi \circ F(x - \theta_{N}) - (G_{N2}(x - \theta_{N}) - F(x - \theta_{N})) \phi' \circ F(x - \theta_{N})] dF_{N}(x),$$

and without loss of generality, assume $\theta > 0$ throughout.

LEMMA 2.1. If F is continuous and assumption B is satisfied, then

(2.14)
$$\lim_{N\to\infty} NE[T_N(\mathbf{Z},\phi) - T_{N1}]^2 = 0.$$

PROOF. By Taylor expansion of $\phi \circ G_{Ni}(x)$ about $\phi \circ F(x)$, we find that

(2.15)
$$N^{\frac{1}{2}}[T_{N}(\mathbf{Z},\phi)-T_{N1}]=\frac{1}{4\theta}[I_{N1}-I_{N2}]$$

where

(2.16)
$$I_{N1} = N \int [G_{N1}(x) - F(x)]^2 \phi'' \circ \xi_{N1}(x) dF_N(x - \theta_N)$$
$$I_{N2} = N \int [G_{N2}(x) - F(x)]^2 \phi'' \circ \xi_{N2}(x) dF_N(x + \theta_N)$$

and $\xi_{Ni}(x)$ lies between $G_{Ni}(x)$ and F(x) at the discontinuities of $F_N(x \pm \theta_N)$, as required. Since

$$(2.17) N^{\frac{1}{2}}[G_{N2}(x) - F(x)] = W_N \circ F(x) + \frac{N^{\frac{1}{2}}F_N(x)}{N-1}$$

$$N^{\frac{1}{2}}[G_{N1}(x) - F(x)] = W_N \circ F(x) + \frac{N^{\frac{1}{2}}[F_N(x) - 1]}{N-1}$$

it follows under B that

(2.18)
$$\lim_{N\to\infty} I_{Ni} = \int [W \cdot F(x)]^2 \phi'' \circ F(x) dF(x)$$

for the Skorokhod versions of W_N and W. Hence $N^{\frac{1}{2}}[T_N(\mathbf{Z}, \phi) - T(\phi)] \to_p 0$. This may be strengthened to (2.14) because, by direct calculation, there exists a constant C such that $E|I_{N_i}|^3 < C$ for every N.

Let \mathcal{H}_N denote the set of all statistics of the form $\sum_{i=1}^N h(Z_i)$ that have finite mean square. Hájek (1968) has shown that if $S_N = S_N(\mathbf{Z})$ is an arbitrary statistic with finite mean square, its projection \hat{S}_N into \mathcal{H}_N is given by

(2.19)
$$\hat{S}_N = \sum_{k=1}^N E(S_N | Z_k) - (N-1)E(S_N).$$

In particular, suppose that

$$S_{N} = \frac{1}{2N\theta_{N}} \sum_{i=1}^{N} \left\{ \left[\frac{1}{N-1} \sum_{j\neq i} v(Z_{i} - Z_{j} + \theta_{N}) - F(Z_{i} + \theta_{N}) \right] \phi' \circ F(Z_{i} + \theta_{N}) - \left[\frac{1}{N-1} \sum_{j\neq i} v(Z_{i} - Z_{j} - \theta_{N}) - F(Z_{i} - \theta_{N}) \right] \phi' \circ F(Z_{i} - \theta_{N}) \right\}.$$

Since

$$E\left\{\left[\frac{1}{N-1}\sum_{j\neq i}v(Z_{i}-Z_{j}\pm\theta_{N})-F(Z_{i}\pm\theta_{N})\right]\phi'\circ F(Z_{i}\pm\theta_{N})|Z_{k}\right\}$$

$$(2.21) = 0 \quad \text{if} \quad i=k$$

$$=\frac{1}{N-1}\int\left[v(x-Z_{k}\pm\theta_{N})-F(x\pm\theta_{N})\right]\phi'\circ F(x\pm\theta_{N})dF(x) \quad \text{if} \quad i\neq k,$$

the projection of S_N into \mathcal{H}_N is, in this case,

$$\hat{S}_{N} = \frac{1}{2N\theta_{N}} \sum_{k=1}^{N} \int \{ [v(x - Z_{k} + \theta_{N}) - F(x + \theta_{N})] \phi' \circ F(x + \theta_{N}) - [v(x - Z_{k} - \theta_{N}) - F(x - \theta_{N})] \phi' \circ F(x - \theta_{N}) \} dF(x)$$

$$= \frac{1}{2\theta} \int [F_{N}(x) - F(x)] \phi' \circ F(x) [f(x - \theta_{N}) - f(x + \theta_{N})] dx.$$

Since

$$(2.23) T_{N1} = \frac{1}{2\theta_N} \int \left[\phi \circ F(x + \theta_N) - \phi \circ F(x - \theta_N) \right] dF_N(x) + S_N,$$

the projection of T_{N1} into \mathcal{H}_{N} is

(2.24)
$$T_{N2} = \frac{1}{2\theta_N} \int [\phi \cdot F(x + \theta_N) - \phi \circ F(x - \theta_N)] dF_N(x) + \hat{S}_N.$$

LEMMA 2.2. Under assumptions A and B,

(2.25)
$$\lim_{N\to\infty} NE[T_{N1} - T_{N2}]^2 = 0.$$

PROOF. Since \hat{S}_N is the projection of S,

$$(2.26) NE[T_{N1} - T_{N2}]^2 = NE(S_N^2) - NE(\hat{S}_N^2).$$

Defining $\{\Delta_{i,i}; 1 \leq i, j \leq N\}$ by

(2.27)
$$\Delta_{ij} = N^{\frac{1}{2}} \{ [v(Z_i - Z_j + \theta_N) - F(Z_i + \theta_N)] \phi' \circ F(Z_i + \theta_N) - [v(Z_i - Z_j - \theta_N) - F(Z_i - \theta_N)] \phi' \circ F(Z_i - \theta_N) \},$$

we have, from (2.20),

$$(2.28) NE(S_N^2) = \frac{1}{4N^2(N-1)^2\theta_N^2} E\left[\sum_{i\neq j} \Delta_{ij}^2 + \sum_{i\neq j} \Delta_{ij} \Delta_{ji} + \sum_{i\neq j} \sum_{i\neq j} \Delta_{ij} \Delta_{ji} + \sum_{i\neq j} \sum_{i\neq j\neq k} \Delta_{ij} \Delta_{ki} + \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \Delta_{ij} \Delta_{ki} + \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \Delta_{ij} \Delta_{ki} + \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \Delta_{ij} \Delta_{ki} + \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \sum_{i\neq j\neq k} \Delta_{ij} \Delta_{ki} + \sum_{i\neq j\neq k} \sum_{i\neq j$$

By direct calculation, noting that f is of bounded variation under assumption A,

$$E(\Delta_{ij}^2) = N \int [F(x+\theta_N) - F(x-\theta_N)] [\phi' \circ F(x+\theta_N)]^2 dF(x)$$

$$+ N \int F(x-\theta_N) [\phi' \circ F(x+\theta_N) - \phi' \circ F(x-\theta_N)]^2 dF(x)$$

$$- N \int [F(x+\theta_N)\phi' \circ F(x+\theta_N)$$

$$- F(x-\theta_N)\phi' \circ F(x-\theta_N)]^2 dF(x)$$

$$(2.29) = O(N^{\frac{1}{2}})$$

$$|E(\Delta_{ij}\Delta_{ji})| \leq E(\Delta_{ij}^{2}) = O(N^{\frac{1}{2}})$$

$$E(\Delta_{ij}\Delta_{ik}) = E(\Delta_{ij}\Delta_{jk}) = E(\Delta_{ij}\Delta_{ki}) = E(\Delta_{ij}\Delta_{km}) = 0$$

$$E(\Delta_{ji}\Delta_{ki}) = N \iint [\min(F(x), F(y)) - F(x)F(y)]\phi' \circ F(x)\phi' \circ F(y)[f(x - \theta_{N}) - f(x + \theta_{N})][f(y - \theta_{N}) - f(y + \theta_{N})] dx dy.$$

By dominated convergence, since |f'(x)| is integrable under assumption A,

$$(4\theta^{2})^{-1} \lim_{N \to \infty} E(\Delta_{ji} \Delta_{ki})$$

$$(2.30) \qquad = \iint [\min (F(x), F(y)) - F(x)F(y)] \phi' \circ F(x) \phi' \circ F(y) f'(x) f'(y) dx dy$$

$$= \lim_{N \to \infty} NE(\hat{S}_{N}^{2}).$$

The lemma follows.

PROOF OF THEOREM 2.1. (Using (2.22), 2.24) and integrating by parts, we obtain

$$N^{\frac{1}{2}}[T_{N^{2}} - \frac{1}{2\theta_{N}} \int [\phi \circ F(x + \theta_{N}) - \phi \circ F(x - \theta_{N})] dF(x)]$$

$$= \frac{1}{2\theta_{N}} \int W_{N} \circ F(x) \{ \phi' \circ F(x - \theta_{N}) f(x - \theta_{N}) - \phi' \circ F(x + \theta_{N}) f(x + \theta_{N}) + \phi' \circ F(x) [f(x - \theta_{N}) - f(x + \theta_{N})] \} dx.$$

For Skorokhod versions of W_N and W, the right-hand side converges, by dominated convergence, to

$$(2.32) \qquad \int_0^1 W(t) [2\phi'(t)\phi_{\scriptscriptstyle E}(t) - \phi''(t)f \circ F^{-1}(t)] dt,$$

which has a normal $(0, \sigma^2(\phi))$ distribution.

Secondly, by Fubini's theorem,

$$N^{\frac{1}{2}} \left| \frac{1}{2\theta_{N}} \int \left[\phi \circ F(x+\theta_{N}) - \phi \circ F(x-\theta_{N}) \right] dF(x) - T(\phi) \right|$$

$$= \left| \frac{N^{\frac{1}{2}}}{2\theta_{N}} \int_{0}^{\theta_{N}} dt \int_{0}^{s} ds \int_{-\infty}^{\infty} f'(x) [\phi' \circ F(x-s) f(x-s) - \phi' \circ F(x+s) f(x+s)] dx \right|$$

$$\leq \frac{\theta}{2} \sup_{0 \leq s \leq \theta_{N}} \left| \int_{-\infty}^{\infty} f'(x) [\phi' \circ F(x-s) f(x-s) - \phi' \circ F(x+s) f(x+s) \right] dx \right|,$$

which tends to 0 as $N \to \infty$, by dominated convergence. The first part of Theorem 2.1 now follows from Lemmas 2.1, 2.2 and from the above.

Finally, to prove (2.8), use (2.31) and dominated convergence to show

(2.34)
$$\lim_{N\to\infty} NE \left[T_{N2} - \frac{1}{2\theta_N} \int \left[\phi \circ F(x + \theta_N) - \phi \circ F(x - \theta_N) \right] dF(x) \right]^2$$
$$= \sigma^2(\phi) ,$$

then consult Lemmas 2.1, 2.2 and (2.33).

We turn now to the random function $\hat{\phi}_F$ proposed earlier as an estimate for ϕ_F . Let $\{M_\alpha\}$, $\{N_\alpha\}$ be sequences of positive integers. Following (2.3), let $\hat{c}_{k,\alpha} = T_{N_\alpha}(\mathbb{Z}, \exp{(-2\pi i k \cdot)})$ and let

(2.35)
$$\hat{\phi}_{F,\alpha}(t) = \sum_{|k|=1}^{M\alpha} \hat{c}_{k,\alpha} \exp(2\pi i k t).$$

THEOREM 2.2. If assumption A is satisfied and if

(2.36)
$$\lim_{\alpha\to\infty}M_{\alpha}=\infty,\quad \lim_{\alpha\to\infty}M_{\alpha}^{\frac{7}{2}}/N_{\alpha}=0,$$

then

(2.37)
$$\lim_{\alpha \to \infty} E \, ||\hat{\phi}_{F,\alpha} - \phi_F||^2 = 0 \; .$$

PROOF. Note that (2.36) implies that $\lim_{\alpha\to\infty}N_\alpha=\infty$. For convenience, the

subscript α will be dropped. If $\phi(t) = \cos{(2\pi kt)}$ or $\sin{(2\pi kt)}$, re-examination of the approximations used in establishing Theorem 2.1 shows that there exist constants $\{A_i\}$, independent of α , such that

$$E[T_{N}(\mathbf{Z},\phi) - T_{N1}]^{2} \leq \frac{A_{1}k^{4}}{N^{\frac{3}{2}}} + \frac{A_{2}k^{6}}{N^{2}}$$

$$(2.38) \qquad E[T_{N1} - T_{N2}]^{2} \leq \frac{A_{3}k^{2}}{N^{\frac{3}{2}}} + \frac{A_{4}k^{4}}{N^{2}}$$

$$E\left[T_{N2} - \frac{1}{2\theta_{N}} \int \left[\phi \circ F(x + \theta_{N}) - \phi \circ F(x - \theta_{N})\right] dF(x)\right]^{2} \leq \frac{A_{5}k^{2}}{N}$$

$$\left[\frac{1}{2\theta_{N}} \int \left[\phi \circ F(x + \theta_{N}) - \phi \circ F(x - \theta_{N})\right] dF(x) - T(\phi)\right]^{2} \leq \frac{A_{6}k^{2}}{N}.$$

Hence, there exist constants $\{B_i\}$, independent of α , such that

(2.39)
$$E[T_N(\mathbf{Z}, \phi) - T(\phi)]^2 \leq \frac{B_1 k^2}{N} + \frac{B_2 k^4}{N^2} + \frac{B_3 k^6}{N^2} .$$

The first bound in (2.38) follows from the Taylor expansion

$$N^{\frac{1}{2}}[T_{N}(Z,\phi) - T_{N1}]$$

$$= \frac{1}{4\theta} \int [W_{N1}^{2} \cdot F(x+\theta_{N}) - W_{N2}^{2} \circ F(x-\theta_{N})] \phi'' \circ F(x+\theta_{N}) dF_{N}(x)$$

$$+ \frac{1}{4\theta} \int [\phi'' \circ F(x+\theta_{N}) - \phi'' \circ F(x-\theta_{N})] W_{N2}^{2} \circ F(x-\theta_{N}) dF_{N}(x)$$

$$+ \frac{N^{-\frac{1}{2}}}{12\theta} \int [W_{N1}^{3} \circ F(x+\theta_{N}) \phi''' \circ \zeta_{N1}(x)$$

$$- W_{N2}^{3} \circ F(x-\theta_{N}) \phi''' \circ \zeta_{N2}(x)] dF_{N}(x)$$

where $\zeta_{Ni}(x)$ lies between $G_{Ni}(x \pm \theta_N)$ and $F(x \pm \theta_N)$ at the discontinuities of $F_N(x)$, as required, and

$$(2.41) W_{Ni} \circ F(x) = N^{\frac{1}{2}} [G_{Ni}(x) - F(x)].$$

For the second bound, observe from the proof of Lemma 2.2 that

$$(2.42) NE[T_{N1} - T_{N2}]^2 \le \frac{E(\Delta_{ij}^2)}{2\theta^2(N-1)} + \frac{NE(\hat{S}_N^2)}{N-1}$$

and consider the expressions for the two expectations on the right side. The remaining two bounds in (2.38) are straightforward.

In view of (2.39), there exist constants $\{C_i\}$ independent of α such that

(2.43)
$$E \sum_{|k|=1}^{M} |\hat{c}_k - c_k|^2 \le \frac{C_1 M^3}{N} + \frac{C_2 M^5}{N^{\frac{3}{2}}} + \frac{C_3 M^7}{N^2}.$$

Since

$$||\hat{\phi}_F - \phi_F||^2 = \sum_{|k|=1}^M |\hat{c}_k - c_k|^2 + \sum_{|k|=M+1}^\infty |c_k|^2,$$

the theorem follows.

3. Estimation in the two-sample model. Let $\{m_{\alpha}\}$, $\{n_{\alpha}\}$ be sequences of sample sizes and suppose that $X_1, X_2, \dots, X_{m_{\alpha}}, Y_1, Y_2, \dots, Y_{n_{\alpha}}$ have joint density $\prod_{i=1}^{m_{\alpha}} f(x_i - \mu_0) \prod_{j=1}^{n_{\alpha}} f(y_j)$, where the location difference μ_0 does not depend on α . For this two-sample model, let

(3.1)
$$\tilde{c}_{k,\alpha} = \frac{m_{\alpha} T_{m_{\alpha}}(\mathbf{X}, \exp(-2\pi i k \cdot)) + n_{\alpha} T_{n_{\alpha}}(\mathbf{Y}, \exp(-2\pi i k \cdot))}{m_{\alpha} + n_{\alpha}}$$

and for a sequence of integers $\{M_{\alpha}\}$, set

(3.2)
$$\tilde{\phi}_{F,\alpha}(t) = \sum_{k=1}^{M\alpha} \tilde{c}_{k,\alpha} \exp(2\pi i k t).$$

If $\lim_{\alpha\to\infty} M_{\alpha} = \infty$ and $\lim_{\alpha\to\infty} M_{\alpha}^{\frac{1}{2}}/\min(m_{\alpha}, n_{\alpha}) = 0$, it follows from Theorem 2.2 that

$$\lim_{\alpha\to\infty} E||\tilde{\phi}_{F,\alpha}-\phi_F||^2=0.$$

Note that $\tilde{\phi}_{F,\alpha}$ is a location invariant estimate of ϕ_F .

Suppose that $\hat{\mu}_{\alpha}$ is an estimate of μ_0 that satisfies the following assumption:

C. $\hat{\mu}_{\alpha}$ is a location equivariant estimate of μ_0 and

$$\left(\frac{m_{\alpha} n_{\alpha}}{m_{\alpha} + n_{\alpha}}\right)^{\frac{1}{2}} (\hat{\mu}_{\alpha} - \mu_{0})$$
 is bounded in probability as $\alpha \to \infty$.

For every real number μ , let $(R_1(\mu), R_2(\mu), \dots, R_{m_\alpha + n_\alpha}(\mu))$ denote the rank vector of $(X_1 - \mu, \dots, X_{m_\alpha} - \mu, Y_1, \dots, Y_{n_\alpha})$. When $\mu = 0$, we will write more simply $(R_1, R_2, \dots, R_{m_\alpha + n_\alpha})$. As an adaptive estimate for μ_0 , consider

(3.4)
$$\tilde{\mu}_{\alpha} = \hat{\mu}_{\alpha} + ||\tilde{\phi}_{F,\alpha}||^{-2} \left(\frac{m_{\alpha} + n_{\alpha}}{m_{\alpha} n_{\alpha}} \right) \sum_{j=1}^{m_{\alpha}} \tilde{\phi}_{F,\alpha} \left(\frac{R_{j}(\hat{\mu}_{\alpha})}{m_{\alpha} + n_{\alpha} + 1} \right),$$

a form suggested by the linearized rank estimates studied by Kraft and van Eeden (1970).

THEOREM 3.1. If assumptions A and C are satisfied and if

(3.5)
$$\lim_{\alpha\to\infty}M_{\alpha}=\infty, \qquad \lim_{\alpha\to\infty}M_{\alpha}^{6}/\min(m_{\alpha},n_{\alpha})=0,$$

then the asymptotic distribution of $(m_{\alpha}n_{\alpha}/m_{\alpha}+n_{\alpha})(\tilde{\mu}_{\alpha}-\mu_{0})$ is normal $(0,||\phi_{F}||^{-2})$.

The proof of this theorem is based upon two lemmas. For convenience, the subscript α will be dropped in the following calculations.

LEMMA 3.1. If assumption A and (3.5) hold and if $\mu_0=0$, then

(3.6)
$$\sup_{|\mu| \leq C(m+n/mn)^{\frac{1}{2}}} \left| \left(\frac{m+n}{mn} \right)^{\frac{1}{2}} \sum_{j=1}^{m} \tilde{\phi}_{F} \left(\frac{R_{j}(\mu)}{m+n+1} \right) - \left(\frac{m+n}{mn} \right)^{\frac{1}{2}} \sum_{j=1}^{m} \tilde{\phi}_{F} \left(\frac{R_{j}}{m+n+1} \right) + \left(\frac{mn}{m+n} \right)^{\frac{1}{2}} \mu ||\phi_{F}||^{2} | \to_{p} 0.$$

for every C > 0.

PROOF. Let

(3.7)
$$H(x, \mu) = \frac{mF(x) + nF(x - \mu)}{m + n + 1}$$

$$H_{m,n}(x, \mu) = \frac{mF_m(x) + nG_n(x - \mu)}{m + n + 1},$$

where F_m and G_n are the right continuous empirical distribution functions based on X and Y respectively. Write H(x), $H_{m,n}(x)$ for H(x, 0), $H_{m,n}(x, 0)$ respectively. By Taylor expansion, setting $A_{m,n} = (m + n/mn)^{\frac{1}{2}}$,

$$A_{m,n} \sum_{j=1}^{m} \tilde{\phi}_{F} \left(\frac{R_{j}(\mu)}{m+n+1} \right) - A_{m,n} \sum_{j=1}^{m} \tilde{\phi}_{F} \left(\frac{R_{j}}{m+n+1} \right)$$

$$= mA_{m,n} \int_{0}^{m} \left[\tilde{\phi}_{F} \circ H_{m,n}(x,\mu) - \tilde{\phi}_{F} \circ H_{m,n}(x) \right] dF_{m}(x)$$

$$= mA_{m,n} \left\{ \int_{0}^{m} \left[\tilde{\phi}_{F} \circ H(x,\mu) - \tilde{\phi}_{F} \circ H(x) \right] dF_{m}(x) \right\}$$

$$+ \int_{0}^{m} \left[\left[H_{m,n}(x,\mu) - H(x,\mu) \right] - \left[H_{m,n}(x) - H(x) \right] \right] \tilde{\phi}_{F}' \circ H(x,\mu) dF_{m}(x)$$

$$+ \int_{0}^{m} \left[\left[H_{m,n}(x) - H(x) \right] \left[\tilde{\phi}_{F}' \circ H(x,\mu) - \tilde{\phi}_{F}' \circ H(x) \right] dF_{m}(x) \right] dF_{m}(x)$$

$$+ \frac{1}{2} \int_{0}^{m} \left[H_{m,n}(x,\mu) - H(x,\mu) \right]^{2} \tilde{\phi}_{F}'' \circ \delta_{1}(x) dF_{m}(x)$$

$$+ \frac{1}{2} \int_{0}^{m} \left[H_{m,n}(x) - H(x) \right]^{2} \tilde{\phi}_{F}'' \circ \delta_{2}(x) dF_{m}(x) \right\} = \sum_{i=1}^{5} I_{i}$$

where $\delta_1(X_j)$ lies between $H_{m,n}(X_j, \mu)$ and $H(X_j, \mu)$ while $\delta_2(X_j)$ lies between $H_{m,n}(X_j)$ and $H(X_j)$.

If $\tilde{\phi}_{F}^{(r)}$ denotes the rth derivative of $\tilde{\phi}_{F}$

(3.9)
$$\sup_{0 \le t \le 1} |\tilde{\phi}_{F}^{(r)}(t)| \le \left[\sum_{k=1}^{M} (2\pi k)^{2r} \right]^{\frac{1}{2}} \cdot \left[\sum_{k=1}^{M} |\tilde{c}_{k}|^{2} \right]^{\frac{1}{2}} \\ = O(M^{\frac{1}{2}(2r+1)}) \cdot ||\tilde{\phi}_{F}||.$$

Hence, for $|\mu| \leq A_{m,n} C$, $\sup |I_2|$ is $O_p(M^{\frac{3}{2}} \cdot \min (m^{\frac{1}{2}}, n^{\frac{1}{2}})) \cdot ||\tilde{\phi}_F||$ and $\sup |I_j|$ is $O_p(M^{\frac{1}{2}}/\min (m^{\frac{1}{2}}, n^{\frac{1}{2}})) \cdot ||\tilde{\phi}_F||$ for $3 \leq j \leq 5$. Since $||\tilde{\phi}_F|| \to_p ||\phi_F|| < \infty$ under the hypotheses of the lemma, all terms of the expansion (3.8) other than I_1 are asymptotically negligible.

Let

$$J_{1} = mA_{m,n} \int [H(x, \mu) - H(x)]\tilde{\phi}' \circ H(x) dF_{m}(x)$$

$$= A_{m,n} \frac{mn}{m+n+1} \int [F(x-\mu) - F(x)]\tilde{\phi}_{F}' \circ H(x) dF_{m}(x)$$

$$J_{2} = -A_{m,n} \frac{mn}{m+n+1} \mu \int f(x)\tilde{\phi}_{F}' \circ H(x) dF_{m}(x)$$

$$(3.10) \qquad J_{3} = -A_{m,n}^{-1} \mu \int f(x)\tilde{\phi}_{F}' \circ F(x) dF_{m}(x)$$

$$J_{4} = -A_{m,n}^{-1} \mu \int f(x)\tilde{\phi}_{F}' \circ F(x) dF(x)$$

$$= -A_{m,n}^{-1} \mu \int_{0}^{1} \tilde{\phi}_{F}(t)\phi_{F}(t) dt$$

$$J_{5} = -A_{m,n}^{-1} \mu ||\phi_{F}||^{2}.$$

Note that $\tilde{\phi}_F = (m\hat{\phi}_F^X + n\hat{\phi}_F^Y)/(m+n)$, where $\hat{\phi}_F^X$, $\hat{\phi}_F^Y$ are the estimates of ϕ_F based upon the first and second samples respectively. For $|\mu| \leq A_{m,n}C$, the

differences $\sup |I_1-J_1|$, $\sup |J_2-J_3|$, $\sup |J_3-J_4|$ are all $O_p(M^{\frac{5}{2}}/\min (m^{\frac{1}{2}}, n^{\frac{1}{2}})) \cdot ||\tilde{\phi}_F||$, while $\sup |J_1-J_2|$ is $O_p(M^{\frac{5}{2}}/\min (m^{\frac{1}{2}}, n^{\frac{1}{2}})) \cdot \max (||\hat{\phi}_F^X||, ||\hat{\phi}_F^Y||)$ and $\sup |J_4-J_5|$ is $O_p(||\tilde{\phi}_F-\phi_F||)$. Under the assumptions, these bounds are all asymptotically negligible, so that the lemma follows.

LEMMA 3.2. If assumption A is satisfied, if $\mu_0 = 0$, and if

(3.11)
$$\lim_{\alpha\to\infty} M_{\alpha} = \infty , \qquad \lim_{\alpha\to\infty} M_{\alpha}^{4}/\min(m_{\alpha}, n_{\alpha}) = 0 ,$$

then the asymptotic distribution of $(m_{\alpha} + n_{\alpha}/m_{\alpha}n_{\alpha})^{\frac{1}{2}} \sum_{j=1}^{m_{\alpha}} \tilde{\phi}_{F,\alpha}(R_j/m_{\alpha} + n_{\alpha} + 1)$ is normal $(0, ||\phi_F||^2)$.

PROOF. Let $\phi_{F,M}(t) = \sum_{|k|=1}^{M} c_k \exp{(2\pi i k t)}$ and for $1 \leq j \leq m+n$, let $a_{m,n}(j) = E\phi_F(U^{(j)})$, where $U^{(1)} < \cdots < U^{(m+n)}$ form an ordered random sample from the uniform distribution on (0,1). Let $K_1 = (m+n/mn)^{\frac{1}{2}} \sum_{j=1}^{m} \tilde{\phi}_F(R_j/(m+n+1))$ and define K_2 , K_3 similarly by replacing $\tilde{\phi}_F(\cdot/(m+n+1))$ with $\phi_{F,M}(\cdot/(m+n+1))$; $a_{m,n}(\cdot)$ respectively. From the Cauchy-Schwarz inequality, some calculation, and (2.43),

(3.12)
$$E |K_{1} - K_{2}| \leq \left[\sum_{|k|=1}^{M} E |\tilde{c}_{k} - c_{k}|^{2} \right]^{\frac{1}{2}} \\ \times \left[\frac{m+n}{mn} \sum_{|k|=1}^{M} E \left| \sum_{j=1}^{m} \exp \left(\frac{2\pi i k R_{j}}{m+n+1} \right) \right|^{2} \right]^{\frac{1}{2}} \\ = O(M^{2}/\min(m^{\frac{1}{2}}, n^{\frac{1}{2}})) + O(M^{3}/\min(m^{\frac{3}{2}}, n^{\frac{3}{2}})) \\ + O(M^{4}/\min(m, n)),$$

so that $K_1 - K_2 \rightarrow_p 0$ as $\alpha \rightarrow \infty$. Also, writing N for m + n,

(3.13)
$$E[K_{2} - K_{3}]^{2} = \frac{1}{N-1} \sum_{j=1}^{N} \left[\phi_{F,M} \left(\frac{j}{N+1} \right) - a_{m,n}(j) \right]^{2} + \frac{N}{mn} \left| E \sum_{j=1}^{m} \phi_{F,M} \left(\frac{R_{j}}{N+1} \right) \right|^{2} = \frac{N}{N-1} \int_{0}^{1} \left[\phi_{F,M} \left(\frac{1+[tN]}{N+1} \right) - a_{m,n}(1+[tN]) \right]^{2} dt + O(M/\min(m,n)).$$

Since $\int_0^1 [\phi_{F,M}((1+[tN])/(N+1)) - \phi_{F,M}(t)]^2 dt$ is $O(M^3/\min(m^2, n^2))$ and $\lim_{\alpha \to \infty} \int_0^1 [\phi_{F,M}(t) - \phi_F(t)]^2 dt = 0$, $\lim_{\alpha \to \infty} \int_0^1 [a_{m,n}(1+[tN]) - \phi_F(t)]^2 dt = 0$, the last limit being proved in Hájek and Šidák (1967), page 158, we conclude that $K_2 - K_3 \to_p 0$ as $\alpha \to \infty$. The lemma follows from the asymptotic normality of K_3 (see Hájek and Šidák (1967)).

PROOF OF THEOREM 3.1. Since $\hat{\mu}$ is location equivariant by assumption and $\tilde{\phi}_F$ is location invariant, we may assume $\mu_0=0$ without loss of generality. From (3.4), assumption C, and Lemma 3.1 follows

(3.14)
$$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \tilde{\mu} = ||\phi_F||^{-2} \left(\frac{m+n}{mn}\right)^{\frac{1}{2}} \sum_{j=1}^{m} \tilde{\phi}_F \left(\frac{R_j}{m+n+1}\right) + o_p(1).$$

Hence, by Lemma 3.2, $\lceil mn/(m+n) \rceil^{\frac{1}{2}} \tilde{\mu}$ is asymptotically normal $(0, ||\phi_F||^{-2})$.

4. Estimation in the one-sample model. Let $\{N_{\alpha}\}$ be a sequence of sample sizes and suppose that $X_1, X_2, \dots, X_{N_{\alpha}}$ have joint density $\prod_{i=1}^{N_{\alpha}} f(x_i - \nu_0)$, where f is symmetric about the origin and ν_0 does not depend upon α . For this model, ϕ_F is skew-symmetric about $t = \frac{1}{2}$ and therefore has Fourier expansion

$$\phi_{F}(t) \sim \sum_{k=1}^{\infty} d_{k} \sin(2\pi kt) ,$$

where $d_k = 2 \int_0^1 \phi_F(t) \sin(2\pi kt) dt$. The estimate for ϕ_F becomes

(4.2)
$$\tilde{\phi}_{F,\alpha}(t) = \sum_{k=1}^{M\alpha} \tilde{d}_{k,\alpha} \sin(2\pi kt),$$

where $\tilde{d}_{k,\alpha}=2T_{N_{\alpha}}(\mathbf{X},\sin{(2\pi k\cdot)})$, and the corresponding estimate for ψ_F is $\tilde{\psi}_{F,\alpha}(t)=\tilde{\tilde{\phi}}_{F,\alpha}(\frac{1}{2}+t/2)$. If $\lim_{\alpha\to\infty}M_{\alpha}=\infty$ and $\lim_{\alpha\to\infty}M_{\alpha}^{\frac{3}{2}}/N_{\alpha}=0$, it follows from the proof of Theorem 2.2 that $\lim_{\alpha\to\infty}E\,||\tilde{\psi}_{F,\alpha}-\psi_F||^2=0$. Note that $\tilde{\psi}_{F,\alpha}$ is a location invariant estimate of ψ_F .

Suppose that $\hat{\nu}_{\alpha}$ is an estimate of ν_0 which satisfies the following assumption: D. $\hat{\nu}_{\alpha}$ is a location equivariant estimate of ν_0 and

$$N_{\alpha}^{\frac{1}{2}}(\hat{\nu}_{\alpha}-\nu_{0})$$
 is bounded in probability as $\alpha\to\infty$.

For every real number ν , let $(R_1^+(\nu), R_2^+(\nu), \dots, R_{N_\alpha}^+(\nu))$ denote the rank vector of $(|X_1 - \nu|, \dots, |X_{N_\alpha} - \nu|)$. When $\nu = 0$, we will write more simply $(R_1^+, R_2^+, \dots, R_{N_\alpha}^+)$. As an adaptive estimate for ν_0 , consider

$$(4.3) \qquad \tilde{\nu}_{\alpha} = \hat{\nu}_{\alpha} + ||\tilde{\phi}_{F,\alpha}||^{-2} N_{\alpha}^{-1} \sum_{j=1}^{N_{\alpha}} \tilde{\phi}_{F,\alpha} \left(\frac{R_{j}^{+}(\hat{\nu}_{\alpha})}{N_{\alpha} + 1} \right) \cdot \operatorname{sgn} (X_{j} - \hat{\nu}_{\alpha}),$$

where sgn(x) = 1, -1, or 0 according to whether x is positive, negative, or zero. As in the two-sample model, this estimate is suggested by the linearized rank estimates studied by Kraft and van Eeden (1970).

THEOREM 4.1. If f is symmetric, if assumptions A and D are satisfied, and if

(4.4)
$$\lim_{\alpha\to\infty}M_{\alpha}=\infty, \quad \lim_{\alpha\to\infty}M_{\alpha}^{6}/N_{\alpha}=0$$

then the asymptotic distribution of $N_{\alpha}^{\frac{1}{2}}(\hat{\nu}_{\alpha}-\nu_{0})$ is normal $(0,||\psi_{F}||^{-2})$.

The proof of this theorem rests on the following two lemmas. For convenience, the subscript α is dropped in their statements. Since the proofs of these lemmas are simply modifications of the proofs for Lemmas 3.1 and 3.2, we omit further details. Note that $||\phi_F|| = ||\phi_F||$.

Lemma 4.1. If f is symmetric, if assumption A and (4.4) hold, and if $\nu_0=0$, then

(4.5)
$$\sup_{|\nu| \le CN^{-\frac{1}{2}}} \left| N^{-\frac{1}{2}} \sum_{j=1}^{N} \tilde{\psi}_{F} \left(\frac{R_{j}^{+}(\nu)}{N+1} \right) \operatorname{sgn} (X_{j} - \nu) - N^{-\frac{1}{2}} \sum_{j=1}^{N} \tilde{\psi}_{F} \left(\frac{R_{j}^{+}}{N+1} \right) \operatorname{sgn}(X_{j}) + N^{\frac{1}{2}\nu} ||\psi_{F}||^{2} \right| \to_{p} 0$$

for every C > 0.

LEMMA 4.2. If f is symmetric, if assumption A is satisfied, if $\nu_0 = 0$, and if

(4.6)
$$\lim_{\alpha\to\infty}M_{\alpha}=\infty, \quad \lim_{\alpha\to\infty}M_{\alpha}^{4}/N_{\alpha}=0$$

then the asymptotic distribution of $N_{\alpha}^{-\frac{1}{2}} \sum_{j=1}^{N_{\alpha}} \tilde{\psi}_{F,\alpha} (R_j^+/N_{\alpha}+1) \operatorname{sgn}(X_j)$ is normal $(0, ||\psi_F||^2)$.

5. Remarks. In proving Theorems 3.1 and 4.1, the only regularity assumptions made about the density f were absolute continuity and finite Fisher information. Consequently, the location estimates $\tilde{\mu}$, $\tilde{\nu}$ are asymptotically efficient over a larger class of distributions F than the corresponding van Eeden (1970) estimates.

For certain F, the estimates $\tilde{\mu}$, $\tilde{\nu}$ may approach their asymptotic behavior very slowly. For example, suppose that F is such that $\phi_F(t)=\sin{(2\pi\lambda t)}$, where λ is a large integer. In this case, $\tilde{\phi}_F$ or $\tilde{\phi}_F$ will be a poor estimate of ϕ_F until $N\gg M \geq \lambda$. To avoid this difficulty, it would be necessary to choose the trigonometric basis for $\tilde{\phi}_F$ or $\tilde{\phi}_F$ in such a fashion as to omit all, or at least most, trigonometric functions of frequency less than λ . Thus, a selection problem arises which is similar to the classical problem of choosing useful regressors from the set of all possible regressors in a linear model.

In practice, the initial location estimates $\tilde{\mu}$ or $\tilde{\nu}$ must be chosen with care, because if these estimates are poor for a given sample, the modified estimates $\tilde{\mu}$ or $\tilde{\nu}$ may be even worse. Reasonable initial estimates when F is unimodal symmetric are the sample median in the one-sample model and the difference between sample medians in the two-sample model.

REFERENCES

- [1] HÁJEK, J. (1962). Asymptotically most powerful rank order tests. Ann. Math. Statist. 33 1124-1147.
- [2] HÁJEK, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives.

 Ann. Math. Statist. 39 235-346.
- [3] HÁJEK, J. and ŠIDÁK, Z. (1967). Theory of Rank Tests. Academic Press.
- [4] Hodges, J. L. and Lehmann, E. L. (1963). Estimation of location based on rank test. *Ann. Math. Statist.* 34 598-611.
- [5] Kraft, C. and van Eeden, C. (1970). Efficient linearized estimates based on ranks. Non-parametric Techniques in Statistical Inference, (M. L. Puri, ed.). Cambridge Univ. Press. 267-273.
- [6] SKOROKHOD, A. V. (1956). Limit theorems for stochastic processes. Theor. Probability Appl. 1 261-290.
- [7] Stein, C. (1956). Efficient nonparametric testing and estimation. *Proc. Third Berkeley Symp. Math. Statist. Prob.* 187-195. Univ. of California Press.
- [8] VAN EEDEN, C. (1970). Efficiency robust estimation of location. Ann. Math. Statist. 41 172-181.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO
TORONTO 181, CANADA