The Annals of Statistics
1974, Vol. 2, No. 1, 63-74

ASYMPTOTICALLY EFFICIENT ADAPTIVE RANK ESTIMATES
IN LOCATION MODELS!

By RUDpOLF BERAN

University of California, Berkeley
and University of Toronto

This paper describes a new construction of uniformly asymptotically
efficient rank estimates in the one and two-sample location models. The
method adopted differs from van Eeden’s (1970) earlier construction in
three respects. First, the whole sample, rather than a vanishingly small
fraction of the sample, is used in estimating the efficient score function.
Secondly, a Fourier series estimator is used for the score function rather
than a window estimator. Thirdly, the linearized rank estimates cor-
responding to the estimated score function provide the uniformly asymp-
totically efficient location estimates. These estimates are asymptotically
efficient over a larger class of distributions than the van Eeden estimates
and should approach their asymptotic behavior more rapidly.

1. Introduction. Suppose that X, X,, ..., X,, Y,, Y,, --., Y, are random
variables with joint density TT™, f(x; — #) I1%-: f(¥,), Where g, is the difference
in location of the two samples. Let F denote the distribution function cor-
responding to f and let ||-|| denote the norm in L,(0, 1). Under regularity con-
ditions on F, there exists a rank estimate /(¢,) of y,, depending upon

(1.1) ¢p(t) = —f o FHO)/f o F7(1)
such that the asymptotic distribution of (mn/m + n)}(@(¢r) — ,) is normal
(0, ||¢#||~?) (see Hodges and Lehmann (1963), Kraft and van Eeden (1970)). The
estimate fi(¢) is asymptotically efficient in the sense that its asymptotic variance
attains the Cramér-Rao lower bound.
Similarly, suppose that X, X,, - - -, X, are random variables with joint density
¥, f(x; — v,), where f is symmetric about the origin. Under regularity con-
ditions on F, there exists a rank estimate 5(¢) of v,, depending upon

(1.2) ¢p(t) = ¢p(3 + 1/2)
such that the asymptotic distribution of N#(9(¢,) — v,) is normal (0, ||¢4||~?) and
the estimate is asymptotically efficient (see the references above).

In practice, a statistician analyzing data under a one or two-sample location
model will have only approximate knowledge of ¢,. Even if ¢, is unknown,
Stein (1956) noted the possibility of constructing nonparametric location
estimates which are asymptotically efficient for all regular f. Uniformly
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64 RUDOLF BERAN

asymptotically efficient rank estimates for location were first devised by van
Eeden (1970). Her approach was to estimate ¢, from a vanishingly small frac-
tion of the data, using a modified form of the estimator studied by Hajek (1962),
and then find the Hodges-Lehmann rank estimate of location based upon the
estimated score function and the remaining data.

This paper describes a new construction of uniformly asymptotically efficient
rank estimates in the one and two-sample location models. The construction
differs from van Eeden’s in three respects. First, the whole sample is used in
estimating ¢,. Secondly, a Fourier series estimator is used for the score function
rather than a window estimator. Thirdly, linearized rank estimates correspond-
ing to the estimate of ¢, provide the uniformly asymptotically efficient location
estimates. These estimates are asymptotically efficient over a larger class of
distributions F than the van Eeden estimates and should approach their asymp-
totic behavior more rapidly. However, the rate of convergence can still be very
slow for particular F.

2. Estimation of ¢,. Suppose that the density f satisfies the following as-
sumption:

A. f is absolutely continuous and ¢, € L,(0, 1).
Since ¢, € L,(0, 1), it has the Fourier expansion

2.1) B5(1) ~ Loy ¢, exp (2rike) ,

where

(2.2) ¢, = V5 x(t) exp (—2mikt) dt .

Let Z,, Z,, - -- be a sequence of independent identically distributed random

variables, each of which has density f. In view of (2.1), a plausible estimate
for ¢, based upon Z = (Z,, Z,, - - -, Z,) is

(2-3) $e(t) = L1 & exp (2mike)

where ¢, is an estimate of ¢, based upon Z and M — oo at a suitable rate relative

to N. This section will develop a detailed version of this approach to estimating

P

The first step is to estimate ¢,, or more generally, a functional of the form

d¢ o Fi
2.4 T(8) = $39(065(0) de = §[ 22270 Jar(o
where ¢ is a real-valued function defined on [0, 1] that possesses the following
properties:

B. ¢ is twice differentiable and ¢” is continuous on [0, 1].
The second expresssion for T(¢) suggests as an estimator

@5 Tu(Z ) = g DL 6 (o Do o= 2, + 0)

-9 (_]\71——1 Lz WL — Z; — 01v)>:\ ’
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where

(2.6) v(x) =1 if x=0
=0 if x<0,

and 6, = N~*6 for some 6 + 0.

THEOREM 2.1. Under assumptions A and B, the asymptotic distribution of
NYTy(Z, §) — T(¢)) as N — oo is normal (0, o*(9)), where

2.7) o*(¢) = o o [min (s, 1) — st][2¢"(5)Br(s) — $"(s)f o F(9)]
X [2¢"()ps(1) — " (Of o F7(1)] dsdt .

Moreover

(2-8) limy_, NE[T\(Z, $) — T($)]" = 0%(9) -

The proof of this theorem depends upon two lemmas and the following well-
known result due to Skorokhod (1956). Let F, denote the right continuous
empirical distribution function based on Z, let

(2.9) Wy() = NFy o FY(t) — 1],

and let W(t) be the standard Brownian bridge. Then there exists a probability
space (Q, %, ) and versions of W, and W defined on that space such that

(2.10) limy..... SUPoges, | Wa(t) — W(t)| = O

and the sample paths of W are all continuous. These uniformly convergent
versions of W, will be used as needed in the proofs.
Define G,, G, by

(2.11) Gpyi(x) =
Then
(2.12)  Ty(Z,¢) = % §[8 0 Gua(x + Oy) — ¢ o Gyo(x — Oy)]dFy(x) .

Let

B Gn) = Gl =

Tow = g §16 o FOx +02) + (Gl + 0)
(2.13) — F(x + 0,))¢' o F(x + 8,) — ¢ o F(x — 0y,)
— (Gualx — 0,) — Flx — 0,))¢" o Fx — 0,)] dFy(x),
and without loss of generality, assume ¢ > 0 throughout.
LemMA 2.1. If F is continuous and assumption B is satisfied, then
(2.14) lim, . NE[T\(Z,$) — Ty, ]*=0.
Proor. By Taylor expansion of ¢ o G,(x) about ¢ o F(x), we find that

(2'15) Né[TN(Z’ ®) — Tyl = 4—_15 [Ty1 — Iys]
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where
(2.16) Iy, = N § [Gyi(x) — F(x)]’¢" o & yi(x) dF,(x — 6y)
Iy, = NS [Gm(x) - F(x)]2¢” ° gzvz(x) dFN(x + 0N)

and &,,(x) lies between G ,(x) and F(x) at the discontinuities of F,(x + 6,), as
required. Since

(2.17) NHGyy(x) — F(x)] = Wy o F(x) + 1}‘3’2«(;)
NG () — F(x)] = Wy o F(x) + N*[F]Qv(i) = 1]

it follows under B that
(2.18) limy Iy, = § [W . F(x)['¢" o F(x) dF(x)

for the Skorokhod versions of W, and W. Hence NYT(Z, ¢) — T(¢)] —,0.
This may be strengthened to (2.14) because, by direct calculation, there exists a
constant C such that E|I,|* < C for every N.

Let 57, denote the set of all statistics of the form }}¥, #(Z,) that have finite
mean square. Hajek (1968) has shown that if S, = S,(Z) is an arbitrary statistic
with finite mean square, its projection S, into 57, is given by

(2.19) Sy = S E(Sy]Z) — (N — 1)ES,) .

In particular, suppose that

1 1
v =gy By o Do o= 200
- -
@20) = FZ+0,) | ¢ o FZ + 0,)

_ [F}_‘T S0 Zi — Z, — 0,) — F(Z, — 0N)] ' o F(Z, — 0N)} .

Since
1
E {[ﬁ SiuiWZ — Z; % 0y) — F(Z, + m] ¢ o F(Z £0,)| 2.}
(2.21) =0 if i=k
1
= N —1 §[v(x — Z, £ 64)

— F(x + 0,)]¢' o F(x £ 0,) dF(x) if i+k,
the projection of S}, into 577, is, in this case,
S = g Tha (10 — Zy + 0,) — Flx + 0,019 o Flx + 6,)
N
222) . —[v(x — Z, — 0,) — F(x — 0,)1¢' o F(x — 0,)} dF(x)

= 55 SUFu(®) — P9’ o FOUS(x — 6,) — fix + 0,)] dx .
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Since

223 Tu= 2—0— §[9 o F(x + 0y) — ¢ o F(x — 0y)]dFy(x) + Sy,

the projection of T, into 5#, is
224) Ty, = % §[6 - F(x + 0y) — ¢ o F(x — 0,)]dFy(x) + Sy .
N

LemMmA 2.2. Under assumptions A and B,

(2.25) lim,_, NE[Ty, — Ty, = 0.
Proor. Since S is the projection of S,

(2.26) NE[T,, — Ty, = NE(S,?) — NE(S,?) .

Defining {A,;; 1 < i, j < N} by

(2.27) A =N[W(Z, — Z; + Oy) — F(Z, + 0y)]¢" o F(Z, + 0y)
— W2 — Z; — 0y) — F(Z, — 0y)]¢" o F(Z, — 0y)},
we have, from (2.20),

1
m E[ZZ#;’ A%j + Z Zi#j Aij Aji
(2‘28) + ZZZ@#J#I: ]’LAIH + ZZZ@#J#I: 7 zk

+ Z Z Zi#j#k Aij Ajk + Z Z Zi#j#k AijAki
+ ZZ Z Zi#j#k#m AijAkm] .

By direct calculation, noting that f is of bounded variation under assumption A,

E(A) = NS [F(x + 6x) — F(x — 0,)][¢" o F(x + 0,)] dF(x)
+ N F(x — 0,)[9" o F(x + 0y) — ¢" o F(x — 6,)]" dF(x)
— N§[F(x + 0y)¢" o F(x + 8)
— F(x — 0y)¢" o F(x — 0,)]* dF(x)
(2.29) = O(N})
|E(Q;;4,0] = E(A%) = O(NY)
EA;84) = E(A;;A5) = E(A;A,) = E(A;A,,) =0
E(4:A) = N §§ [min(F(x), F(y))
— F)F(y)1¢" o F(x)¢" o F(y)[f (x — 0,)
—fx + OISy = Ox) — fy + 0y)]dxdy.
By dominated convergence, since | f’(x)| is integrable under assumption A,
(460°)lim,_, E(A;;A,,)
(2.30) = §§ [min (F(x), F(y)) — F()F(y)]¢" o F(x)¢" o F(y)["(x) f"(y) dx dy
= lim_,, NE(S,?) .

NE(S,?) =

The lemma follows.
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Proor oF THEOREM 2.1. (Using (2.22), 2.24) and integrating by parts, we
obtain

NiTy, — 5§90 Fix + 0,) — ¢ o F(x — 0,)]dF(3)]

@31 = % § Wy o F(x){$" o F(x — 05)f(x — 0y) — ¢" o F(x + Oy)f(x + 0y)

+ ¢ o F)[f(x — 0y) — fix + 0y)]} dx .
For Skorokhod versions of W, and W, the right-hand side converges, by
dominated convergence, to

(2.32) §o W(n[2¢' () p(1) — ¢"(O)f o FY(1)] dt ,
which has a normal (0, ¢*(¢)) distribution.
Secondly, by Fubini’s theorem,

N[ §[8 o Flx + 0,) = § 0 F(x = 0,)] dF(x) — T(9)

NL St d §gds 5= /014" o Fx — 9f(x — 9

(2.33) — @' o F(x + 5)f(x + s)] dx

0

<
-2

SUPssasoy |1 20 [/(X)[P o F(x — 9)f(x — 5)
— @' o F(x + s)f(x + s)]dx|,

which tends to 0 as N — oo, by dominated convergence. The first part of
Theorem 2.1 now follows from Lemmas 2.1, 2.2 and from the above.
Finally, to prove (2.8), use (2.31) and dominated convergence to show

(2.34)  lim, . NE [Tm - % V[ o F(x + 6y) — ¢ o F(x — 63)] dF(x):r

= d%(9),
then consult Lemmas 2.1, 2.2 and (2.33).
We turn now to the random function ¢, proposed earlier as an estimate for
é-. Let {M,}, {N,} be sequences of positive integers. Following (2.3), let
b = Ty (Z, exp (—2rik-)) and let

(2.35) Gr.a(t) = Tle, &, . exp (2mikt) .
THEOREM 2.2. If assumption A is satisfied and if

(2.36) lim, .M, =oco, lim,_, M}N, =0,

then

(2.37) lim, s E ||f 5.0 — $l* = 0.

Proor. Note that (2.36) implies that lim,_,, N, = oco. For convenience, the
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subscript a will be dropped. If ¢(f) = cos (2zkt) or sin (27kt), re-examination
of the approximations used in establishing Theorem 2.1 shows that there exist
constants {4,}, independent of a, such that

. Ak A
E[TN(Z’ ¢) - Nl] = N + N
@.38)  E[T, — TP s 204 Al
1 t Ak
E| Tus = 55§18 Flx + 0) = 90 Fx = 0,)]dF() | < 24
1 2 A6k2
557 8162 Fx 4 03) = § o Fix = 0] dF(9) = T(9) [ 5 oK.

Hence, there exist constants {B,}, independent of a, such that
B k*  B,k* | Bk°
N Tw T
The first bound in (2.38) follows from the Taylor expansion
NQ[TN(Z’ ¢) - m]

= 25 SIWh - F(x + 0,) = Whyo F(x — 0,)16" 0 F(x + 0,) dFy(x)

(2-39) E[Ty(Z,¢) — TP =

(2.40) + % §[97 0 F(x + 0y) — ¢" 0 F(x — 0,)]W3; 0 F(x — 0y) dFy(x)

N_a W3 F 0 nr C
mS[ w0 F(x 4 0y)¢"" o Lyi(x)

— Wiao F(x — 0y)9"" o {yy(x)] dF y(x)

where {,,(x) lies between G,,(x + 0,) and F(x + 6,) at the discontinuities of
F,(x), as required, and

(2.41) Wi o F(x) = N [Gy(x) — F(x)] .

+

For the second bound, observe from the proof of Lemma 2.2 that

_ . E(A%) NE(S,?)
(2.42) NE[Ty, vl = BN T + N

and consider the expressions for the two expectations on the right side. The
remaining two bounds in (2.38) are straightforward.
In view of (2.39), there exist constants {C,} independent of a such that

,. C, M? C,M* C,M’"
@43 E Rl —af < SM 4 GM GM
Since
(2.44) \ ”&F — @5l = Do lé — alf + Dhicwn lewl” s

the theorem follows.
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3. Estimation in the two-sample model. Let {m,}, {n,} be sequences of sample
sizes and suppose that X, X,, ..., Xppr Yis Yy, -+ -, Y, have joint density

T f(x; — 1) I172: f(y;), where the location difference y, does not depend on
a. For this two-sample model, let

m,T, (X, exp(—2nik-)) + n, T, (Y, exp (—2xik-.))

3.1 Cpog =
( ) k,a ma + na

and for a sequence of integers {M,}, set

(3‘2) q;F,a(t) = kM=a1 Ek,a exp (Zﬂlkt) *

If lim, , M, = co and lim,_, M, /min (m,, n,) = 0, it follows from Theorem
2.2 that

(3.3) lima—'ooE”q‘;F,a - ¢F||2 = 0 *

Note that ¢, , is a location invariant estimate of ¢,.
Suppose that g, is an estimate of g, that satisfies the following assumption:
C. f, is a location equivariant estimate of y, and
men, \!, . . . -
—= @ ) (fz, — po) is bounded in probability as a — oo .
m, + n,
For every real number g, let (Ry(), Ry(#), - - -, Ry, 4., (22)) denote the rank vector

of (Xy—py s Xy, — Yy, -+, Y, ). When p =0, we will write more
simply (R, R,, --+, R ). As an adaptive estimate for y,, consider

ma+ng

G = ot el (Pl mrs b (2,

a form suggested by the linearized rank estimates studied by Kraft and van
Eeden (1970).

THEOREM 3.1. If assumptions A and C are satisfied and if
3.5) lim, M, = o, lim,_, M /min (m,,n,) =0,

then the asymptotic distribution of (m,n,[/m, 4+ n,)(f, — o) is normal (0, ||¢z||~?).

The proof of this theorem is based upon two lemmas. For convenience, the
subscript @ will be dropped in the following calculations.

LemMA 3.1. If assumption A and (3.5) hold and if 41, = 0, then
(") g (R )
i=1Pr\ ———

(3‘6) Supl#léC(m+n/mn)%

mn m+n+ 1
— (Y mpade (R ) + (G2) gl 0.

for every C > 0.
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Proor. Let
3.7 H(x, 1) — mF(x) + nF(x — p)
(3.7) (x, 1) P
H, (%, p) = mF,(x) + nG,(x — p) ,
" m+n+1

where F,, and G, are the right continuous empirical distribution functions based
on X and Y respectively. Write H(x), H,, ,(x) for H(x, 0), H, .(x, 0) respective-
ly. By Taylor expansion, setting A4,, , = (m + n/mn)t,
; R,(1) > -4 ( R; >
mn ¢F<m+n+1 ng:l¢F m+n+1
= mAm,u S [9517' ° Hm,n(x’ #) - q‘S’F ° Hm,u(x)] dF m(x)
= mA, {§ [$r o H(x, 1t) — ¢y o H(x)] dF ()

(3-8) + § {[Hunx, 1) — H(x, )] = [Hp o(x) — Hx)Ge" 0 H(x, 1) dF ()

+ § [Hun(x) — HX)N9x' 0 H(x, 1) — 5 o H(x)] dF,(x)

+ 3§ [Han(x, 1) — H(x, )95 o 0,(x) dF ()

+ 3V [Han(x) — HX)P5" 0 8y(x) dF(x)} = T3, 1,
where d,(x;) lies between H, (X, #) and H(X,, p) while 52(X ;) lies between
H, .(X;) and H(X)).

If ¢, denotes the rth derivative of &,
(3.9) SUPogizt B (1) < [ Doy k)™t - [, e ]
= O(M¥¥r ) - || gy .
Hence, for |y| < 4,,,C,sup || is O, (M? . min (m}, nt)) . ||§,|| and sup |I,| is
O,(Mt[min (mt, nt)) - ||¢,|| for 3 < j< 5. Since ||$,|| —,||¢s|| < oo under the
hypotheses of the lemma, all terms of the expansion (3.8) other than I, are
asymptotically negligible.
Let

o= mA,, §[H(x, p) — HE) o H(x) dF (%)

= An g SUFG = 1) = FOOI o H(x) dF ()
o= AP 1S S5 o Hx) dF ()

(310) Uy = —A.L p§ f(X)s o F(x) dF,(x)
Jo= =420 1§ f(0)$; o F(x) dF(x)
= —4, ln H So ¢F(t)¢F(t) dt
N J5 = _Am}n 14 ”¢I7'”2 .
Note that ¢, = (m$,* + nd,*)/(m + n), where %, ¢,¥ are the estimates of ¢,
based upon the first and second samples respectively. For |y| < 4, ,C, the
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differences sup |I, — J,|, sup |/, — Jy|, sup |J; — J,| are all O (Mi/mm (m?, n?)) .
1651l, while sup|J, — Jj| is O,(M}/min (m}, n)) - max (|||, ||4;*])) and
sup |J, — Jy| is O,(||¢r — #5|))- Under the assumptions, these bounds are all
asymptotically negligible, so that the lemma follows.

LeEMMA 3.2. If assumption A is satisfied, if p, = 0, and if
(3.11) lim, ,, M, = o, lim,_,, M,*/min (m,, n,) =0,
then the asymptotic distribution of (m, + n,fm,n)t Y72 ¢, (R;/m, + n, + 1) is
normal (0, ||6|[*)-

PrOOF. Let ¢, ,(t) = Ll c.exp (2nikt) and for 1 <j<m+n, let
a, .(j) = E¢p(U?), where UV < ... < U™*™ form an ordered random sample
from the uniform distribution on (0, 1). Let K, = (m + n/mn)t Y7, ¢.(R;/(m +
n+ 1)) and define K,, K, similarly by replacing ¢.(-/(m + n + 1)) with
$ru(+/(m + n+ 1)); a, () respectively. From the Cauchy-Schwarz in-
equality, some calculation, and (2.43),

EK, — K| = [Zk El6 — ']
3.12 m+n s El m _ 2nikR;
(3.12) X l: n i1 E| 2T eXp(m Tht 1)

= O(M?/min (m}, n*)) + O(M?/min (mi, nt))
+ O(M*/min (m, n)) ,

)

so that K, — K, —,0 as @ — oo. Also, writing N for m + n,
. 2
- am,n(])]
(3.13) N lemr ()]
— 1 + [N] ]’
= so[szsm( ) — a4+ (V) [ ar

+ O(M/min (m, n)) .
Since §3 [$r u((1 + [IND/(N + 1)) — ¢ (1] dt is O(M’/min (m*, %)) and
M, §5 [P ul() — SO dt =0, lim, o §5[ana(1 4+ [IN]) — 6p(0]' dt =0,

the last limit being proved in Hajek and Sidak (1967), page 158, we conclude
that K, — K, —,0 as a —oo. The lemma follows from the asymptotic
normality of K (see Hajek and Sidak (1967)).

E[K, — K] = —1—— [pr M(

v vT)

Proor oF THEOREM 3.1. Since g is location equivariant by assumption and
@, is location invariant, we may assume y, = 0 without loss of generality.
From (3.4), assumption C, and Lemma 3.1 follows

ea8) () e =l () e (i) -
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Hence, by Lemma 3.2, [mn/(m + n)]ta is asymptotically normal (0, ||¢||?).

4. Estimation in the one-sample model. Let {N,} be a sequence of sample
sizes and suppose that X;, X,, - - -, X, have joint density []¥% f(x, — v,), where
[ is symmetric about the origin and v, does not depend upon «. For this model,
¢ is skew-symmetric about = } and therefore has Fourier expansion

(4.1) 65(1) ~ N, d, sin (2ki)
where d, = 2 \} ¢(7) sin (2nkt) dt. The estimate for ¢, becomes
(4.2) br.olt) = Ll dy . sin 2rke) ,

where d, , = 2T, (X, sin (27k-)), and the corresponding estimate for ¢, is
G oll) = bro(d + 1/2). If lim,_, M, = co and lim,__ M}/N, = 0, it follows
from the proof of Theorem 2.2 that lim,_, E ||$r . — ¢5|[* = 0. Note that ¢, ,
is a location invariant estimate of ¢,.
Suppose that 7, is an estimate of v, which satisfies the following assumption:
D. 9, is a location equivariant estimate of v, and

N}, — v,) is bounded in probability as a — oo .

For every real number v, let (R,*(v), R,*(v), - - -, R} (v)) denote the rank vector
of (|X; —v|, -+, |Xy, —v]). When » =0, we will write more simply
(R*, Ry*, - -+, R}, ). As an adaptive estimate for v,, consider

o © e - - [ R;*(9, .
(4'3) va = va + |I¢F.al| 2le ! ;'V:I F,a <I_VJ—-(*—_1)> ° Sgn (XJ - l"tx) )

where sgn (x) = 1, —1, or 0 according to whether x is positive, negative, or
zero. As in the two-sample model, this estimate is suggested by the linearized
rank estimates studied by Kraft and van Eeden (1970).

THEOREM 4.1. If fis symmetric, if assumptions A and D are satisfied, and if
(4.4) lim, . M, MSIN, =0

a

a—+00 = oo I llma—too

then the asymptotic distribution of N (%, — v,) is normal (0, ||¢5||~?).
The proof of this theorem rests on the following two lemmas. For con-
venience, the subscript a is dropped in their statements. Since the proofs of

these lemmas are simply modifications of the proofs for Lemmas 3.1 and 3.2,
we omit further details. Note that ||¢,|| = ||¢#]|.

LeMMA 4.1. If f is symmetric, if assumption A and (4.4) hold, and if v, = 0,
then

(@9 S0puzen-t|N T3 () sen (X — )
| — N g (R ) sEnHs) + M gl -, 0

for every C > 0.
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LemMA 4.2. If f is symmetric, if assumption A is satisfied, if v, = 0, and if
(4.6) lim, .M, = o, lim,_,, MN, =0

then the asymptotic distribution of N,~* 3%« &, . (R,;*|N, + 1)sgn (X;) is normal
(O, [l¢#[1)- B

5. Remarks. In proving Theorems 3.1 and 4.1, the only regularity assump-
tions made about the density f were absolute continuity and finite Fisher in-
formation. Consequently, the location estimates #, o are asymptotically efficient
over a larger class of distributions F than the corresponding van Eeden (1970)
estimates.

For certain F, the estimates /, © may approach their asymptotic behavior
very slowly. For example, suppose that F is such that ¢,(f) = sin (274f), where

A is a large integer. In this case, ¢, or ¢, will be a poor estimate of ¢, until
N> M= 4. To avoid this difficulty, it would be necessary to choose the

trigonometric basis for ¢, or g,, in such a fashion as to omit all, or at least
most, trigonometric functions of frequency less than 4. Thus, a selection
problem arises which is similar to the classical problem of choosing useful
regressors from the set of all possible regressors in a linear model.

In practice, the initial location estimates 7 or © must be chosen with care,
because if these estimates are poor for a given sample, the modified estimates
for  may be even worse. Reasonable initial estimates when F is unimodal
symmetric are the sample median in the one-sample model and the difference
between sample medians in the two-sample model.
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