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ON SEQUENTIAL CONFIDENCE INTERVALS BASED
ON WILCOXON TYPE ESTIMATES!

By M. S. SrivasTAvA AND A. K. SEN

University of Toronto and
University of Illinois at Chicago Circle

For the location parameter family of distributions F(x — #) under some
regularity conditions, a confidence interval for ¢ of fixed width 2d and
given confidence coefficient 1 — « in the limit as d tends to zero is obtained
using Hodges-Lehmann estimates based on Wilcoxon statistics. An upper
bound on the average sample size is also given.

1. Introduction. Let X, X,, ..., X, be a random sample of size n from a
population with cumulative distribution function (hereafter, cdf) F(x — 0).
Under some regularity conditions on F, we wish to find a confidence interval 7,
for 6 such that (a) the length of 7, < 2d and (b) lim,_, P{# € I,} = 1 — a where
and d are specified. Since no fixed-sample procedure can meet the above require-
ments, Geertsema [3] considered a sequential procedure in which N is a random
variable and N(d) — oo a.s. asd — 0. He obtained confidence intervals based on
sign and Wilcoxon tests (cf. Lehmann [5]) and showed them to be asymptotically
efficient and consistent in the sense of Chow and Robbins [2]. The object of this
note is to derive confidence intervals based on Hodges-Lehmann estimates using
Wilcoxon statistics. We also give an upper bound for the average sample size
E(N).

2. Procedure based on Wilcoxon statistic. Let {X,} be a sequence of i.i.d.
random variables with common cdf F(x — #), where F is symmetric about 0 and
has density f such that § f*(x) dx < co. Furtherlet Z,, < Z, ,< ... < Z, ,

be the p = 4n(n 4 1) ordered averages 4(X; + X;), i< jand i,j=1,2, ..., n.
Then the Hodges-Lehmann [4] estimate of @ is Z, where Z, is the median of
Z,’s,i=1,2,---,p. We now define our stopping variable N as follows:

) N = smallest integer n = n, such that
 Dieen [(=2d = X, — X; £ 2d)] = K (n — 1)(n/3)* — n

where I(A) denotes the indicator function of the Set 4, /(4) = 1 if X e 4 and
I(4) = 0if X ¢ A, and n, is so chosen as to make the right side of (1) positive
and K, is given by
QK =1 = (a/2)
where @ is the standard normal cdf.
When sampling is stopped at N = n, choose

I, =[2,—d, 2, +d]
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as a confidence interval for §. Clearly (a) is satisfied and (b) follows from (I)
through (IV), below.
(I) Hodges and Lehmann [4, equation (9.2)] have shown that

Plh(x — @) < p} £ P2, < a} < P{h(x — a) < p)
with A(x) = Number of pairs (i, j) with | <i < j < nsuch that X; + X, > 0and
p=3%p=inn+1).
(I) [n(n 4 1)]7'h(x) is a U-statistic and can easily be shown to satisfy

Anscombe’s [1] condition (C2).
(III) Define a sequence {U,} by

2
U =_ = ”_ " ]—2d£X—XS2d .
n dn(n 1) i=1 Z]—1+1[( = T J = )]

Then {U,} forms a reverse martingale and hence as n — co and d — 0
U,— 4=, fi(x)dx a.s.
(IV) Let G(x) be the cdf of (X, — X,) i = J,
n(n — 1)[G(d) — %

Yn = ’
(20 D5 (—2d = X, — X; < 2d)] +n
g(n) = n? and t K, Ka

(G — 3] dl(G(d) — Hjd]
Then Y, > 0 a.s. and lim, .Y, =1 a.s. from (III) above. Also g(n) > 0,
lim,_. g(n) = oo, lim,_, [g(n)/g(n — 1)] = 1. Thus for each ¢t > 0, N of (1) can
be defined as
N = N(f) = smallest n > 1 suchthat Y, < g(n)/t.

Hence as in Lemma 1 of Chow-Robbins [2] it follows that N is well defined and
non-decreasing as a function of ¢,

lim,_, N = co a.s. and lim,_, E(N) = oo
and
lim, ., g(N)/t =1 a.s.

Next we give an upper bound for E(N). By introducing a reverse stopping
variable as in Simons [6], it can easily be.shown that
E(N —ny 4 1)t 2 (K[3)7(G(d) — }) -

3. Remarks. REMARK 1. The stopping rule suggested in this paper is simpler
than one suggested by Geertsema [3]. Geertsema suggested that sampling be
stopped at the first integer N = n, such that Z, - Z < 2d, where

a(n) ~ n(n 4 1)/4 + K, [n(n + 1)(2n + 1)/24]}
b(n) ~ n(n 4 1)/4 — K [n(n 4+ 1)(2n + 1)/24]%.

Thus, the computation requires the ranking of the averages 1(x; + x;), for every
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n, whereas the present procedure requires only a count of those x; — x; differences
that lie between —2d and 2d. The latter is a considerably faster computation.

REMARK 2. The existence and the boundedness of the second derivatives of
the cdf of L(x, + x,) in the neighborhood of ¢ is not required in our procedure
in contrast to Geertsma’s (1970).
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