ON SEQUENTIAL CONFIDENCE INTERVALS BASED ON WILCOXON TYPE ESTIMATES¹

By M. S. Srivastava and A. K. Sen

University of Toronto and University of Illinois at Chicago Circle

For the location parameter family of distributions $F(x-\theta)$ under some regularity conditions, a confidence interval for θ of fixed width 2d and given confidence coefficient $1-\alpha$ in the limit as d tends to zero is obtained using Hodges-Lehmann estimates based on Wilcoxon statistics. An upper bound on the average sample size is also given.

- 1. Introduction. Let X_1, X_2, \dots, X_n be a random sample of size n from a population with cumulative distribution function (hereafter, cdf) $F(x-\theta)$. Under some regularity conditions on F, we wish to find a confidence interval I_N for θ such that (a) the length of $I_N \leq 2d$ and (b) $\lim_{d\to 0} P\{\theta \in I_N\} \geq 1 \alpha$ where α and d are specified. Since no fixed-sample procedure can meet the above requirements, Geertsema [3] considered a sequential procedure in which N is a random variable and $N(d) \to \infty$ a.s. as $d \to 0$. He obtained confidence intervals based on sign and Wilcoxon tests (cf. Lehmann [5]) and showed them to be asymptotically efficient and consistent in the sense of Chow and Robbins [2]. The object of this note is to derive confidence intervals based on Hodges-Lehmann estimates using Wilcoxon statistics. We also give an upper bound for the average sample size E(N).
- 2. Procedure based on Wilcoxon statistic. Let $\{X_n\}$ be a sequence of i.i.d. random variables with common cdf $F(x-\theta)$, where F is symmetric about 0 and has density f such that $\int f^2(x) dx < \infty$. Further let $Z_{n,1} \leq Z_{n,2} \leq \cdots \leq Z_{n,p}$ be the $p \equiv \frac{1}{2}n(n+1)$ ordered averages $\frac{1}{2}(X_i+X_j)$, $i \leq j$ and $i,j=1,2,\cdots,n$. Then the Hodges-Lehmann [4] estimate of θ is \hat{Z}_n where \hat{Z}_n is the median of $Z_{n,i}$'s, $i=1,2,\cdots,p$. We now define our stopping variable N as follows:
- (1) $N = \text{smallest integer } n \ge n_0 \text{ such that}$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} [I(-2d \le X_i - X_j \le 2d)] \ge K_{\alpha}(n-1)(n/3)^{\frac{1}{2}} - n$$

where I(A) denotes the indicator function of the Set A, I(A) = 1 if $X \in A$ and I(A) = 0 if $X \notin A$, and n_0 is so chosen as to make the right side of (1) positive and K_{α} is given by

$$\Phi(K_{\alpha}) = 1 - (\alpha/2)$$

where Φ is the standard normal cdf.

When sampling is stopped at N = n, choose

$$I_n = [\hat{Z}_n - d, \hat{Z}_n + d]$$

Received September 1971; revised February 1973.

¹ Research supported partially by the National Research Council of Canada.

as a confidence interval for θ . Clearly (a) is satisfied and (b) follows from (I) through (IV), below.

(I) Hodges and Lehmann [4, equation (9.2)] have shown that

$$P\{h(x-a) < \mu\} \le P\{\hat{Z}_n < a\} \le P\{h(x-a) \le \mu\}$$

with $h(x) = \text{Number of pairs } (i, j) \text{ with } 1 \le i \le j \le n \text{ such that } X_i + X_j > 0 \text{ and}$ $\mu = \frac{1}{2}p \equiv \frac{1}{4}n(n+1).$

- (II) $[n(n+1)]^{-1}h(x)$ is a *U*-statistic and can easily be shown to satisfy Anscombe's [1] condition (C2).
 - (III) Define a sequence $\{U_n\}$ by

$$U_n = \frac{2}{dn(n-1)} \sum_{i=1}^n \sum_{j=i+1}^n [I(-2d \le X_i - X_j \le 2d)].$$

Then $\{U_n\}$ forms a reverse martingale and hence as $n \to \infty$ and $d \to 0$

$$U_n \to 4 \int_{-\infty}^{\infty} f^2(x) dx$$
 a.s.

(IV) Let G(x) be the cdf of $\frac{1}{2}(X_i - X_i)$ $i \neq j$,

$$\begin{split} Y_n &= \frac{n(n-1)[G(d)-\frac{1}{2}]}{[\sum_{i=1}^n \sum_{j=i+1}^n I(-2d \leq X_i - X_j \leq 2d)] + n} \;, \\ g(n) &= n^{\frac{1}{2}} \quad \text{ and } \quad t = \frac{K_\alpha}{[G(d)-\frac{1}{2}]} = \frac{K_\alpha}{d[(G(d)-\frac{1}{2})/d]} \;. \end{split}$$

Then $Y_n>0$ a.s. and $\lim_{n\to\infty}Y_n=1$ a.s. from (III) above. Also g(n)>0, $\lim_{n\to\infty}g(n)=\infty$, $\lim_{n\to\infty}[g(n)/g(n-1)]=1$. Thus for each t>0, N of (1) can be defined as

$$N = N(t) = \text{smallest}$$
 $n \ge 1$ such that $Y_n \le g(n)/t$.

Hence as in Lemma 1 of Chow-Robbins [2] it follows that N is well defined and non-decreasing as a function of t,

$$\lim_{t\to\infty} N = \infty$$
 a.s. and $\lim_{t\to\infty} E(N) = \infty$

and

$$\lim_{t\to\infty} g(N)/t = 1$$
 a.s.

Next we give an upper bound for E(N). By introducing a reverse stopping variable as in Simons [6], it can easily be shown that

$$E(N-n_0+1)^{-\frac{1}{2}} \ge (K_{\alpha}^2/3)^{-1}(G(d)-\frac{1}{2})$$
.

3. Remarks. Remarks 1. The stopping rule suggested in this paper is simpler than one suggested by Geertsema [3]. Geertsema suggested that sampling be stopped at the first integer $N \ge n_0$ such that $Z_{n,a(n)} - Z_{n,b(n)} \le 2d$, where

$$a(n) \sim n(n+1)/4 + K_{\alpha}[n(n+1)(2n+1)/24]^{\frac{1}{2}}$$

 $b(n) \sim n(n+1)/4 - K_{\alpha}[n(n+1)(2n+1)/24]^{\frac{1}{2}}$.

Thus, the computation requires the ranking of the averages $\frac{1}{2}(x_i + x_j)$, for every

n, whereas the present procedure requires only a count of those $x_i - x_j$ differences that lie between -2d and 2d. The latter is a considerably faster computation.

REMARK 2. The existence and the boundedness of the second derivatives of the cdf of $\frac{1}{2}(x_1 + x_2)$ in the neighborhood of θ is not required in our procedure in contrast to Geertsma's (1970).

REFERENCES

- [1] Anscombe, F. J. (1952). Large-sample theory of sequential estimation. *Proc. Cambridge Philos. Soc.* 48 600-607.
- [2] Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. *Ann. Math. Statist.* 36 457-462.
- [3] GEERTSEMA, J. C. (1970). Sequential confidence intervals based on rank tests. Ann. Math. Statist. 41 1016-1026.
- [4] Hodges, J. L. and Lehmann, E. L. (1963). Estimates of location based on rank tests. *Ann. Math. Statist.* 34 598-611.
- [5] LEHMANN, E. L. (1963) Nonparametric confidence intervals for a shift parameter. Ann. Math. Statist. 34 1507-1512.
- [6] Simons, G. (1968). On the cost of not knowing the variance when making a fixed-width confidence interval for the mean. *Ann. Math. Statist.* 39 1946–1952.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, ONTARIO, CANADA CENTER FOR URBAN STUDIES UNIV. OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS 60660