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A NOTE ON TWO-SIDED CONFIDENCE INTERYVALS
FOR LINEAR FUNCTIONS OF THE NORMAL
MEAN AND VARIANCE!

By C. E. LaND, B. R. JouNnsoN AND V. M. JosHI®

Oregon State University, University of Victoria,
and Maharashtra Government, Bombay

The confidence sets for linear functions g + 162 of the mean p and
variance ¢% of a normal distribution, defined in terms of the uniformly
most powerful unbiased level « tests of hypotheses of form Ho(4, m): p +
g = m against the two-sided alternative Hy(2, m): pt + 2% # m for —oo <
m < oo, for fixed @ and 2, are shown to be intervals if the number of degrees
of freedom for estimating ¢2 is = 2.

1. Introduction. Uniformly most accurate unbiased level 1 — a confidence
procedures for linear functions of the mean ¢ and variance ¢* of a normal distri-
bution have been defined in terms of the uniformly most powerful unbiased
(UMPU) level a tests of null hypotheses of form Hy: p + 4¢* = m against the
usual one- and two-sided alternatives ([1]). The procedures defined in terms of
tests against one-sided alternatives were shown to give confidence sets that are
one-sided intervals, provided that v, the number of degrees of freedom for esti-
mating o2, is at least two. The conjecture that the tests against two-sided alter-
natives define confidence intervals when v > 2 was proved only for the case
y = 2. This note completes the proof, for the case v > 2.

2. The problem. Let Y be normally distributed with mean n and variance
o*[y, where 7 is known, and let §?/o* be independently distributed as chi-square
with v degrees of freedom. For arbitrary 2, the acceptance region of the UMPU
level a test of Hy: pp + 40> = mvs. H,: p + Ac® &= m is the set of data points
(y, s?) such that 7,(v, —4z, @) < t < B,(v, —4z, @), where

(1) b= Ay —m)fs,  z=7L8 + 7y — mPRe+ ).

The critical values t, = t,(v, —4z, a) and t, = t,(v, —4z, a) are determined by
the two equations

) §afut] =2y dt = (1 —a) 2. fi(1] —22) dt
(3) St + A —r2)dt = (1 — @) §2. 1y + ) (] —A2) dt
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where
JUt] =22) = (v + )7 exp{(v 4 1)(—22)1(v + )7}
for —co < t < oo.
We will show that for any (y, s?) the set of values m such that #,(v, — 2z, a) <
t < ty(v, —4z, a)isaninterval, for —co < 1 < 0,0 < a < 1,andy > 2. That
is, we will show that if + < ¢, for m = m’ then t < t, for m > m’ (i = 1, 2).
This result was proved for the case v = 2 in [1].

3. The solution. For each v > 0, the monotone transformation ¢, (f) =
t/(v + £*)f maps the real line onto the interval (—1, 1). By applying this trans-
formation to the critical values #, and t,, we define p, = zq,(t,) for i =1, 2.
These transformed critical values may be shown to satisfy, by (2) and (3), the
two equations
(4) 22 9u(w) du = (1 — &) §2, g4(u) du,

(5) §52 40u(0) du = (1 — ) §2, ugy(u)
where for k = v — 1, —z < u < z,and § = —2A(v + 1) we have

9i(u) = (2" — u)* exp(fu) .

Since y — m = (yv)~ist = [(v + 1)/r]zt/(v + )} = [(v + 1)/7]zq,(¢) the desired
result can be obtained by proving that [(v + 1)/r]p; — (¥ — m) is a monotone
increasing function of m. Since p, is differentiable, it is enough to show that the
partial derivative op,/om is greater than —y/(v + 1), for i = 1, 2. The partial
derivative 9z/dm is obtained from (1) as

(6) 9zfom = —[r/(» + DIy — m)/[’lr + (y — m)’]*,
which is less than y/(v + 1) in absolute value. Therefore it is enough to show
that p’, which we define by p/ = 9p,/0z, satisfies the inequality |p,/| < 1, for
i=1,2.
For 8 = 0, (4) and (5) are satisfied for p, = —p,, where
§72, g (u) du = (1 — $a) §2, 9,(u) du .

Therefore the problem reduces to the one-sided case proved in [1]. For g = 0,
integration by parts of (5), taking the anti-derivative of exp(Su), yields

Lougwy [P — L §mpg,0) — 2kurg, (w)] du
IB P1 ‘3

- (- a)% 2., [04(0) — 2kicg, ()] du .

After cancellation and rearrangement of terms, plus reduction by (4), we obtain
(7) P29:(ps) — Pr9(p) = —2k22{S£f Gpa(u) du — (1 — a) Sz—z Gy—1(u) du} .
If we differentiate both sides of (6) with respect to z we obtain

P'9u(p2) — Pl’gk(Pl) = —ZkZ{ng Ge—a(u) du — (1 — @) §2, g, _y(u) du} ,
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which implies, by (7)
(8) (P — Pa/2)9u(p2) = (P — PA[2)9i(P1) -
Differentiation of (5) gives
©) PiP29u(Ps) — PP 9(py)
= —2kz[§32ug,_(u) du — (1 — a)§%, ug,_,(u) du] .

Integration by parts of the right-hand side of (9), this time taking the anti-
derivative of u(z* — w*)*~?, reduces it to z{g,(p,) — 9u(p1) — P[V52 9,() du —
(1 — a) §%, 9,(u) du]}, which by (4) reduces the equation to

(10) (P'Pofz — D9i(pa) = (P/pr/z — 1)0u(pr) -

Equations (8) and (10) can be solved for p,” and p,’ in terms of p,, p, and z:
(11) P = o + (2 = P9I 9:(p) — Z)[2(pr — P>
(12) Pl = [ppe 4 (22 = p2)9u(p)[96(P2) — 2)/[2(pr — P2)] -
In particular, it follows from (11) and (12) that |p/| < 1,7 = 1, 2, if and only if
(13) (2 + Iz + p) = 9(P)[9:(p2) = (2 — p)I(Z — po) -

This is expression (7.13) in [1].
The symmetry relation ¢,(v, —2z, @) = —1t,(v, Az, @) ((2.12 in [1]) yields a
similar relation for p, and p, expressed as functions of § = —A(v + 1),

(14) P(=B) = —pdB)
where v, «, and z are assumed to be fixed. If we write g,(x, 8) to emphasize that
g, is a function of j as well as u, we see that g,(—u, —f) = g,(¢, 8). Therefore
9:(p(—B), —B) = 9:.(p«(B), B), by (14), and it also follows that the first inequality
in (13) holds if and only if the second one holds.

If we multiply both sides of (4) by z and add (5) we obtain

(15) 2 (z + w)g,(u)du = (1 — a) §2, (z + u)g,(w) du .
Now we can integrate both sides of (15) by parts as in the derivation of (7),
and after reduction we have

(16) (2 + p)gu(pe) — (2 + P)9u(P)

= —2kz{{32 (z 4+ w)g,_(u) du — (1 — ) §2, (z + u)g,_,(u) du} .
Clearly the first inequality in (13), and hence our result, holds if the expression
in brackets on the right-hand side of (16) is non-positive.

For a = 0, (6) and (7) give p, = —z, p, = z, and for « = 1 we have p, = p,.
Therefore the result is true for « = 0 or 1, since in each case the right-hand side
of (16) is zero. For 0 < a < 1, we can divide this expression by 1 — «, and
rewrite the integrand, so that the problem is to show the inequality

(17) V2 (2 — u)'gy(u) du = i'-i."& §72 (2 — u)~tg,(u) di .
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We complete the proof with the aid of the following lemma, whose proof is
easy.

LeEMMA. If u is a finite measure on the real line R, and I is an interval such that

(18) § x du(x) = %’Qj §p X dp(x)
then
(19) §, x* dp(x) < 5731; § X du(x) .

(The sign of strict inequality holds in (19) if x(7) < p(R).) That is, if the
distribution we obtain after conditioning on an interval has the same mean
as the unconditional distribution, the variance, and hence the second moment,
of the conditional distribution is not increased over that of the unconditional
distribution.

We make the transformation of variables x = 1/(z — u) in (4), (5) and (17),
so that x varies from 1/(2z) to co. Now we put

f(x) = (z — u)g,(u) dujdx ,

where x = 1/(z — u), the density vanishing for x < 1/(2z). Setting x, = 1/(z — p,)
and x, = 1/(z — p,), letting I = (x,, x,), and defining x(A4) = §, f(x) dx for Borel-
measurable sets A, it follows from (4) and (5) that (18) is satisfied for ¢ and /.
But (19) is the same as (17), since x*f(x) = (z — u)~'g,(u) du/dx for x = 1/(z — u).

A note on the case v = 1 is in order. It can be shown that, as in the one-
sided case treated in [1], there exist values of y, 5%, 4, y, m, and a such that
dp,/om < —7/(v + 1) for at least one of i = 1, 2. Therefore it does not follow,
by the line of reasoning used in the present paper, that confidence intervals are
always obtained when v = 1.
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