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HIDING AND COVERING IN A COMPACT METRIC SPACE!

BY ROBERT J. McELIECE AND EDWARD C. POSNER

Jet Propulsion Laboratory, California
Institute of Technology

This paper studies the relationship between games of search on a com-

pact metric space X and the absolute epsilon entropy I(X) of X. The main

- result is that I(X) = — log v, *, v * being the lower value of a game on X
we call “‘restricted hide and seek.”

1. Introduction. Let X be a set, S a collection of subsets of X with |J S = X.
The two-person zero-sum game ‘“hide and seek” G(X, S) is played as follows.
Player 1 (the “hider”) chooses a point x € X, and pfayer 2 (the “seeker”) chooses
s € S. If x e s player 1 pays player 2 one unit; otherwise no payoff occurs. Let
us denote the value of this game, if it exists, by v. (We assume that X has
enough structure so that mixed strategies can be defined.)

Now for each integer N let ¢, be the smallest integer such that the Cartesian
power X¥ can be covered with ¢, sets from S$¥, and let ¢ = lim,_,, c,*¥. The
main theorem of a previous paper of ours [2] was that if X is finite, v = ¢7*. Tt
is the object of this paper to study the relationship between v and ¢ when Xis a
compact metric space, and § is the set of closed spheres of radius ¢.

Our first main result (Theorem 1) is that in this situation, the game G still
has a value. For finite X von Neumann’s fundamental theorem of finite two-
person zero-sum games immediately implies that v exists, and so in [2] this pro-
blem did not arise.

Our second main result is that ¢ = v~ is not true in general, but rather that
¢ = v*7!, where v* is the best expected gain the seeker can guarantee himself
when he must restrict his sets to a finite subset of S he has chosen in advance.
It is always true that v* < v, and for a fixed X, v* = v except for at most
countably many values of . In Section 4, however, we give an example of a
compact metric space for which v* < v. In Section 5 we prove that ¢ = v*~.

These problems arise in information theory. The logarithm of the limit c is the
least average number of bits per sample necessary to describe X modulo S; i.e.,
to identify an s containing x, when block coding is used, and when there is no
a priori probability distribution on X. We shall show at the end of Section 5
that —log v represents the maximum, over all Borel a priori probability distri-
butions on X, average number of bits per sample necessary to describe X to
within an ambiguity of e, when variable-length coding is used. Thus when
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v = ¢! (the usual state of affairs in spite of our counter example) there exist
probability distributions on X which render variable-length coding useless.

2. General hide and seek. If the hider chooses his point x according to a prob-
ability distribution 4 on (a Borel field containing the points of) X, we say he
uses strategy 4. Similarly a strategy u for the seeker is a probability distribution
on (a Borel field containing the points of) S. Let E = {(x, 5): x € s}, a subset
of the product space X x S. The expected value of the payoff, given that the
hider plays strategy 2 and the seeker plays #, is (4 x p)(E) = v(4, #), 2 x p being
the product measure induced by 2 and x on X x S.

If the hider uses a fixed strategy 2, then from his point of view the worst
possible expected payoff is sup, v(4, ). Hence he will choose a 2 which makes
sup, v(4, ) as small as possible. Thus we define the upper value of G(X, S) as

(2.1 vy(X, §) = inf, sup, v(4, z) .

Similarly the seeker will choose a ¢ which makes inf, v(4, p) as large as possible,
and we define the lower value of G(X, S) as

2.2) v.(X, S) = sup, inf; v(4, ) .

It is an easy exercise to show that v, < v,. If it happens that v, = v, we denote
this common value by v(X, S), and say that the game G(X, S) has a value. If
the game has a value, then for every » > 0, there exist strategies 4 and x such
that if the hider plays 4, his expected loss is < v(X, S) + » no matter how the
seeker plays, and if the seeker plays x his expected gain is = v(X, S) — 5 no
matter how the hider plays. If it happens that there exist strategies 2 for the
hider which guarantee an expected loss no greater than v(X, S), these strategies
are called optimal strategies. Optimal strategies for the seeker are defined
similarly.

There is another form of the definitions of v, and v, which will be useful in
what follows. By the definition of product measure we can write v(4, p) as
either of the integrals

(2.3) V(A 1) = §x p(tar (x)) d2

= {5 4(s) dpe ,
where star (x) = {s € S|x € s}. Now if we define the pure strategy 2, for the
hider as that strategy which always chooses x; i.e., 1,(x) = 1, 2,(x') = 0if x’ # x,
we see that p(star (x)) = v(4,, #). Similarly if g, is a pure strategy for the seeker,
A(s) = v(4, ¢,). Thus from (2.3) we obtain the estimate v(4, ) < sup,.s A(s) =
sup,.s v(4, p,). Hence for a fixed 4, sup, v(4, p) = sup, s v(4, #,) and so
2.1 vy(X, S) = inf; sup,.s A(s) .
Similarly

(2.2) v.(X, §) = sup, inf, ., p(star (x)) .
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Let us remark finally that if the set X is finite, it is a consequence of von
Neumann’s fundamental theorem of finite two-person, zero-sum games that
G(X, S) has a value ([4], Chapter 3).

3. Hide and seek in a compact metric space. For the remainder of the paper
X will be a compact metric space and § will be the set of closed spheres of
radius e. (However, most of the results to be proved also hold when S is the
set of closed sets of diameter < e.) The sphere of radius ¢ around x will be
denoted by s(x) = {y € X:d(y, x) < ¢}. This game is denoted by G(X, ¢). In
this case strategies for the hider and the seeker will both be Borel probability
distributions on X, since the seeker need only specify the center of the sphere he
wishes to select. In the product space X x X, the set E = {(x, y): d(x, y) < ¢},
and for strategies 2 and p, v(4, ) = (2 x ) (E). Before proceeding we need a
result on weak convergence.

Let B(X) be the space of all Borel probability distributions on X, C(X) the
space of real-valued continuous functions on X. The topology of weak con-
vergence on B(X) is defined as follows ([5], Chapter II): g, — g in B(X) if for
every fe C(X)§fd, — §fd, B(X)is compact in this topology ([5], page 45)
and if F is any closed subset of X and p, — g, then

3.1 w(F) z limsup, ., p,(F)
([5], page 40).
We now consider probability distributions on the product space X x X.

Lemma 1. If p, — prand A, — 2 then p, x 2, — p x A.

Proor. This follows immediately from the Stone-Weierstrass Theorem, which
guarantees that the functions of the form

Ziafi¥)9:x), [, 9 € C(X)
are dense in C(X x X) under the sup norm.
LemMA 2. If 4, — A and p, — p, then v(4, y) = lim sup,_,., v(4,, t,)-

Proor. From Lemma 1, 1, x g, — 4 x p. Since v(2, p) = (2 x p)(E) the
result follows from property (3.1).

We can now prove the main theorem of this section.

THEOREM 1. G(X, ¢) has a value v(¢) which is continuous from above in ¢, and
the seeker has an optimal strategy. For every 0 > O the hider has a sirategy with
finite support which guarantees that he loses no more than v(¢) + 8. The set of
optimal strategies for the seeker is closed in the topology of weak convergence.

Proor. Let {x;;j = 1} be a countable dense subset of X, and for each n > 1
let G, (X, ¢) be the game G(X, ¢) with the hider restricted to x,, x,, -- -, x,. Let
B,(X) represent the strategies allowed to the hider in G,(X, ¢). Define

(32) v,(¢) = SUP,eB(x) infzeB,,(X) ?)(2, ¢ -
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According to our discussion in Section 2, v,(¢) is the largest expected payoff the
seeker can guarantee himself if the hider is restricted to x,, x,, - -+, x,. Thus
the v,(¢) decrease with n and so approach a limit which we call v(¢). In Section
2 we saw that the inner “inf” in (3.2) could be replaced by an “inf” over the
pure strategies; and in this case there are only finitely many pure strategies
Ay, Ay, - -+, 4, so that “inf” can be replaced by “min”. Next, for fixed n choose
a sequence of seeker’s strategies {z,,} such that min, . 5 ., (4, f£,,) = Va(e) — 1/m.
Since B(X) is compact in the weak topology there will exist a convergent sub-
sequence Um, — ¢ say. Then from v(4, p,,,) = v,(¢) — 1/m, for all 2 it follows
that v(4, p) = limsup,_... v(4, pt,,,) = v,(¢) from Lemma 2. Hence min, v(1, ¢) =
v,(¢) and so we may rewrite (3.2) as

(3.3) V,(e) = MaX, py) MiN, e 5 (x) V(4 pt) -

Let z, achieve the maximum in (3.3). Then v(4;, #,) = v,(¢) for all j < n,
where 1, is the pure strategy which always chooses x;. Let ¢ € B(X) be a limit
point of the sequence, such that the sequence y, — . For a fixed j, if k is suf-
ficiently large, v(4;, pt,,) = V,,(¢). Hence another application of Lemma 2 im-
plies v(2;, ¢£) = v(e) for all j, and so v(4, p) = v(e) for any 2 whose support is
contained in {x,;}. But such measures are dense in B(X) ([5], page 44). Thus
another application of Lemma 2 yields v(2, ) = v(¢) for all 2e B(X). Thus
v (X, €) = v(e) by (2.2).

To see that v,(X, ¢) < v(e), observe that G,(X, ¢) is essentially a finite game.
For the set of spheres of radius ¢, s,(x;), i = 1,2, - - -, n, induces a partition of
X into a finite number m < 2" of Borel sets E,, -- -, E,,. If y, e E, are fixed re-
presentatives of the E;, then any e B(x) has the same expected payoff v(4;, #)
as the finitely based strategy / defined by /i(y;) = p(E;), 4 = 0 otherwise. Hence,
according to von Neumann’s theorem, G, (X, ¢) has a value which must of course
be v,(¢) by (3.2). By playing an optimal strategy 2, in G,, the hider can keep
the expected payoff down to v,(¢). Since v,(¢) | v(¢), for every 6 > 0, by choos-
ing n large enough, the hider can keep the expected payoff down to v(¢) + 4.
Hence v, < v(¢) by (2.1) and so v(¢) is the value of G(X, ¢).

To prove that the set of optimal strategies for the seeker is closed, suppose
u, is optimal; i.e., v(4, p,) = v(e) for all 2 € B(X), and p, — p. By Lemma 2,
v(, ¢) = limsup,_, v(4, p,) = v(e) for all 2 and so p is optimal also.

Finally, we must show that v(¢) is continuous from above in e. It will be
enough to prove that if 2e B(X) and é > 0 is given, there is an 5 > 0 such that
max, A(s..,(x)) < max, A(s.(y)) + 6. For then by taking inf, on both sides we
obtain v(e + 7) < v(e) + 0.

Assume by way of contradiction that there exists > 0 such that for every
7 > 0 there exists x, € X with (s, (x,)) > max, i(s.(y)) + 6. Choose x, — x and
7, — 0 such that A(s,,, (x,)) > max, A(s(y)) + 9. Now for every » > 0 for suf-
ficiently large n, s5.,,(X) 2 5.4,,(%,), and s0 A(s.;,(x)) = A(S.1,,(x,)). Thus for
every n > 0, A(s,,,(x)) = max, A(s(y)) + 6. But A(s(x)) = lim,_, 4(s.,,(x)) by
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countable additivity of 4, which is a contradiction. This completes the proof
of Theorem 1.

Note. We have recently learned that much of Theorem 1 (the existence of
v(e), the seeker’s optimal strategy, and the “d-optimal” hider’s strategy) follows
from known theorems of game theory. In particular Theorem 2.9.2 and the
remarks following it on page 86 of [1] can be combined with our equation (3.1)
to give a shorter proof.

We conclude this section with two examples which show the necessity of
certain hypotheses in Theorem 1.

ExampLE 1. The hider need not have an optimal strategy. X will be a counta-
ble subset of the unit circle, under the geodesic metric. Let X, = exp (mi/2"*).
X will consist of the points + x,, + ix, for all n = 0. Then X is closed and so
compact. Let ¢ = x/2; for each x € X we adopt the abbreviation s(x) = s,,(x).
Then if the seeker plays + 1 each with probability § his expected gain against
any pure hider’s strategy will be = 4 and so v, = 4. On the other hand, if the
hider uses the strategy 2, defined by ,(x) = I/(2N) for x = + x;, + x,, - - -,
+ xy; Ay(x) = O otherwise, then 4,(s) = 3 4+ 1/(2N) if x = + ix, for some
n < N; 2,(s(x)) = % otherwise, and so the hider’s expected loss is < 1 + 1/(2N)
for any pure seeker's strategy. Thus v, < 1 + 1/(2N) for any N, and so
G(X, 7/2) has value }. If, however, the hider had an optimal strategy 2,
A(s(x)) <  for all xe X, then it would follow from A(s(x)) + A(s(—x)) = 1 +
A(ix) 4+ A(—ix) that A(ix) = A(—ix) = 0 for all x € X, a contradiction.

ExaMpLE 2. The set of optimal strategies for the hider, if nonempty, need
not be closed. Let X be the closed interval [0, 4] under the usual metric, and
¢ = 1. Then v(X,¢) = 3, and if 2, is the strategy 2,(0) = 4,(2 + 1/n) = §, 2,
is optimal for all » > 1. However 2, -— 2 where 2(0) = 2(2) = %, but 2 itself is
not optimal since if the seeker always picks the sphere centered at 1 his gain
against 1 is always 1.

ExaMmpLE 3. The seeker need not have finitely based nearly optimal strategies
such as the hider has; i.e., it is possible that there exists > 0 such that if x is
any finitely based strategy (a probability distribution on X which is zero outside
a finite subset of X), then p(s(x)) < v(¢) — 0 for some x € X. This example is
best understood in the context of a game we call “restricted hide and seek,” in-
troduced in the next section, so we postpone it until then.

4. Restricted hide and seek. In restricted hide and seek, the seeker is restricted
to finitely based strategies. Of course there is no way the hider can tell if the
seeker is cheating and using a strategy with infinite support, so a referee will be
needed who knows the support of the seeker’s strategy. We denote this game
by G*(X, ¢) and define v, *(X, ¢) and v,*(X, ¢) as in Section 2. We frequently
adopt abbreviated notations such as v, *(X), v,*(¢) or simply v,* when no con-
fusion can arise. Let v(e—) = lim,._,_ v(¢’).
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LEMMA 3. v(e—) < v,.*(e) < v,%(e) = v(e).

Proor. That v, * < v,* follows from the discussion in Section 2. Also, by
(2.1") we know that v,* = inf, sup,.s v(4, ,) since the pure strategy s, is certain-
ly finitely based. But this is also v, = v.

It remains to show that v(e—) < v, *(¢). Fixn, 0 <np < eand let E,i=1,
2, ..., K be a disjoint family of measurable subsets of X whose union is X
and E; C s,(x;) for suitable x; € E;. Let p be an optimal seeker’s strategy for
G(X, ¢ — 1), and let /2 be the finitely based strategy a(x,) = p(E,),i=1,2, .-,
K, fi(x) = 0 otherwise. Also, for any xe X let {E;*} be a minimal cover of
s._,(x) by the sets E,. Then s._,(x)<S U E;”C s(x) and so p(s._(x)) <
#(U E”) = (U E;®) < p(s.(x)). Taking the inf of this last equation over x € X
we obtain v(e — ) < inf, g(s(x)) < v, *(¢). Since this is true for all » > 0,
v(e—) < v *(e) is asserted.

LeMMA 4. v, *(¢) = v(e) with at most countably many exceptions.

PROOF. w(¢) is monotone non-decreasing in ¢ and so is continuous with at
most countably many exceptions. Since v(e—) = v(¢) if v is continuous at ¢,
Lemma 4 follows from Lemma 3.

If X has only two points x, y and d(x, y) = 1, then v(X, 1—) = L but (X, 1) =
v, *(X, 1) = 1. It is much more difficult to give an example which shows that
v, * may be strictly less than v,. We now give such an example.

ExampLE 3. There exists a compact metric space X such that (X, 1—-) <
v}, 1) < v(X, 1).

Let C be a circle of circumference 4, d the geodesic metric on C, and let H,
be the space of closed subsets of C under the Hausdorff metric d’:

d'(E, F) = max (max,. ; min, . d(e, f), max,., min,  d(e, f)) .

H, is a compact metric space under d’ [3]. The set Z of all closed subsets of C
of Lebesgue measure 2 is a closed, hence compact, subspace of H, and is
therefore separable. Let {B,, i = 1} be a countable dense subset of Z. No finite
subset {b,} of C has the property that every B, contains a b,, for {b,} can be
covered by an open set of arbitrarily small Lebesgue measure and so there exists
a set Be Z and d, > 0 such that d(B, b,) = d, for all k. Thus a B, such that
d'(B, B,) < d, cannot contain a b,.

The space X of this example will have C as a subspace, the metric restricted
to C being the geodesic metric. It also contains points a; @, i > 1 where

d(a,c) =1 for ceC
d(a,a;) = 27¢
d(a;, a;) = |27F — 279].
d(a;, ¢) = 1 + min (d(B,, c), 277" forall ceC.

In addition X contains three points ¢/, ¢,/, ¢,/ which are to be thought of as
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outside the circle C and equally spaced in angle. The point on C closest to c;’
is labeled ¢;. The metric is extended as follows:
d(c¢/,a) =d(c/,a;) =% for all i, j,
d(c/s¢) =%,
d(ci, ) = § + d(c;; ¢) if d(c; ¢) <}
=1 if 1<de,c)<1
= d(c;, ¢) if dc;,c)=1 for ceC,
die/yey =2, i#j.

We assert that (X, d) as defined above is indeed a compact metric space, but
omit the tedious verification that d satisfies the triangle inequality. Compactness
is best verified by checking sequential compactness, which is equivalent to com-
pactness for a metric space. The space X is sketched in Figure 1, topologically
embedded in three-space.

Qa|

C3 o,
C3

FiG. 1. The space X of counterexample 3.

We now produce Example 3 by showing that
v(X;1—)=1%, v*X, 1) =2, (X, 1) = 4.

The last inequality is easily obtained: if the seeker plays 1 Lebesgue measure
on C his expected gain is at least § against any pure hider’s strategy. (Notice
also that if the hider plays ¢/, ¢/, ¢,/ with probability 1 each and C with 1
Lebesgue measure with probability 4 he will keep his expected loss < 4. Thus,
3 < v < 4. The exact value of the game apparently depends in detail upon the
choice of the sets B,.)

To compute v(1—), observe that the hider can hold his losses to at most § by
playing a and two antipodal points on C with probability 1 each. But the seeker
can guarantee himself an expected gain of 4 by playing a with probability 4 and
1 Lebesgue measure on C with probability §.
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Finally we compute v, *. The key property of the metric d is that for any
finite subset {5,} of C there exists a j such that d(a;, b,) > 1 for all k. Hence
for any strategy p of the seeker

min, . #(s(x)) < ({a} U Uz fa) =« say.
Since s,(a) 2 s,(a;) for j > 1 there is no point in the seeker choosing a strategy
with p(a;) > 0 for any j. Thus we assume p(a) = a, p(a;) = O for j > 1. Fur-
thermore, we assume p(c,) = 0 since s,(c;') < s,(c;) i = 1,2, 3. Now

p(si(e) = 21 — a)
since each point of C is contained in at most two of the sets s,(c;). Thus for
some i, pu(s(c;)) =< % (I — a) and so

min, ., p(s,(x)) < min (§(1 — a), a) ;
max, min, ., #(s,(x)) < max,g,g, min (3(1 — a), a) = 2.

But with u(a) = 2, (¢;) = £, i = 1, 2, 3 where the ¢; are points on C halfway
between the c;, the seeker will win at least 2 and so v,* = 2 is asserted.

5. Absolute epsilon entropy. Let us use the term “c-set” to describe a subset
of a compact metric space which is contained in some sphere of radius ¢. The
epsilon entropy H(X) is then defined to be log, N, where X can be covered with
N e-sets, but no fewer. H,(X) can be interpreted information theoretically as
the minimum average number of bits per sample needed to describe X to within
an error of at most e.

If (X;,d)i=1,2,...,nare compact metric spaces we shall make the Car-
tesian product X, x X, x -.- x X, into a compact metric space by defining
d((xy, - -+, x,), (%), -+, x,')) = max, d(x,, x;/). With this definition products of
e-sets are e-sets and projections of e-sets onto the coordinate spaces X are e-sets;
hence it is a suitable definition for dealing with uniform approximation. If
X; = X for all i we shall write X" instead of X, x --- x X,.

The absolute epsilon entropy I,(X) is defined by

I(X) = lim, .. L H(x".
n

That the limit exists is a consequence of the simple property H,(X™*™) <
H(X") + H(X™). I(X) can be interpreted as the minimum average number of
bits per sample needed to describe X to within ¢ when an unlimited number of
samples can be stored prior to transmission.

Theorem 2, the main result of this paper, identifies 7,(X) in terms of the game
“restricted hide and seek”.

THEOREM 2. [(X) = —log v, *(X; e).
Before giving the proof of Theorem 2 we need two lemmas.

LEMMA 5. H/(X) = —log v *(X;¢).



HIDING AND COVERING IN A COMPACT METRIC SPACE 737

Proor. Let U be a covering of X with N e-sets, which we assume are in fact
spheres of radius ¢, H,(X) = log N. Let V be the refinement of U to a partition
of X, V={v;:1 <i< M}, where M < 2%, and choose a point x; in each v,.
Then the probability distributions on ¥ and those on X with support {x;} are in
obvious 1-1 correspondence.

If P is any probability distribution on ¥, then for some u € U, P(u) = 1/N
since 37 P(u) = 1, U being a cover of X. Hence min, max,., P(¥) = 1/N; i.e.,

N = 1/v(V; U),
where v(V; U) is the value of the game G(V; U). But

v(V; U) = max,, 5, min, ., P(star (v))

= max,, 5y, Min, ., P(star (x)),

where star (x) = {uc U: xeu}. If we define 1, € B(X) by pp(y;) = P(s.(yy)) if
y; is a center for one of the elements of U, p,(y) = 0 otherwise, then y, is
finitely based and P(star (x)) = spp(s.(x)). Therefore

(V5 U) = max,, g Min, x 21p(5(X)) -

But since v, * is the sup of min,., p(s(x)) over all finitely based e B(X), it
thus follows that
v *(X;e) = v(U;, V) = 1IN

from which Lemma 5 follows.
LEMMA 6. v,*(X x Y, ¢) = v.*¥(X, ¢) v.*(Y, ¢).

Proor. Let yx, and p, be finitely based strategies for the seeker in X and Y
such that inf,, , ¢,(s.(x)) = v, *(X) — pandinf, ., p,(s.(y)) = v,*(Y) — . Then
since s5,(x) x 5.(y) = s.(x, y) in X x Y, it follows that inf , ,, xxy £, X f£,(5.(X, y)) =
v ¥(X)v, *(Y) — 27 + 7 Since g, x p, is finitely based and 7 is arbitrary, this
shows v, *(X x Y) = v, *(X)v, *(Y).

Now let ¢ be any finitely based strategy on X x Y. Then the support of # is
contained in a finite set of the form {x,, - - -, x,,} X {y1, -+, yn}. Define marginal
strategies p, and p, by g (S) = p(S x Y) if SC X and p(T) = p(X x T) if
T C Y. Since p, is finitely based there exists a point x, € X such that p,(s.(x,)) <
v, *(X); similarly there is a y, € Y such that p,(s(y,)) < v,*(Y). Then

£(S(X05 o)) = 1 (5(x0))tr(s(¥0)) = v XX *(Y),
and so v, *(X x Y) v, (X)v,(Y). This completes the proof of Lemma 6.

We now complete the proof of Theorem 2.

By Lemma 5, H/(X")>= —logv,*(X",¢). By Lemma 6 v, *(X", ¢)=
(v.*(X, ¢))" and so H(X") = —Nlogv,*(X,¢). Hence from the definition of
I(X) we obtain

I(X) =z —logv, *(X,¢) .
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To prove the opposite inequality let » > 0 be arbitrary and let x be a probability

distribution on X with a finite base {x,, x,, - - -, x,}, such that

(5.1) min, . #(s,(X)) Z 0% — 7 -

Let s; = s(x;) and let U = {s,, s,, - - -, 5,}. Let V' = {v,, v,, ---, v,} be the par-
tition of X induced by U. The value of the finite game G(V, U) is given by
(5.2) v(V, U) = max, gy, min, ., P(star (v)) .

If ¢, denotes the smallest integer such that V¥ can be covered with ¢, subsets
from U, the main result of [2] implies that

(5.3) lim,_., % logc, = —log w(V, U).

Now since coverings of V¥ with elements of U" induce in an obvious way
coverings of X* with spheres of radius e, (5.3) implies that

(5.4) I(X) < —logw(V, U).

Next define Q € B(U) by Q(s;) = p(x;). Then clearly Q(star (v,)) = p(s(x)) if
x ev,;, and so from (5.1) and (5.2) we see that

w(V, U) Z min, ., Q(star (v)) = min, ., (s,(x)) = 0,* — 7 -

Thus from (5.4) we obtain /,(X) < —log (v, *(X, ¢) — 7). Buty was arbitrary

and so
I(X) < —logv, *(X,¢),
and this completes the proof of Theorem 2.

We conclude the paper with two corollaries to Theorem 2. Let p be a Borel
probability measure on X, and let H, (X) be the infimum, over all partitions
X=U;A;, A4, n A; = @ if i #j, each A, being a Borel e-set of X, of the
Shannon entropy — 33, p(4,) log p(A4;). H.., is called the ¢; p entropy of X [6].
Also define the absolute ¢; p entropy of X by

Is;p(X) = lim,_,, -1; He;pn(X") ,
p" being the product measure induced on X" by p. I (X) then represents the
minimum average number of bits per sample necessary to describe X with an
error not exceeding ¢, with p as the a i)riori probability distribution on X, when
arbitrarily long variable-length codes are used. Combining Theorem 2 with
Theorem 2 of [2], which had —log v(X, ¢) = sup, /,, (X), we conclude:

CoroLLARY 1. I(X) = sup, I, (X) whenever v, *(X, ¢) = v(X, ¢); in particular
equality holds for all but at most countably many e.

Hence most of the time “nature” can choose p on X which is so “bad” that
prior knowledge of p could not be used to increase the transmission rate.

Our final result is a simple consequence of Theorem 2 and Lemma 6, and tells
us that one cannot save anything by encoding two sources simultaneously:
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COROLLARY 2. [(X x Y) = I(X) + I(Y).
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