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OPEN-ENDED TESTS FOR KOOPMAN-DARMOIS FAMILIES

By GArRY LORDEN
California Institute of Technology

The generalized likelihood ratio is used to define a stopping rule for
rejecting the null hypothesis § = 6, in favor of § > 6. Subject to a bound
« on the probability of ever stopping in case § = 6o, the expected sample
sizes for § > @y are minimized within a multiple of log log a~1, the multiple
depending on 4. An heuristic bound on the error probability of a likeli-
hood ratio procedure is derived and verified in the case of a normal mean
by consideration of a Wiener process. Useful lower bounds on the small-
sample efficiency in the normal case are thereby obtained.

1. Introduction. In his book on sequential analysis (1947), Wald discussed two
ways of modifying the sequential probability ratio test (SPRT) to test a simple
null hypothesis against a composite alternative. One way is to replace the likeli-
hood ratio used in the SPRT by a weighted likelihood ratio, using a suitably
chosen weight function on the alternative hypothesis. The other is to employ
the generalized likelihood ratio of classical fixed-sample theory, dividing the maxi-
mum likelihood in the alternative by the likelihood for the simple hypothesis.
Wald pointed out that the weighted-likelihood-ratio approach has the advantage
that an upper bound on the Type I error probability can be obtained in exactly
the same way as for the SPRT. Recently Robbins (1970) has exploited this fact
by developing elegant methods for obtaining or at least approximating stopping
boundaries for “open-ended tests,” which, like the one-sided SPRT, continue
sampling indefinitely (with prescribed probability) when the null hypothesis is
true and stop only if the alternative is to be accepted. His methods are most
effective in the case of testing a normal mean, although less sharp estimates are
obtained for other cases.

The present paper is an investigation of the generalized likelihood ratio ap-
proach to the problem of open-ended tests for Koopman-Darmois families. In
this context, the approach leads to easily computed procedures, as was shown
in Schwarz (1962). Since the tests are equivalent to simultaneous one-sided
SPRT’s, it is easy to obtain an upper bound on expected sample sizes. The heart
of the investigation concerns the problem of bounding error probabilities, the
simple Wald approach not being applicable. For simultaneous one-sided SPRT’s
with critical value « < 1, the estimates in Wong (1968) show that these error
probabilities are o(a log a=) as @ — 0, but explicit bounds are not obtained.
The bound used in the proof of Theorem 1 is explicit, but of order a log a'.
Nevertheless, it suffices in the proof that the expected sample sizes are minimized
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within a multiple of log log a~*, and the latter order of magnitude would not be
improved even if the error probabilities were of order a(log a=*): for a small
¢ > 0. An heuristic approximation to the error probabilities is given in Section 3,
indicating that they are of order at most a(loga™)!. This approximation is
shown to be an upper bound in the case of a normal mean (with known variance)
and numerical examples of efficiency in this case are given in Section 4.

Following Remark 2 below there is a brief discussion of the problem of testing
6 < 0vs. 6 >0 (say) with error probabilities bounded by a, §, respectively.
Theorem 1 applies to give bounds on the expected sample sizes of the natural
procedure based on two open-ended tests performed simultaneously. These
bounds give asymptotic efficiency results as a, § — 0 for fixed # = 0 (or 6 — 0
slowly). But the procedures and bounds are not of interest for the problem of
the optimum behavior of E, N as § — 0 for fixed a, 8. This much more delicate
problem involves iterated logarithm phenomena and was solved in Farrell (1964)
using generalized SPRT’s. Similar tests were studied in Fabian (1956).

2. Asymptotic efficiency results. Independent and identically distributed ran-
dom variables X, X,, - - - are observed sequentially with density

fo(x) = exp(Ox — b(0)) for some 0 ¢ (9, 6)

with respect to a non-degenerate o-finite measure, z. Stopping times N (possibly
randomized) will be required to satisfy

(1) P(N < ) £ a

for prescribed a € (0, 4). (Reparameterize if necessary to shift the boundary
point between null and alternative hypotheses to § = 0.) Also assume without
loss of generality that #(0) = 0. Let S, =X, + --- + X,, n=1,2, ... and
note that

log fa(Xl) c 'fa(Xn) — gsn _ nb(ﬂ) ,
fO(Xl) e fo(Xn)

so that one-sided SPRT’s of f; against f,, 6 > 0, stop as soon as

log y~* b(0)
(2) S, > ) + n g
for prescribed y € (0, 1). The function b(+) is necessarily convex and infinitely
differentiable on (4, 9), which need not be the entire natural parameter space of
the Koopman-Darmois family. The first derivative, 4'(f), equals E,X and the
second, b”(6), equals Var, X. An easy calculation shows that the information
number, E, log (f,(X)/fo(X)), equals

A3) 0b'(0) — b(6) = 1(9) ,

while the variance of log (f,(X)/fo(X)) under ¢ equals 6°5"(9).
Define a likelihood ratio open-ended test of 6 = 0 vs. §>0=60,>0asa
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stopping time, N(f,, 7): the smallest n = 1 (or co if there is no n) such that

. log v~ b0
@ S, > infy gp5| BT 4 n X0V

For the alternative ¢ < 6, < 0, define N(@,, y) similarly.

Although the infimum in (4) is readily computed in some cases, e.g. that of a
normal mean, it is simpler in many cases such as the normal scale parameter
and negative exponential distribution to formulate the critical inequality in terms
of X, = S,/n and n, as in Schwarz (1962). First note that (4) is equivalent to

) SUPy,<9<7 [0S, — nb(6)] > log .

In case #'(4,) < X, < b'(f), the supremum is attained at g(X,), where ¢ is the
inverse of the increasing function 4’. In this case (5) is equivalent to

X,q(X,) — blg(X) > BT

In case X, < b'(6,), the supremum is attained at 6,; and if X, > '(f), the
supremum is approached as 6 — 6 (and attained at § if the latter belongs to the
natural parameter space).

TueoreM 1. If N = N(0,, y) with y = a/3(1(6,)* + 1)*log a™', then N satisfies
(1) and

o — loga™' 4 loglog a™ log (3¢(1(0,)* + 1)) | 6°b"(0)

6 E,N < 2 L 1
@ BEETTg o aoy
forall 9 [0, §). If N satisfies (1), then

log a™*

7 E,N= & __ or 0 +0.

™ Nz for 0+
Proor. The lower bound (7) is similar to Wald’s lower bound on average

sample numbers ((1947) page 197). Using Wald’s equation for a randomly stopped

sum (see Farrell (1964) for a proof) and Jensen’s inequality,

— _log Jo(X1) - - - fo(Xy)
I(0)E,N = Eo( log f(X,) -~ fﬂ(XN)>

> _log E, JdX) - /l(Xx) _ 169 p(N < 00) = logat.
= Tl E Ry fxy T BN <) = o

Inequality (6) follows at once from the fact that

logy=t | 6°b"(0) 5
®) E,N@,7) < 10) + 1) + 1 for 6¢[0,,0),
by virtue of the choice of y in the theorem. Relation (8) holds because E, N(0,, )
is no larger than the expected time until (2) holds, which is bounded by the
right-hand side of (8), using Wald’s equation and Theorem 1 of Lorden (1970).
(The latter states that the expected ‘“‘excess over the boundary” is at most the
second moment of log (f,(X)/fo(X)) divided by the first moment.)
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The remainder of the proof is concerned with showing that the choice of 7 is
sufficient for N to satisfy (1). To determine the infimum in (4), note that the
derivative with respect to ¢ of the bracketed quantity is

©) - 10%’9 L 0b'<0>m— 50) — g-ni(6) — 10817,

which is nonnegative on [6,, 6) if nl(6,) = log7~*. Thus forn > log y=*/1(6,) the
infimum is attained at ¢, and hence

(10)  Py(co>N 2 log 74/1(0))

< P, (Sn > log ™" + n 5(9,) for some n > 1) <7,
01 01

the last inequality coming from Wald’s upper bound (1947) on SPRT error

probabilities.

For fixed n < log y7/(6,), a sequence {6,} can be chosen along which the in-
fimum in (4) is approached, and the probability that strict inequality holds in
(4) is the limit of the probabilities that (2) holds for ¢ = 6,. The latter proba-
bilities are at most 7, again by Wald’s upper bound, and thus

-1
(11) Py <Sn > infolg.9<§|:10gar +n bff) :|> =7,
or, equivalently,
(12) P(N=n)<7.
By (10) and (12),

Y lOg ! -1 -1

13)  RW <o)< -+ 1) < rllog 7=)(1(6) + 1),
1

since log y=* > loga™ > 1.
The choice y = a/3(1(6,)™* 4- 1)’ log a~* suffices to make the extreme right
member of (13) less than «, since

a log (3(1(6,)* 4+ 1)’a~*log a™)
C3(0)t + 1) loga?

< Zalog(3}U(O)" + 1)) o a loga”? la + la = a
= 330) + 1) 3(I(6,)* + I)loga— ~ 2% 2 ’

using the estimates log x < x* and log x/x < e~! for x > 1.

REMARK 1. By letting 6, — 0 as « — 0 (e.g. set I(f,)~* = log a™') one can
obtain a class of procedures N(a) = N(0,(a), 7(«)) such that for all § > 0 there
is an M(#) such that

(14) E,N(a) — 1012‘%0‘;'1 <3 logzl(?ﬁ 4 M)

for all a < exp(—1/1(0)). Since 0 = b(0) = b(0) — 6b'(0) + 16%6"(£), for some
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0 < € < 0, and b” is continuous, I(0) = 6b'(0) — b(#) ~ 1b"(0)6* as 6§ — 0, so
that the choice of 6, just made results in 6, ~ (loga~!)~*. (const.) as a — 0.
Other negative powers of log a~! yield similar results, and lead to bounds of the
form (14) with 3 replaced by any number larger than one.

REMARK 2. The open-ended test N(0,, y) has E,N = oo for 6 > 0 closer (in
terms of information numbers) to 0 than to #,. In some applications this may
be quite acceptable, and the interval of positive 6’s where this happens can be
regarded as a kind of “indifference zone.” However, if it is desired to consider
only procedures which satisfy £, N < oo for all # > 0, then one can simply use
combinations of the form N* = min, N(0,, r,) where 6, — 0 and (say) 7, =
a27%/3(1(0,)*+ 1)* log (a='2*), so that P((N*< o) S a(27' + 2724273 4 ... ) = a.
Then (6) holds for N* if « is replaced by «a/2 and similar inequalities hold for
0e (1, 0,), k=1,2,.... Note that bounds of the form (14) hold for N* also.
The stopping boundaries for N* can be calculated “piecemeal” as n .increases,
passing from N(@,, r,) to N(0,,,, 7:+1) &S soon as

infy, | s0<o, |:10g = +n b(ﬁ)jl < log 7, +n 5(0.) .
0 0 0, 0,

Suppose it is desired to test # < 0 vs. § > 0 with error probabilities less than
a, B, respectively. An obvious procedure is to stop at N = min (N,*, N,*) where
N,* = min, N(0,, r,) with 6, | 0and N,* = min, N(—6,, r,’), where .’ is defined
using § in place of a. If # < 0 or & > 0 is chosen according as N,*, (resp.) N,*
stops first, then clearly

(15) P,(stop and decide ¢ > 0) < « forall 6 <0
and
(16) Py(stop and decide 0 < 0) < 8 forall 6 = 0.

Upper bounds of the form (14) clearly hold for E,N for 6 + 0 and are to be
compared with the lower bound (Lemma 1 of Lorden (1972))

17) IO)E,N = (1 — a)loga™ — log2 > loga™ — log2 — e!

for 6 > 0 (and a similar bound for § < 0) which is satisfied by the stopping time
N of any test satisfying (15) and (16). Omitting = 0 in (15) and (16) is only
an apparent weakening of these requirements, because it is easy to show by the
dominated convergence theorem that P,(N < n) is continuous in ¢ for each n,
and, letting n — oo, that Py(N < o) is lower-semi-continuous.

3. Error probability approximations. Assume that § belongs to the natural pa-
rameter space and I(f) < logy~'. Let m > 1 be the largest integer such that
mil(f) < log 7!, and let M be the smallest integer such that MI(6,) > log y~.
For § > 0, let N(¢) be the smallest n (or oo if there is no n) such that (2) holds,
i.e. the stopping time of the one-sided SPRT of f, against f, specified by y. In
the definition of N(6,, r), (4), the infimum is evidently attained whenm < n < M
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at the solution, ¢, (say), of nl(f) = logy~!, since the derivative, (9), changes
from negative to positive at 6,. Hence, if N(4,, 1) = n > m, then N@,) < nand
since N(0,, y) < N(0,) in any case (6, € (6,, §)), evidently N(d,) = n. Thus

(18) Py(N(8,, 1) = n) < Py(N(,) = n) for M>n>m.

If n < m, the derivative, (9), is nonpositive on [6,, §) since nl(f) < log y~%, and
hence the infimum is attained at . Therefore,

(19) - Py(N(0,, 1) < m) = P(N(@) < m) .
If n = M, the derivative, (9), is nonnegative on [#,, ), the infimum is attained
at 6, and, reasoning as in (18),
(20) Py(M < N(0,,7) < 00) < P(M < N(0,) < ).
Forallnand § > 0
(21) P(N(0) = n) = S{N(ﬂ)=n).ﬁ)(xl) e fo(x,) dpt
é S(N(0)='n) Tfo(xl) e fa(xn) d/"% = TPB(N(o) = n)

since N(f) = n only if fi(x,) - -+ fy(x,) < 7fo(x) - - fo(x,)-
Combining (18)—(21),

(22) PN, 1) < 0) < 7Py(N(B) < m) 4 1P, (M < N(8,) < o0)
+ 7 2T Po (N(B,) = n) .

As shown in Wald (1947), when 6, is true and 7 is small, N(f,) is approximately
normally distributed with mean log y=*/1(f,) = n and variance

(log ™) Var,, (log (f,,(X)/f(X))) _ log7~*-0,%"(8,)
(Ey, 10g (f4,(X)[fo(X)))? 19,y

This suggests the approximations

10,)}
) M) = = o0 og

and, similarly,

(24) PyN@) < m) =} and. P, (M < N(0) < ) = %.
Regarding n as a continuous variable on the interval from (log y=%)/1(6) = m, to
(log y=)/1(6,) = M, with nl(6,) = log y~', (23) and (24) yield the following modi-
fication of (22).

logy~1/1(0y) 1(0,)}
(25) Py(N < 00) 27+ 7 Srogr-1100 0, (276" (6,) log 1)}

Change variables by letting ¢ = 6, and obtain from the relation /(6,) = (log y~*)/n

0,6(0,)d6, = — 187" gy — _ 10.)"
n
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so that

(26) PN < ) 5 7 + r(log ™) {2, (g’;}%)’ ds .

In case 6 is the mean of a normal distribution with variance one, (26) becomes
—1\#% a
@7 PN < o0) <7 [1 + (103_7’> log (bﬁ"ﬂ .
T 1

It will be verified in the next section that the “approximate inequality” (27) is an
actual inequality in this case.

4. Testing the mean drift of a Wiener process. In this section it is verified that
the approximation (26) gives an upper bound on the error probability in the
case of normal distributions with known variance. Variance one is assumed for
convenience. This result is obtained as a consequence of a similar result for the
continuous-time analogue, a Wiener process. Specifically, we have to bound the
probability that a standard Wiener process, X(#), on [0, o) crosses a continuous
boundary, A(f). Theorem 2 gives such a bound for the class of concave and
continuously differentiable #, which includes the likelihood ratio test boundaries.
The author is grateful to the referee for pointing out that the methods and results
of It6 and McKean (1965) and Strassen (1967) are similar. The argument on page
34 of 1td and McKean (1965) differs from the proof of Theorem 2 primarily in the
use of step function approximation and first passage time distribution rather than
polygonal approximation and the distribution (29) below. This difference ac-
counts for the improvement upon the inequality 5) on page 34 of their book,
which amounts to a factor of two in our application. The deduction of (39)
below from Strassen’s (1967) work can be carried out with a bit of care (see
Theorem 1.2 and the strengthening remarked upon following (22) of his paper),
but would be inappropriate here because of the much greater refinement and
complexity of his arguments, which are aimed at considerably more delicate
results.

Given a standard Wiener process X(f) on [0, co) and a function A(f) on (0, co)
define

(28) T(h) = inf{t| X(1) > (1)} .

For the linear case, r(f) = a + bt (a = 0), T(r) has a known distribution (defective
if b6 > 0)

29 PO<T(r)<d)=§¢— 9 _exp(— @804,
(29) O < T0) < d) = §f - e (=420 ) ar
which is readily derived from Doob’s (1949) result

(30) P(T(r) < oo) = exp(—2ab*)

by the method Anderson (1960) used to solve a more complicated problem in-
volving multiple crossings of linear boundaries. In fact, (29) can be derived as
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a limiting case of (5.5) in Anderson’s paper. It is more instructive, however,
to use Anderson’s method directly. Given X(d) = y, the process

d+u(X< du >_ uy >’ 4>0,
d d+u d+u -

is a standard Wiener process. Applying Doob’s result, (30), one obtains

31) P(0 < T(r) <d(X(d):y):exp(—2a(ad_y+b>+>.

Integrating (31) with respect to the normal distribution of X{(d) and simplifying
leads to (29).

The following theorem gives a generalization of (29) in the form of a bound
on the distribution function of T(#) for concave k.

THEOREM 2. If h is concave and piecewise continuously differentiable on (0, co)

and h(0*) = 0, then

4 (1) — th'(1) (1)
(32) Pe < 1(h) < d) 5 5280 exp(—_i;-> dr
for0 £ c<d< oo,

PrROOF. Assume 4 is continuously differentiable, since the modification needed
for the piecewise case will be clear. Consider first the case where 0 < ¢ < d < 0.
Given a partition ¢ = q, < a, < --- < a, = d of (¢, d) into n subintervals, let
r, be the linear function determined by the points (a,_,, 4(a,_,)) and (a,, h(a,)),
k=1,...,n It is clear from the concavity of & that # < r, on (0, a,_,) and
h = r,on[a,_,, a,). Therefore,

Pe < T(h) < d) = Tjo, P(a,_, < T(h) < a;)

(33) < XiaPa, =T(n) < a)

— s e N0 — /() <_rk2(t)>

= Dk Yok, —W exp =TS dt
by (29). The last summation can be written as

’ 2

34 2 9u(1) — 19,(1) oy <—-;q1'_(t—)> dr,
(34) 5t Sy (= Ty
where ¢,(f) = min (ry(?), - --, r,(¢)) and g,’ exists except at the a,’s. For each
n=1,2, ..., choose a partition of (c, d) into n subintervals, the maximum

width tending to zero as n — co. The continuity of # and &’ insure that the
integrand in (34) approaches the integrand in (32) for almost every ¢ in (c, d).
Note that

(35) h(a,) < 9,/(t) £ K(a,_) for all ¢ in (a, a,_,).

A routine application of the bounded convergence theorem shows that the integral
in (34) approaches the integral in (32), proving (32) for 0 < ¢ < d < oo, and
the latter restriction is easily removed using monotone convergence.
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The likelihood ratio test for normally distributed observations with mean ¢
and variance one stops at the first n such that

(36) S, > infyzacs | (BT 4 4],
or, equivalently,
S, > lo_gbr: + 16n for n < 26-*log
(37) > (2nlog =)} for 26-*logy~* < n < 26,7 log y~*
> logt9 " 4 16in for n > 26,"log y'.

1

The probability that (37) holds for some n = 1,2, - .. is not greater than the
probability of the continuous-time analogue of (37), obtained by putting a stand-
ard Brownian motion, X(¢) (+ = 0), in place of S, and ¢ in place of n on the
right-hand side. An upper bound on the latter probability is available from
Theorem 2 since the function 4 defined by the right-hand side of (37) (for the
continuous variable ¢) is concave and continuously differentiable on (0, o).
Relation (31) yields the upper bound

08) S BL exp(— BT TN ) ar oy gy TOBIZN

(2x6r)t 861 mtt
w logyr™? < (2logyr= + 031‘)2)
. e —x=tel T v ) de,
+ Stl (275012,3)5 Xp 80,2t

where #, = 20~*logy~*and ¢, = 26,7*log y~'. The change of variables u = (6,/6)*t
transforms the last term into an integral on (¢, co) and the integrand is the same
as in the first term. Combining these two, we obtain an integral of the type in
(29), expressing the probability of ever reaching the line §-*log = + 46t. By
Doob’s result, this probability is y. Using this and evaluating the second integral
in (38), the bound simplifies to

(39) y [1 + (10877 150 L] =7 [1 + (,ligl_iy log <_01>1 ,
2rt t T 0,/

which agrees with (27), the normal case version of the heuristic bound in (26).

In applying this bound to the normal case it should be noted that the upper
line on the right-hand side of (37) plays no role if § > (2 log y~')!. Thus, all
choicesof § = (2 log y~')* yield equivalent tests (including # = co) and the bound
(39) holds in this case with § replaced by (2 log y~")%.

For the analogous testing problem for Wiener processes, explicit lower bounds
on efficiency can be derived as follows.

For a fixed value, R, of the ratio 1,/¢,, let

log y~")*log R
— 14 (logi)tlog R
(40) k() =1+ 5
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To guarantee a prescribed error probability bound, «, one should choose 7 so
that yk(r) = a. The expected time to stop when EX(f) = 0t is at most the ex-
pected time for the standard X(r) to reach A(f) = log y~'/0 — 301,

@1y  ET(hy =181 for <21°_8T'1>* <0<R (ﬂog_f‘l)*,
16° 4 t

while the minimum possible expected time is

loga=* _ logy=' — log k(y)
T 3 ’

so that the efficiency, e(a), of the chosen procedure is at least

1 logk)
log y—*
for ¢ in the prescribed range.
By the choice of y

loga= = log y=* — log k(y) = e(a) log y~*.
Thus

(log a*)t log R

(42) log[l o

] = logk(y) = <_1_ -~ 1> log a™*.
e(a)

From (42) one can determine for a prescribed level, a, and desired efficiency,
e(), the time span R over which these two can be guaranteed by the appropriate
maximum likelihood procedure. Results for illustrative cases are given in the
following table.

TABLE 1
Values of R for prescribed a and e(a)

e(a) a = .05 a = .01
.80 7.7 24.4
.75 20.9 183
.70 87.7 5250
.65 760 2.13 x 108
.60 24,300 2.60 x 101

As in Theorem 1, the maximum likelihood procedures are here compared
with the optimum procedures chosen separately for each parameter value.

To illustrate the performance of a particular procedure over a broad range
of @ values, the choices 6, = .1, § = 1.423, and y = 8/7000 were made, which
yield an error probability a < .0056. This choice was made to facilitate com-
parison with the example in Section 4 of Robbins (1970). The minimum E,N
subject to this error probability bound at § = 0 is 10.4/¢* for 6 > 0. The fol-
lowing upper bounds on E, N for the likelihood ratio procedure were obtained
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in the Wiener process and (discrete) normal cases, the latter using the usual
bound on excess over the boundary (Wald (1947)).

Likelihood ratio test

0 min E,N Wiener process normal variables
1 1037 1355 1363

3 115 151 154

1 10.4 13.5 14.8

2 2.6 3.7 4.7

Reducing ¢, to .01, while reducing y to keep a < .0056, results in only an 8%,

increase in the bounds on E, N for the Wiener process and the differences between
these and the normal case bounds are unchanged. The resulting bound in the
normal case for ¢ = .01 is 147,500, compared with a min E, N of 103,700.

Using A* to denote the continuous version of the test boundary in (37), with
t, and 1, as in (38), Theorem 2 can be used to show that

P(X(1) > h*(1) for some 1 < 1) < r[% n ,(E%L;)i log %]
T 0

This estimate is useful when open-ended tests are truncated, as in Lorden (1972),
where k-decision procedures are presented as simultaneous open-ended tests.
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