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EXPECTATION CONSISTENCY AND GENERALIZED
BAYES INFERENCE

By A. P. DAwWID AND M. STONE
University College London

In a previous paper, the authors introduced a new criterion of expecta-
tion consistency between probability distributions of discrete data given
discrete parameter values and arbitrary posterior probability distributions
for the parameter. It is here shown, under very weak assumptions, that
expectation consistency implies that the posterior distributions are genera-
lized Bayes. However when the posterior distributions are generalized
Bayes, the implied prior distribution need not be unique. The class of
implied distributions is characterized in terms of a partition of parameter
space.

1. Introduction and summary. Consider an inference problem with parameter
space © and data space X, each finite or countable. The fixed set p = {p,(x):
xeX,0e0, 3, ., ps(x) = 1} gives the conditional probabilities of the data given
the parameter. We postulate a statistician S who is willing to express his
inference about @ in the form of aset 7 = {7,(0): xe X, 00, > ,.4 7, (0) = 1}
of “inverse probabilities” for the parameter given the data. For an arbitrary
decision problem with utility function u(d, #), S, having observed x, is prepared
to use = to evaluate any decision d(x) about ¢ by means of the expectation

Zﬁee ﬂz(a)u(d(x)’ 0) N

S does not necessarily accept that # must be constructed by Bayes’ theorem with

some prior on ®. However he claims he would be averse to the possibility that,

in comparing two decision rules dy(+) and d,(+) in a decision problem,
E, (u(d(x), 0) — u(d(x), 6)} < 0

for all x € X while
B, {u(dy(%), 0) — u(dy(%), 6)} > 0

for all 6e©. Writing 1(x,0) = u(dy(x), 0) — u(dy(x), 0) — E, [u(dy(x), 6) —
u(dy(x), 6)], this would imply

(1.1) E 1(x,0)=0 Vx
while
(1.2) E, (% 0)>0 V§.

Conversely, given any function (x, ¢) for which E,_ [#(x, 6)] = 0, it is straight-
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forward to construct some utility function u(d, ¢) and decision rules 4, and 4,
for which u(dy(x), 8) — u(dy(x), ) = t(x, 8), and hence S must be averse to the
possibility that (1.1) and (1.2) could hold simultaneously.

However, as we will indicate in Section 3, this aversion is generally too
strong, when © and X are infinite, in the sense that no = will exist that avoids
this possibility—unless the class of test functions t is restricted in some way. This
difficulty is associated with the breakdown of the condition for interchanging
the order of a doubly infinite summation.

In Section 2 we propose, following [1], a reasonable weakening of $’s aversion
criterion and show that, under simple conditions on p and #, x is then neces-
sarily equivalent to a Bayes posterior distribution. This result extends previous
work in [1].

For the case © and X finite, Freedman and Purves [2] develop analogous
arguments and implications, using betting terminology and starting at a more
primitive level. At least in the finite case, our = and ¢ can be roughly identified
with Freedman and Purves’s notation as follows (although their technical condi-
tions differ from ours):

2ioea T(0) = (1 + A(x, 4)™
t(x,0) = >, w,(0, x).

2. Definitions and background. Our weakening of S’s aversion to the possibility
expressed in (1.1) and (1.2) is that he should avoid expectation inconsistency
which, following [1], is defined by:

DEFINITION 2.1. We say that = is expectation inconsistent with p if, for each
finite subset ¥ of O, there is a ¢ and finite ® D ¥ such that

(i) ((x,0)=0if ¢ @

(ii) E, t(x,0) =0 forall xe X

(iii) E, %, 6) > 0 for all § ¢ D.
r is expectation consistent with p if it is not expectation inconsistent, that is, if
there is a finite set ¥ such that, for each ® o ¥, there does not exist ¢ satisfying
(i), (ii) and (iii).

The restriction (i) is clearly designed to deal with the problems created by
doubly infinite summation. However the force of this restriction is weakened
by the arbitrariness of ¥, which effectively means that the positivity in (iii) has

force for the whole of ©.
Our next definition is also taken from [1]:

DEFINITION 2.2. We say that z is Bayes if
(2.1a) 0(0)py(x) = 7.(6) Tigeo @(P)Py(¥)

holds for some non-null nonnegative function w(.) on ©. Equivalently, « is
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Bayes if there exist nonnegative non-null functions o(.) on © and g(+) on X such
that

(2.1b) o()py(x) = 9(x)m(0) .

The function w is a Bayes prior distribution.

Note that this definition does not put any restrictions on z,(+) for any x such
that 3 ,. ©(9)ps(x) = 0. Interpreting this sum as a ‘marginal probability’ for
x, the arbitrariness of = (+) for such x appears reasonable.

The following results were established in [1]:

THEOREM 2.1. If & is Bayes then m is expectation consistent.

THEOREM 2.2. If x is expectation consistent with p and p,(x) > 0 for all x e X,
0 € O, then r is Bayes. Moreover any o satisfying (2.1a) is unique up to multiplica-
tion by a positive quantity.

The next section shows how the second condition of Theorem 2.2 may be
considerably relaxed.

3. The necessity of Bayes. If (2.1b) is to hold, it is clear that we must have
o(f) = 0 unless = (f) > 0 whenever p,(x) > 0. Hence we shall be particularly
concerned with the set A = {#: 7(f) > 0 whenever p,(x) > 0}.

The following lemma is a trivial extension of the corollary to Lemma 1 of [1]:

LeMMA 3.1. If & is expectation consistent with p, there exists a finite set ¥ and,
for every finite ® D W, non-null, nonnegative functions w, on ®© and g, on X such
that

(1) @o(0)ps(¥) = go(¥)7.(0) (6 €D, x € X)
(ii) ¢ is null in the complement of A.

Although Lemma 3.1 appears to come very close to our principal objective in
this section, there are considerable difficulties yet to be surmounted, and a
further condition, (C), will be needed. In order to state this condition we
introduce the following analysis. Following Freedman and Purves [2] we define
a relation R on © by: 6, R 6, if there exists x € X such that both p,(x) > 0 and
Po,(¥) > 0. The relation R is reflexive and symmetric, but need not be transitive.
Let I' be a nonempty subset of . We define an equivalence relation ~, on T’
by: 6 ~ 7 if there exists a finite integer n > 0 and a sequence (6, 0,, - - -, 0,,,)
such thatf,el’,i=0,..-,n+1,6,=0,60,,,=7,and 0, Rb,,,,i =0, ..., n.
Any such sequence will be called a I'-ladder for (0, 7).
For any subset U of ©, we define its associate U C X to be the set

U= {x:py(x) >0 forsome #ecU}.

Taking I' = O, consider the equivalence classes under ~, and their respective
associates which are readily seen to be pairwise disjoint. Each such pair could
be regarded as the parameter space and sample space of an isolated subproblem.
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It is tempting to suppose that we might simplify matters by investigating each
subproblem separately. However this does not appear to be possible since the
subproblems are defined without relation to .

A more relevant partition of O is into the family & of equivalence classes in
A under ~, together with ® — A. Again, the associates {T: T € & } are pair-
wise disjoint.

In Lemma 3.6 and Theorem 3.1, we shall impose the condition:

(C) & is finite.

We need some lemmas.

LEMMA 3.2. Let G be any finite subset of A. Then there exists a finite set F such
that G C F C A, and
(3.1) 0,0'cF  and 0 ~,0 =0 ~,0.

Proof. For each pair (4, t) € G such that § ~, r, choose a A-ladder, G(0, 7)
say, for (6, 7). Then we can take F to be the union of G and all the G(0, 7)’s.
This set is easily seen to satisfy (3.1).

Now let S denote a property which elements of ® may or may not possess
(examples will appear presently). Write S(#) for “6 has S.” The importance of
the equivalence relations introduced is that frequently a property S will carry
through these relations in the following obvious way.

LemMA 3.3. Suppose that S(6,) = S(6,) whenever 0,,0,c 1" and 6, R6,. Then
S(0,) = S(0,) whenever 0, ~ . 0,.
LEMMA 3.4. Let F be any subset of A for which (3.1) holds. Suppose further that
there exist nonnegative functions w, on F and g, on X such that
(3.2) @ (0)po(x) = gp(x)7 () (eF,xeX).
Then, if 6,, 0, € F and 6, ~ , 0,, w(6,) and w ;(0,) are either both zero or both positive.
Proor. Let S(6) be “6 ¢ F and w,(f) = 0.” If 6,,60,e F and 6, R 0, then for
some x, € X, p, (%) > 0 and p, (x,) > 0. If §(@,) holds, (3.2) implies that
0= wF(el)Pel(xo) = gF(XO)”zo(al) .
But since p, (x,) > 0 and 6, € A, «,, (6,) > 0. Hence g,(x,) = 0. So
wF(az)Paz(xo) = gp(Xo)T,(05) = 0,
whence w,(0,) = 0and so S(6,) holds. The result now follows from Lemma 3.3.

LemMMmA 3.5. If m is expectation consistent with p, there exists an increasing
sequence of finite subsets of ©, ®,, ®,, - .. say, with lim,_., ©, = © such that, for
i=1,2, ...,

(i) the implication (3.1) holds with F = F; =,,, A n ®,

(ii) there exist nonnegative functions w; on ®; and g; on X such that
(3.3) 0(O)po(x) = G(¥)7,(0) (xeX,0e®)

with w, non-null when restricted to F;.
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ProoF. Write ® = {0,,0,, - - -}. After the ith stage of construction we have ®@,.
In case O is finite and @; = O, set ®,,, = O. Otherwise let j = min {k:6,¢ D).
Taking G = A n (®; U {6,}), construct F from Lemma 3.2 and set @, , —
Fu®;u{f;}. We start with arbitrary finite ®, 2 ¥, where ¥ is given by
Lemma 3.1.

It is clear that (i) holds for i = 1,2, - - ., and, by Lemma 3.1, (3.3) holds for
©; = W, §; = Jo; and o; restricted to A is non-null.

LEMMA 3.6. Suppose w is expectation consistent with p and (C) holds. Then there
is an equivalence class T* € Z~ and sequences {®@,}, {w;}, {9;}, having the properties
given by Lemma 3.5, and functions p on T* and A on T*, such that

@, (0) = c; u(9) . @ed, n T
9i(x) = ¢; 4(x) (xeT¥)
where ¢; > 0. Moreover p(6) > 0 (0 € T*) and A(x) > 0 (x e T*).

Proor. Select a point = from each equivalence class T ¢ .7, yielding a finite
set 4 ={r,, -+, 7,} say. Take ®, = ¥ U 4 and construct {®;}, {F;}, {;} as in
Lemma 3.5. Then 4 £ @, for each i. For any T, Lemma 3.4 shows that
w;(f) = 0 or w;(f) > 0, simultaneously for all # e ®; n T. Since w, is non-null
on A there exists r € 4 with w,(r) > 0. Then since A is finite, there exists t* ¢ 4
for which w,(z*) > 0 for infinitely many i values. Choosing a subsequence if
necessary, we may suppose o;(t*) > 0 for every i. Let T* be the equivalence
class containing z*.

If0e®; nT*thenfeF;and 6 ~,c*. By (3.1), 0 ~p, T* Let (6,0, ---,
0..1) be a F;-ladder for (¢, z*). Then clearly, for r =0,1, .-, n + 1,60, ~, ¢*
so that 4, e ®;, n T*. Hence w;(4,) >0, r=0,1, ..., n + 1, and

w;(0) w;(0,)
N = H;’,‘= AN .
(7) " 0,(0,4)
Since 6, R 0, ,,, there exists x such that both Po,(x) > 0and p,  (x) > 0 (and so
too 7(6,) > 0 and 7,(0,,,) > 0). Then from (3.3),

06) _ 70) ()
0y(0,41) 74(0,41) Po,(X)
and this is independent of i; hence so is ,(6)/w;().

Defining 1 on T* by p(0) = 0,(0)/w(z*) if € ®;, N T* we see that p is well
defined and () > 0.

If x & T*, there exists §* € T* with p,(x) > 0. Then as soon as 6* ¢ ®,, (3.3)
yields p(0)p,(x) = A(x)z,(0) (0 € ®; N T*) (where A(x) = g;(x)/w;(c*)) and this
equation defines A(x) uniquely since all terms are positive when § = 6*. In
particular A(x) > 0, and

(3.4) HOPox) = A(x)m,(0) 0eT.
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It is clear that the lemma is satisfied with ¢; = w;(z*). We can now prove the
main result.

THEOREM 3.1. Suppose that w is expectation consistent with p, and that A has a
finite number of equivalence classes under ~,. Then « is Bayes, and (2.1b) holds for

() = () @ eT*)
=0 (6 ¢ T
and
9(x) = A(x) (xeT*)
=0 (x ¢ T)

where T*, p and 2 are provided by Lemma 3.6.

Proor. If x e T* and 6 € T* then (3.4) shows that (2.1b) holds. If x ¢ T* then
g(x) = 0; also p,(x) = 0 if # € T* and w(d) = 0if # ¢ T*. The remaining case to
consider is when x € T* and 6 ¢ T*, when w(f) = 0. But z,(#) = 0 also. For
suppose 7, (6) > 0. If # e A — T* then p,(x) = 0, since otherwise § € T*; and if
6 ¢ A then w;(#) = 0 whenever 6 € ®;, by Lemma 3.1 (ii). In either case (3.3)
implies that g,(x) = 0 if i is large enough. On the other hand, there exists
0* e T* with py(x) > 0, and ,(0*) > 0 whenever 6* ¢ ®,. Since g,(x)x,(6*) =
Po(x)0y(0*) for 6* ¢ @,, it follows that g,(x) > 0 if i is large enough. This
contradiction shows that z,(f) = 0 and completes the proof.

The condition (C) used in this theorem is a wide one, but a trivial example
shows that it is not necessary.

ExampLE. Let X = © = {natural integers}, and suppose p,(d) = 1 for 6 €O,
7, (x) = 1 for xe X. Then = is expectation consistent with p and is Bayes; but
A has an infinite number of equivalence classes.

We are now in a position to support the remark made in Section 1 concerning
the necessity for restricting the class of test functions.

Suppose that (1.1) and (1.2) could be simultaneously avoided for arbitrary .
Then 7 is a fortiori expectation consistent with p. If moreover, condition (C)
holds then 7 is Bayes. However Appendix 1 of [1] indicates how one may then
be able to construct a test-function for which (1.1) and (1.2) both hold, con-
tradicting the supposition.

4. Characterization of the Bayes prior distributions. In this section we suppose
that = is expectation consistent with p, and characterize the class of functions w
for which (2.1a) can hold. We start with a special case.

THEOREM 4.1. Suppose that =,(0) > O whenever p,(x) > 0 and that 6 ~ 4t for
all 0, t€©. Then r is Bayes and w, satisfying (2.1a), is everywhere positive, and is
unique up to a positive multiple.

Proor. In this case, A is ©, and there is only one equivalence class under
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~4. So, by Theorem 3.1, = is Bayes. Positivity of o follows by Lemma 3.4
taking F = 0, 0, = @ and gy(x) = Fsce @(P)py(x) = 9(x) say. Finally suppose
(2.1b) holds for @ and g, and also for o’ and g'. Take r e 0 and let S(¢) denote
“w(f)/o’'(0) = o(r)/e’(z).” If 6, R ,, there exists x* such that Po(x*) > 0 and
7,.(0;) >0 for i =1,2. Then g(x*), ¢'(x*) >0, and (2.1b) implies that
o(0,)]0'(0,) = g(x*)[g'(x*) = w(0,)]@’(0,). So S(6,) = S(6,); hence by Lemma
3.3, w(0)/e'(0) is the same for all § € 6.

For the general case, consider the (finite or countable) set F =Ty, Ty, -}
of equivalence classes of A under ~,. Suppose that, for some T'¢ ,

(4.1) Slper m(0) = 1 forall xeT.

Then p and = may be restricted to (x, 0) € T x T while retaining the structure of

Section 1, and we can ask whether, in this restricted i)roblem, = is expectation

consistent with p. Define .7 to be the set of equivalence classes Te & such

that (4.1) holds, and also

(4.2) n is expectation consistent with p when restricted to
(x,0)eT x T.

If Te.7 then Theorem 4.1 applies to the restricted problem; hence there
exists w? on T, strictly positive and unique up to a positive multiple, and g” on
T such that
(4.3) oT(0)py(x) = 7, (0)9"(x) (xeT,0eT).
Clearly g7(x) > 0 for xe T.

We now show that »” and g” may be extended to the whole of © and X respec-
tively whilst preserving (4.3).

THEOREM 4.2. If Te .7 then m is Bayes; and (2.1a) holds with w(f) = «"(0) if
0eT, w@) = 0 otherwise.

ProOF. We show that (2.1b) holds for this  and for g(x) = ¢"(x) (xe T),
g(x) = 0 otherwise. If 6 ¢ T and x e T, (2.1b) follows from (4.3). If # e T and
xg T, then p,(x) = 0 and g(x) = 0. If 6 ¢ Tand xe T, o(0) = 0and r,(f) =0
by (4.1). Finallyif 6 ¢ T x¢ T, o(f) = 0 and g(x) = 0. Hence (2.1b) holds in
all cases.

Theorem 4.2 shows that if .7 is nonempty then « is Bayes. The next theorem
gives a converse result.

THEOREM 4.3. Suppose m is Bayes. Then .7 is nonempty, and the general solu-
tion to (2.1a) is given by:

(4.4) o(0) = A,07(0) if 0T and Te T
w(0) = 0 otherwise; where 2, >0 and Y ;.4 >0.
PrOOF. Suppose o satisfies (2.1a). Then (2.1b) holds with

9(x) = Dgeo @(P)py(x) -
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Now w(#) = 0 if § ¢ A, since then, for some x, p,(x) > 0 and #,(f) = 0. Also,
if Te &, (3.1) holds with F = T. Hence, by Lemma 3.4, w(0) restricted to T
is either null or everywhere positive. Since  is non-null, there exists T such
that w(¢) > 0 for all e T. Let xe T. Then p,(x) > 0 for some # € T, so that
(2.1b) implies g(x) > 0. If g ¢ A, w(p) =0; and if peA — T, py(x) =0. In
either case (2.1b) shows that 7 (¢) = 0, and hence (4.1) holds. Also,

(4.5) o(0)py(x) = g(x)m(0) @eT,xeT)

and o is non-null on 7, so that x is Bayes in the problem restricted to (x, f) e
T x T. Then by Theorem 2.1, x is expectation consistent with p in the restricted
problem; i.e. (4.2) holds. Hence Te€ .7 and .7” is nonempty. We see that .7~
contains all those equivalence classes T for which @ is non-null on 7.

Hence if 0 ¢ U{T: Te 77}, w(f) = 0; while if T € 7, either w is null on T,
or else, comparing (4.3) and (4.5), w is a positive multiple of »” on 7. This
shows that any solution to (2.1a) is of the form (4.4). Conversely, if  is of
this form, it is easily seen, using Theorem 4.2, that o satisfies (2.1a). This

completes the proof.
In particular, this characterization of the solution to (2.1a) holds when the

conditions of Theorem 3.1 hold.
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