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Robust test problems between two approximately known simple
hypotheses can be formalized as minimax test problems between two com-
posite hypotheses. We show that if the composite hypotheses can be
described in terms of alternating capacities of order 2 (in the sense of
Choquet), then the minimax tests are ordinary Neyman-Pearson tests
between a fixed representative pair of simple hypotheses; moreover, the
condition is in a certain sense also necessary. All the neighborhoods
customarily used to formalize approximate knowledge happen to have this
particular structure.

1. Introduction. Let .#Z be the set of all probability measures on a complete
separable metrizable space Q, and let .7, 7 be two disjoint subsets of _Z, We
show that the minimax tests between &4 and .7 have a simple structure if (and
in some sense only if) these hypotheses consist of the sets of all probability
measures majorized by some alternating capacities v; of order 2: & =
{Pe #| P(A) < v;(A) for all Borel sets A}. Then there is a representative pair
(Qp» Q1) € F; X ] such that for all fixed sample sizes the Neyman-Pearson tests
between the simple hypotheses Q,, Q, constitute a minimal essentially complete
class of minimax tests between .75 and .75. Conversely, if .7 has the property
that a representative pair (Q,, P,) exists for all simple alternatives .7 = {P,},
then .7 can be defined by some alternating capacity of order 2.

This generalizes our earlier results ([7], [8], [11], [12]) and is of fundamental
importance for a theory of robust statistics: the neighborhoods used to describe
inaccuracies in the specifications of the true underlying distributions can all be
described in terms of alternating capacities (see below). We would like to thank
F. Scholz for his critical remarks.

2. Capacities and upper and lower probabilities. Let Q be a complete separable
metrizable space, .7 its Borel-g-algebra and _# the set of all probability
measures on Q. Every non-empty subset.” C _# defines an upper probability

v(A) = sup {P(A)| P e &}, Ae 7,
and a lower probability
u(A) = inf {P(4)| Pe ), Ae 7.

Since # and v are conjugate to each other:
u(Ay +v(A% =1,
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252 PETER J. HUBER AND VOLKER STRASSEN

it suffices to consider one of them, say v. Evidently

(1) wp =0, wR=1,
) AC B=v(4) < v(B),

If & is weakly compact, then we have also
4) F,| F,F, closed = v(F,) | v(F).
More precisely, if &7 is weakly closed, then (4) is equivalent to .57 being tight
(see [1], and Lemmas 2.2, 2.3 below).
We shall call capacity any set function v satisfying (1) to (4). Apart from

the trivial normalization (1), this agrees with the terminology of Choquet [3],
[4]- If, in addition, v satisfies

(5) v(AU B) + v(A4n B) < v(A4) + v(B),
it is called alternating of order 2, or short, 2-alternating.

The examples near the end of this section will show that not every upper
probability is 2-alternating, and that the set

G, ={Pe #|P(A) <v(4) forall Ae ¥}
can be strictly larger than the closed convex hull of the set . determining v.

The set function u(4) = 1 — v(4) conjugate to a 2-alternating capacity is
called a 2-monotone capacity; it satisfies (1), (2) and

(3) Ay | A= u(4,) | u(4)
(4) G,1G,G, open— u(G,) 1 u(G)
(5") u(A U B) + u(An B) = u(A) + u(B).

In view of (5) with 4 for B we have
u(A) < v(A)
with equality for all 4 iff v is a probability measure.
We recall that every Borel set 4 is v-capacitable if v satisfies (1) to (4):
v(A4) = supg v(K) = inf; v(G)

where K ranges over the compact sets contained in 4 and G ranges over the open
sets containing 4 (Choquet [3], [4]). The same holds with « in place of v, see
below.

Let & be the space of bounded continuous functions on Q, with the topology
of uniform convergence, and let €, = {fe & | f = 0}. For any monotone
bounded set function ¢ on %7, satisfying ¢(¢) = 0, define a functional ¢ on &,

by
P(f) = §5 x| f(x) > t}dt = 7 P{x|f(x) = 1} dt.
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Any such functional is positive, monotone, positively homogeneous (¢(cf) =
cd(f) for ce R,) and continuous; ¢ is subadditive

$(f + 9) < &(f) + d(9)

(or superadditive) iff ¢ is 2-alternating (or 2-monotone respectively), see [3] page
287 ff. If v is a measure, then ¥ is additive, and

u(f)=1fdv.

Since Borel sets are capacitable, the values of a capacity v (or of its conjugate
function #) on % are uniquely determined through monotonicity by the values
of ¥ (or @) on &,.

LEMMA 2.1. Let v be a capacity. The relation P(f) =  f dP defines a 1-1-cor-
respondence between the probability measures P < v and the positive linear function-
als P on & satisfying P(1) = 1 and P(f) < ¥(f) for fe & ,.

Proor. It suffices to show that f, | 0, f, € °,, implies P(f,) | 0 for every
P < ¥ (cf. [10] page 63). We have v{f, = 1} | 0 for every ¢ > 0 in view of (4),
hence P(f,) < ¥(f,) = \¢v{f, = t}dt |0 by the monotone convergence
theorem. []

LEMMA 2.2. Let v be a capacity. The set
P ={Pe AP <v)={pe APz u)
is tight and weakly closed, and hence compact.

Proor. 7 is tight (cf. [1]), iff for every ¢ > 0, 6 > O there is a finite union
S of spheres of radius d such that P(S%) < ¢ for all Pe .%,. Let d be a metric in
Q, let {x,} be a countable dense set, let g, e &, be such that g,(x) =0 for
d(x,, x) <6/2, g.x)=1 for d(x,,x)=4d, and put f, =inf{g,|m < n},
S, = {x|fu(x) < 1}. Since f, | 0, we have ¥(f,) | O as in the proof of the
preceding lemma, and tightness now follows from P(S,°) < v(S,°%) =< ¥U(f,).
Lemma 2.1 implies that &, is weakly closed. []
Incidentally, a minor extension of the above proof shows that Borel sets are u-
capacitable if u satisfies (1), (2), (3'), (4’). (This case does not seem to be covered
by Choquet’s capacitability theorems [3], [4].)

LEMMA 2.3. Let v be an upper probability determined by a compact set . Then
(4) holds.

ProoF. Otherwise these there is a sequence F, | F and an a such that for all
n, v(F,) > a > v(F). Let P, e.Z be such that P,(F,) > a and Pe .7 be a limit
pointof (P,). Then, with P, —P, P(F,) = limsup; P, (F,) = limsup; P, (F,) = a,
thus P(F) = a, in contradiction to P(F) < v(F) < a. []

LEMMA 2.4 Let v be a 2-alternating capacity. For every upper semicontinuous
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function h on Q there is a Q € &, such that for all t, Q{h > t} = v{h > t} and
Qfh =z 1} = v{h = t}. In particular, 7, is not empty.

Proor. We may assume without loss of generality that # is strictly positive
and bounded (otherwise replace /# by 2 + arctan ). There is a sequence g, | &
with g, e <’,; then lim ¥(g,) = ¥(k) because of (4). Find a linear functional 0
separating the open convex set U = {f e < | ¥(|f|) < ¥(h)} from the convex set
V = {ge € |g = h} with the aid of Hahn-Banach: J(f) < O(g) for fe U, ge V.
We may normalize O such that inf {O(g) |g € V'} = B(h); since then ¥(| f|) < ¥(k)
implies O(f) < 7(k), we must have O(f) < ¥(|f]). It follows that J is induced
by a g-additive (substochastic) measure Q < v, and that in particular

O(h) = §¢ Q{h > tydt = \ v{h > t} dt,
which implies
Qlh >t} =vh >t}
for almost all z. Because of (3), this actually holds for all ¢; in particular, Q is
a probability, since Q{2 > 0} = Q(Q) = v(Q) = 1. Since
vih =t} < limtnn vih >t} = limtn“ o>t} =0k =1},
we also have v{h = ¢} = Q{h = 7}. ]

LEMMA 2.5. Let v be a 2-alternating capacity. Then for every Ae o7 there is
a Qe 7, such that Q(A) = v(A). It follows that v coincides with the upper
probability determined by 7.

Proor. Let F, — A4 be an increasing sequence of closed sets such that
limv(F,) = v(4). Define an upper semicontinuous function 4 such that
F, =1{h = t,} for some t,, e.g. h(x) = n~*for xe F,\F,_,, h(x) = Oforx¢ | F,.
Then apply Lemma 2.4 to find a Q e &, satisfying Q(F,) = v(F,). It follows
that Q(4) = lim Q(F,) = lim v(F,) = v(A). [

ExampLE 1. Let Q ={1,2,3}, P,=(%,4,0), P, = (4,4, 1) and let v be the
upper probability determined by &= {P,, P,}. Then

%:{<3+t,3—t—s,i>‘0£s,tgl},
6 6 6 - -

whereas the convex closure of .27 is the proper subset of .27, determined by
s = t. In this example v is 2-alternating.

ExampLE 2. Let Q = {1, 2,3, 4}, P, = (%, & Tor 7o) P1 = (Yoo 700 7o 7o)
and let &= {P,, P,}. Here v is not 2-alternating: let 4 = {1,2}, B = {1, 3},
then

v(A U B) 4+ v(A N B) = 15 > v(A) + v(B) = 14 .

ExampLE 3. Let Q be compact. Define v(A4) = (1 — &)Py(A) + ¢ for 4 # ¢.

Then v is a 2-alternating capacity, and

%:{P|P:(I—S)PO+EH,HG.//}.
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ExaMPLE 4. Let Q be compact. Define v(A4) = min (Py(4) + ¢, 1) for 4 = ¢.
Then v is a 2-alternating capacity, and

T, ={Pe #||P(A) — P(A)| < ¢ forall Ade.cr}.

EXAMPLE 5. Let Q be compact metric. Define v(4) = min (Py(4%) + ¢, 1) for
compact sets 4 + ¢, where 4° is the closed d-neighborhood of the set 4, and
extend v to .. Then v is a 2-alternating capacity, and

P, =(Pe A |P(A) < P4 + ¢ forall Ae./}.

Examples 3 to 5 correspond to neighborhoods of P, defined by e-contamination,
total variation or Prohorov distance respectively. Further models leading to
alternating capacities are described in [5], [6], [11], [12].

3. Bayes tests between capacities. Let v,, v, be two 2-alternating capacities and
let u,, u, be their conjugates.

Let 4 be a critical region for testing between & = {Pe .7 |P < v,} and
A ={Pe . Z|P < v}, that is, reject . if x € A is observed. Then the upper
probability of falsely rejecting &7 is vy(A), of falsely accepting .= is v,(A4°%) =
1 — u,(A).

Now assume that 7 is true with prior probability #/(1 + ), 0 < ¢ < oo, then
the upper Bayes risk of the critical region A is by definition

t
1+t

This is minimized by minimizing the 2-alternating set function

WA+ (1= ().

w(A) = tv(A4) — u,(A).
LeMMA 3.1. For each te [0, co] there is an A, € .57 such that
w,(A4,) = inf, . w,(A4).

ProoF. Write w instead of w, and let ¢ = inf, w(A). Let {4,} be a sequence
of sets such that

w(d,) < ¢+ s,
with >} ¢, < oo.
We have w(A4, U A4,) + w(4, 0 A,) <w(A4,) + w(A,) < 2c+ ¢, + ¢, which
implies
w(d, UA)c+e, +e,
wA, NA4)< c+e, +e,.
This immediately generalizes to

W(Unzmen A,) = c+ 2insmsy Em
W(Nuzmey Ay) S ¢+ Dncmey Em

Note that w is lower semicontinuous in the sense that for any monotone sequence
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B,, w(lim B,) < lim w(B,). Thus

W(Umzn Am) é ¢ + ngn €m s
w(nmgn Am) é 4 + Zm;n 6'm ’
and hence

W(nn Um;n Am) = W(Un nm;n Am) =cC. D

LeEMMA 3:2. The sets A, can be chosen to form a decreasing family; more precise-
ly, we may assume either A, = |J,», A, or A, = (,<, 4, forall 0 < t < oo, which-
ever is more convenient. In either case, we may put Ay = J,50 4y 4w = Nicwo A;-

Proof. Let 1 < s; since w, — w, = (s — f)v, is a monotone set function, we
have
w(4 U B) —w(A U B) < w(d4) — wy(A).
We add to this the inequality
W,(A4 U B) + w(A 0 B) < w,(A) + w,(B)
and obtain
w(A U B) + w(A N B) < w,(A) + wy(B).
Now choose sets 4, minimizing w, and insert 4 = 4,’, B = A/, which gives
w4 U A) + w0 Af) = w(A) + w(A)-
This implies at once that
w4, U A}) =w(A4/) = inf, w(A)
Ws(At' n As') = ws(As,) = ian ws(A) *
Now take any sequence {t,} dense in (0, co). Since w, is lower semicontinuous
(cf. the proof of Lemma 3.1), the result just established implies that also
A, = U {4, |t = 1}
and
A =N {4, [t = 1)
minimize w, . Since |w(4) — w,(4)| < |s — 1|, we may define 4, for any finite
t by
A4, = Utn>t A:;
or by
A4, = ﬂtnq A:;’
Note that w,(A4,) < w(¢) =0, hence v,(4,) <t ', we have in particular
vy(A4,,) = 0, and the result holds also for ¢ = co. [J
Choose (for instance) the first variant of Lemma 3.2 and define
m(x) = inf{t|x¢ 4.}

then x e A, is equivalent with z(x) > ¢.
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We call = the Radon-Nikodym derivative of v, with respect to v,, for the follow-
ing reason.
Assume ¢ < 5, A4, D B D A,, then w,(B) = w,(4,), w(B) = w,(A,) implies
1[v(B) — vy(A,)] = uy(B) — u,(A,)
S0(B) — 0(A)] Z w(B) — uy(4,)
or, if the quotients are well-defined,
u(B) — u(4) _
Vy(B) — vy(A4,) —
u,(A,) — uy(B) >t
v(A,) — v(B) =
If v,, v, are measures, then u, = v,, u, = v,, and a comparison with the usual
proof of the Rand-Nikodym theorem yields that = is the Radon-Nikodym deriva-
tive dv,/dv,. ’
We note for future reference that the above inequalities imply in particular

)

t é ul(At) - ul(As) é s.
vo(At) - vo(As)

REMARK. If v, is such that v(A4) > ¢, > 0 for 4 = ¢ (as in the Examples 3
to 5 of Section 2), then the last part of the proof of Lemma 3.2 shows that
A, = ¢ for 1 > 1/e,, hence x is bounded: n(x) < 1/e,. Similarly, if v,(4) > ¢, > 0
for 4 # ¢, then n(x) > ¢,.

4. The main theorem. The preceding section implies that A4, is a critical region
for a minimax (sometimes called maximin) test of level a = vy(4,) and guaran-
teed power u,(A4,) for testing between .7 — {Pe #Z|P < v} and & =
{Pe 2| P < v} (cf. [9] page 327).

Actually, a much stronger statement is true.

THEOREM 4.1. Assume v,, v, are 2-alternating capacities and let © be defined as
in Section 3. Then there are probability measures Q, < Vo, Q1 =< v, such that for

all t
Qfr > 1} = Vo > t}

Ofr >t} =ufr > 1}
and w is a version of dQ,/dQ,.

CoROLLARY 4.2. For any sample size n and any level a, the Neyman—Pearson
test of level a, between Q, and Q,, defined by

DXy -0 eyx,) =1 for Tlizcn n(x;) > C
=7 =C
=0 <C,

where C and y are chosen such that EQ0¢ = a, is also a minimax test between A
and .7}, with the same level a and the same minimum power.
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Proor oF THE CorROLLARY. Note that we have also Q,{r = t} = v,{r = ¢} and
Q{7 = t} = u{m = 1}, cf. the end of the proof of Lemma 2.4 and (3’). Thus,
for sample size 1, the corollary essentially coincides with the theorem. For
sample size n, assume that the x; are independent and distributed according to
Q/ <, 1 <i<n. Then [],., n(x;) is stochastically largest, if each factor
7(x;) is made stochastically largest (this follows from [9] page 73, Lemma 1),
and according to the theorem, this happens if Q;” = Q,. Similarly, if Q,/ > u,,
then TJ.., 7(x;) is made stochastically smallest with 9, = Q,. [J

ProOF oF THE THEOREM. At first, one might attempt to choose a Q, in the
manner of Lemma 2.4, with = in place of %, and then to define dQ, = ndQ,.
However, it is easy to see that this does not ensure Q, > u,. Loosely speaking,
we will thus have to choose Q, such that z='u; < Q, < v,, which is made precise
in the following.

Define for t < s

F(t, 5, B) = u,(B N A) U A) — u,(A,)
G(t,s; B) = v((B N A,) U A) — vy(A4,) .

These set functions inherit their monotonicity and continuity properties from
u, and v, respectively; in particular, F(¢, s; +) is 2-monotone, and G(z, s; +) is 2-
alternating. The inequalities near the end of Section 3 imply

F(t, s; B) < 5G(t, s; B)
and we have
G(t, 55 B) < v,(B N A) — vy(B N 4,) < v(B).
Since u, is 2-monotone and v, is 2-alternating, one has for 1, < 1, < ¢,
F(t, t;; B) < F(t,, t,; B) + F(1,, t;; B)
G(t, t;; B) = G(1,, t,; B) + G(1,, 1,5 B) .

For any finite increasing sequence J = (1, t;, - - -, t,) of positive real numbers
define
ulJ(B) = X LT 15 B)
We have

w'(B) = 21 G(tio, 135 B) < G(1, 1,5 B) < v(B) .
If the underlying set || of J' contains the underlying set |J| of J, then, evidently
u’(B) < u’'(B) .
We define
u,*(B) = sup, u,’(B) ,
which is a positive, monotone and 2-monotone set function satisfying u,* < v,.
Consider in particular B = 4,, then

G(1y, 1y, A,) = vy(A,) — v(4,,) for r<

= vy(A4,) — vy(4,,) for 1, <t<y,
=0 for t>1,,
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and analogous expressions hold for F. The inequalities near the end of Section
3 imply
F(t), ty; A) = 1,G(1y, 1,5 A,) .

Thus, if J is such that ,_,/t; > « for all i, and ¢ = ¢, for some i, then

5 Gty 15 A) = @ X1, Gty 15 A))
t.

i

”1J(Az) > n

= =1

= a[vy(4,) — vy(4,,)] -
Since a < 1 can be made arbitrarily large, and since v (A4, ) can be made
arbitrarily small, we obtain u,*(A4,) = v,(4,), and in particular u,*(Q) = v,(A4,)-
If v(4,) < 1, we replace u,* by u,* + Q| A4,°, where Q < v, is a probability
satisfying Q(A4,) = v,(4,), so that u,*(Q) = 1.
With the aid of Hahn-Banach one finds a linear functional 0, on =~ separating
the convex set

U={fec |u*(f) 21}
from the open convex set
V={gee |l < 1):

04(9) < Ou(f) for feUygeV.
0, is positive and can be normalized: Qy(1) = 1. It is straightforward to see
that #,* < 0, < ¥, on <", so O, defines a probability Q, < v,, which satisfies
Qy(A4,) = vy(A,) for all 1.

Now we define Q, by defining separately its restriction to 4, and to A4,°.

(a) With the aid of Lemma 2.5 find a Q > «, such that Q(4.) = u,(4..), put
0,| A, = Q| A..
(b) On A4.° put dQ, = n(x) dQ,.
We have, with J = (1, t,),
Q((B N A,) U A,)— QuA,) = Qu(B N (4,\4,))

= 6,Qy(B N (4,\4,))
= tu’(B)
- % F(t,, t;; B).

2

IfJ = (¢, - -, t,) satisfies ¢,_,/t; = « for all i, we obtain thus
Oy((B n Ato) U Atn) - Ql(Atn) = a3 F(t;_y, 13 B)

afu((B 0 A,) U A, ) — u(A, )]
a[u, (B n Ato) —u(B N Atn)] .

v

Note that u,(B N A,) — uy(B N A) < u,((B N A) U A) — uy(A4,) < f[v((B 0 A U
A,) — v(A4,)] £ t; so, if we go to the limit « — 1, 1, — 0, ¢, — oo, we obtain

QBN A) — QB N A = u(B 0 A) — uy(B 0 A).
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Since u,(B U A,) + u,(B N A) = u,(B) + u(A4,) and u(A4) =1, we have
uy(B N Ay) = uy(B). Hence
0,(B) = uy(B) + O(B n A,) — uy(B n A,) = uy(B) .
It remains to show that Q,(4,) = u,(A4,). But for 1, < t,
0\(4,) — Oi(4,) = 1[0(A,) — OA,)]
= tz(vo(Atl) - vo(Atz))

< I (u(Ay) — w(4,)

Thus, if t = ¢, < 1, <--- < t,, with ¢;/t,_; < a, we obtain

0y(A4,) — Ql(Atn) = a(uy(A) — ”1(Atn)) >
and letting @ — 1, 1 — oo,

0:(4,) — 0i(4x) = uy(A) — uy(As)
hence
Ql(At) = ”1(Az) .
This terminates proof of the theorem. []
5. Uniqueness of .

THEOREM 5.1. Let m, o’ be two versions of dv,[dv,, i.e., both A, = {x > t} and
A/ = {n' > t} minimize w,. Then v{r > t} = vy{n’ > t} forallt,andn = 7’ a.e.
[Q, + Q)], where Q,, Q, are determined by =, ' respectively, as in Section 4.

Proor. Since also min (7, #') and max (7, 7’) are versions, we may assume
m < «’ without loss of generality.

If v{m > t} = v{n’ > t}forall¢, then v{r > t} = Qyfmr >t} < Qfn’ > 1} <
vo{n’ > t}, hence = = =’ a.e. Q,, and similarly for Q’.

If not, then there is a # such that vy{7 > 1} < vz’ > t}. Let 4/ ={x' > 1} D
A, = {m= > 1}, D = A/\A,. Since w(A,) = w,(4,’), one has

w(A/) — m(A) _ , o Q/(A/)) — Q/(A) _ §,7(x) 40y |
WA —o(d) T QN(A) — Q/(4)  §,40/

Since Q,/(D) > 0 and #’(x) > ¢ on D, this is impossible. []

6. A characterization of (Q,, 0,).

THEOREM 6.1. Let ® be any twice continuously differentiable function on [0, 1],
such that ®” > 0. Then the pair (Q,, Q,) € F x F satisfies the conclusion of
Theorem 4.1 iff it minimizes

dP,

H(Po,P1)=§®<m

>d(P0 + P

among all (P,, P\) € &4 X A,.
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Proor. Let Q;;€ .7 (i,j = 0, 1) and let ¢;; be their densities respect to, say
r= 2 Qs Put
Q= (1 =00+ 10,
90 = (1 — 00 + 19,1 -
Then it follows from

%H(Qm, 0,)=§ {(D <L> (91 + 911 — 900 — 90

9ot + 91
+ (1)/< 9ot ) 901910 — qooqu} dp
Go: + Gu 9ot + 9
a2 H(Qy, 0r) = § (I)u< 9ot > (901910 — 900 qu)’ =0,
dr’ 9o + 91/ (G0 + 90V -

that H is convex, and that (Q,, Q,) minimizes H if and only if for all
(Qor» Qu) € & X A

(4 Hw 0] 2 0.

If we introduce the functions
o(z) = z0'(z) — D(z) ,
P(z) = (1 — )@'(2) + P(2) ,

which are strictly increasing for 0 < z < 1, we can write, with z = ¢4/(4 + G1)>

[‘% H(Qy, Qu)] = § $(2) (G — qu) dit + § () Gor — Goo) dpt -

t=0

Now assume that (Q,, Q,,) satisfies Theorem 4.1, then z = (1 4+ =)™, and

*) 6 (15) (g — g duz 0
S¢<1_:_ﬂ>(701_qoo)d#%0

since Q, makes 7 stochastically largest, Q,, stochastically smallest. Hence
(Qops Q1) minimizes H.

Now let (Q,, Q,,) be another pair minimizing H; since H is convex, H(Q,,, 0.,
must be constant, hence g,,9,, — 909, = 0 a.e. g, thus ¢,,/9, = ¢1,/g, = 7 a.e.
o

Hence, if (Qq, Q) is any pair minimizing H, then (*) is satisfied for all
(Qo» Q) € .94 X ., and it follows that Q,, makes = stochastically largest, Q,,
stochastically smallest. []

REeMARK. If the probability measures in .25, &/ are absolutely continuous
with respect to fixed measure s, for instance when ( is finite, it is possible to
prove Theorem 4.1 by first picking a pair minimizing (H for a suitable @, H is
lower semi-continuous) and then selecting a suitable version of = = dQ,/dQ,.
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But for infinite 2, the more interesting sets ., 7 are not dominated, and then
it is not evident whether it is possible to select a suitable =.

7. Necessity of 2-alternating capacities. For this section we assume that Q is
finite, then the continuity assumptions (3), (4) of Section 2 are trivially satisfied.

THEOREM 7.1. Let &P C _# be such that for every Q,€ _# there is a Q,€
with the property that for all a € (0, 1) the Neyman—Pearson test of level a between
Q,and Q, is a test of the same level between 7 and Q,. Then 7 is (i) convex and
(ii) compact, (iii) v(A) = sup {P(A)| P € &} is 2-alternating, and (iv) & = &, =
{Pe.#Z|P < v}

Proor. (i) If & is not convex, then let Q, = Y a,P, ¢ &° with P, &,
a; >0, Y1a,=1. Now let ¢ be any test between & and Q, such that
SUpPp.., § $dP < a, then § ¢ dQ, < «a, but the power of any Neyman-Pearson

test of level a between a P e &” and Q, must exceed @. Thus & is convex.
(ii) A similar argument shows that .57 is closed and hence compact.

(iii) We have to verify that v is 2-alternating, or, equivalently, that ¥ is sub-
additive. For that, it suffices to show that for all functions £ > O there is a
Q ¢ .27 such that

Of{h > t} = supp. . P{h > 1}.
In fact, then for any f, g there is a Q, such that
Wf+9) = Q{f +9>ndt=§(f+9)dQ
= §/dQ + §9dQ < U(f) + ¥(9) -
By the assumption of the theorem, for each Q, there is a Q, € &° such that

0, {jgl > t} = SUpp... P {Z—g: > t} for all .
0

Now let # > 0 be given; the idea is to find a Q, such that 4 ~ dQ,/dQ,. The
construction is as follows.
Let Q € &7 be such that

{ log h(x) dQ = sup,.., § log A(x)dP .

Define Q, by dQ, = ch dQ, where ¢ is a normalizing constant. Evidently, we
have then dQ,/dQ = ch, and

dQ, a0,
1 d . 1
S°g<Q>Q SUPP/§°g<Q>
But this property is equivalent with

§ log< g) dQ = sup,. . § log <dQ1> dP .

To show that both extremal problems have the same solution, put P, =
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(1 — ©)Q + tP,, then

[5; { log <‘;_%> dPt:'::o = { log (Zg) d(P, — 0) < 0

is the common necessary and sufficient condition for a maximum to occur at Q.
A convexity argument similar to one in the proof of Theorem 6.1 shows that the
P maximizing § log (dQ,/dP) dP is unique; hence we must have Q = Q,.

(iv) Toshow that .o” = .27, we shall use the fact that every convex compact
subset of R* is the convex closure of its points of strict convexity (cf. [2]). Thus,
it suffices to show that each point of strict convexity of .., belongs to .~ By
definition, if Q is a point of strict convexity of .22, then there is a f with the

property that
§fdQ = sup,., § fdP
uniquely characterizes Q. Without loss of generality we may assume f > 0.

But then
§fdQ = ¥(f) = sup,.. § fdP.

Since Q is unique, we must have Q ¢ .. []
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