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I would like to thank the discussants for their thoughtful comments, and
I would also like to thank the editors of The Annals of Statistics for this op-
portunity to respond. My comments are organized by topics addressed in the
discussions.

Irreducibility. For simplicity, I wrote Theorem 1 and other results in my
presentation to use as their key assumption that P is irreducible with respect
to 7. In most applications this is relatively easy to verify, but as Doss points
out there are cases where it is not. The theory in Nummelin used to develop
these results is actually more general. In particular, it is sufficient to verify
irreducibility with respect to any o-finite measure. Thus the following general-
ization of Theorem 1 is available.

THEOREM 1*. Suppose P is p-irreducible for some o-finite measure ¢ on E
and 7P = 7. Then ¢ is absolutely continuous with respect to w, P is w-irreducible,
P is positive recurrent and = is the unique invariant distribution of P. If P is
also aperiodic, then, for m-almost all x,

[P*(x, -) =7 ()] - 0,

with || - || denoting the total variation distance. If P is Harris recurrent, then the
convergence occurs for all x.
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This can be proved along the same lines as the original Theorem 1. While
there are some other minor differences, this captures the main difference be-
tween Theorem 1 and the result of Athreya, Doss and Sethuraman (1992) men-
tioned by Doss.

One of the implications of this theorem is that p-irreducibility with respect
to some o-finite ¢ together with 7P = = for a proper distribution = implies
w-irreducibility. Therefore the assumption of 7-irreducibility can be similarly
weakened to p-irreducibility in all other results where 7 is assumed to be an
invariant distribution.

Harris recurrence. Being able to show that a recurrent chain is Harris
recurrent is useful since it rules out the possibility of starting points from which
convergence is not assured. It may be worth adding a bit more on the nature
of such points, if they exist. If an irreducible, aperiodic chain with invariant
distribution « is not Harris recurrent and N is the set where convergence fails
in Theorem 1, then the probability of remaining forever in N is positive for any
starting point in N. Moreover, using Nummelin’s terminology, N is a w-null set
and is dissipative. This means it is a countable union of transient sets, that is,
sets for which the last exit time is finite with probability 1. Under fairly mild
topological regularity conditions, this requires that to remain in N forever the
chain must drift to co in the sense of visiting every compact set only finitely
often [Meyn and Tweedie (1993), Theorem 9.0.2].

Chan and Geyer give a useful sufficient condition for a variable-at-a-time
Metropolis scheme to be Harris recurrent. A key part of their argument can be
extracted as a more general version of Corollary 1.

COROLLARY 1*. Suppose P is w-irreducible and wP = w. For each n and each
x € E,let (PX(x, -),P(x, -)) be the Lebesgue decomposition of P with respect to .
Thatis, P (x, -) is absolutely continuous with respect to ., P*(x, -) is singular with
respect to ™ and

P*(x, ) =P(x, )+ P(x, -).

IfPY(x,E) — 1,thatis, the total mass of the absolutely continuous part converges
to 1, for all x € E, then P is Harris recurrent.

PrOOF. Leth be abounded harmonic function for P. The assumptions imply
that P is recurrent, hence A = wh m-almost everywhere. Thus, for any x € E,

h(x) = (Ph)(x) = (P"h(x)) = (P2h)(x) + P}(x, E)rh.

The second term on the right converges to wh by assumption, and, since k is
bounded, the first term converges to 0. Thus h(x) = wh for all x € E; that is, h
is a constant. O

In the case considered by Chan and Geyer, the absolutely continuous part
of P*(x, -) is its restriction to the set Sy, , and their argument shows that the
total mass of this component tends to 1.



1760 REJOINDER

Central limit theorems. Chan and Geyer and Robert presented a number
of useful results on central limit theorems. Chan and Geyer’s Theorem 2 fits in
between the two results I gave as Theorems 4 and 5. The requirement on the
convergence rate, geometric ergodicity, is stronger than ergodicity of degree
2 and weaker than uniform ergodicity; the requirement on the function f is
stronger than finite second moments under 7 but weaker than boundedness.

The most powerful central limit theorem available for Markov chains is prob-
ably the Kipnis—Varadhan theorem mentioned by Chan and Geyer. Its require-
ment of reversibility is not very restrictive in the Markov chain Monte Carlo
setting, since most chains can be modified to be reversible. Unfortunately, ver-
ifying finiteness of the asymptotic variance can be quite difficult.

Robert and Chan and Geyer provide a number of valuable references to the
stationary process and mixing approach to central limit theorems. There are
some special features of mixing conditions in a Markov chain setting that are
worth taking into account; these are summarized in the paper of Bradley ref-
erenced by Robert.

I would like to address a few points in Robert’s discussion. In subsection 1.3
Robert describes central limit results for ¢-mixing Markov chains. In a Harris
recurrent chain the condition of p-mixing is equivalent to the Doeblin condition.
This, in turn, is equivalent to uniform ergodicity [Meyn and Tweedie (1993),
16.2.3]. Thus this result is equivalent to the result I gave as Theorem 5, and
verifying p-mixing is equivalent to verifying a minorization condition. It can
be done in some cases, and sometimes it can be enforced, for example, by using
an appropriate hybrid chain, but I do not think it is quite as widely available
as Robert suggests.

In Section 1.4 Robert gives a result for p-mixing Markov chains. Since p-
mixing in a Markov chain must be exponentially fast if it occurs at all, a second
moment condition that f € L2(n) alone is sufficient. The additional conditions
listed by Robert are needed in the triangular array context considered in Rosen-
blatt (1971), Section 7.4, but not when considering a single f.

Regenerative analysis. Robert and Besag both point out the usefulness
of identifying regeneration times in a Markov chain. Such embedded renewal
processes are useful theoretical tools—they form the basis of the ergodic theory
developed in Nummelin (1984). They can also be of practical use in the context of
regenerative simulation analysis. The tours between renewals are independent
and identically distributed. This allows the use of statistical methods for i.i.d.
samples and also allows for parallel simulation, since there is no need to actually
run the tours sequentially.

But it is important to remember that any Harris recurrent chain will have
an embedded renewal process, even a chain that converges very slowly. A chain
for sampling a bimodal posterior distribution that only rarely moves from one
mode to another will typically have embedded renewal processes where the in-
terrenewal times are extremely heavy tailed; an example of such a process is
given in Mykland, Tierney and Yu (1993). To be of use for a regenerative anal-
ysis, an embedded renewal process must have a reasonably high renewal rate
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in order to produce a large enough sample size for variance estimation, but it
must also have a tail that is thin enough for the expected interrenewal time to
be estimated accurately. For such a sequence to exist, the chain must mix rea-
sonably rapidly. But even when such sequences exist, they are not necessarily
easy to find. Mykland, Tierney and Yu (1993) argue for the use of hybrid chains
designed to induce easily identified renewal sequences.

Some implementation issues. Doss gives a warning about the use of
importance weights to adjust a Markov chain sample from one distribution to-
ward another. The point is well taken. This problem exists in i.i.d. sampling
and can typically only be exacerbated in a Markov chain context. Unbounded
importance weights need to be used with caution. The idea of drawing a Markov
chain sample from an easily sampled distribution and reweighting it toward a
harder one is very tempting; it is unfortunate that the easily sampled distribu-
tions tend to be rather light tailed in many problems.

Besag makes an important point by suggesting that comparing sample sizes
needed to achieve a certain level of accuracy can lead to misleading conclusions.
In Besag’s example, one sampler P, requires a larger sample size than another
P, to achieve a given level of accuracy, but observations are cheaper to generate
from P, so that the accuracy obtained from P; for a given amount of CPU time
is actually greater than for P,. Similar considerations apply in several other
contexts. As one example, it has been pointed out that the common practice of
using only every kth observation from a chain of length kn to compute a sample
path average of a function f produces larger asymptotic standard errors than
to average f over the entire sample path of kn observations. This suggests
that subsampling is never a good idea. However, once the cost of evaluating
f is taken into account, the conclusion is much less clear. If f is expensive to
evaluate, or if there are many different f’s, then it may make sense to run a
longer chain with subsampling in order to reduce the total cost for achieving a
given level of accuracy. Variance reduction methods are yet another area that
must be considered carefully. Even when they reduce variances, which need not
always be the case for dependent sequences, the reduction may not warrant the
additional cost of performing the required computations when comapred to the
cost of running a longer chain.

Finalcomments. Atthetimemypaperwaswritten,thebook by Nummelin
(1984) was the most complete treatment of general state space Markov chain
theory available. Since then the book of Meyn and Tweedie (1993) has become
available. This monograph provides a more extensive and more accessible de-
velopment of general state space Markov chain theory than Nummelin (1984).
It also provides a number of useful results that take advantage of topolog-
ical properties of transition operators that are often available in statistical
problems. _

Markov chain Monte Carlo is an important new, or perhaps not so new, tool for
the analysis of complex statistical problems. The wealth of possible applications
is well illustrated by the examples given by the discussants and by many other
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papers in the recent literature. I hope that this paper and discussion can make
a contribution toward a better understanding of these methods and to the range
of possible methods that are available.
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