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NONPARAMETRIC ESTIMATION OF THE STATIONARY WAITING
TIME DISTRIBUTION FUNCTION FOR THE GI/G/1 QUEUE

By SusaNn M. PITTS

University College London

The GI/G/1 queueing model is regarded as a functional that maps the
service and interarrival time distribution functions onto the stationary wait-
ing time distribution function. By considering the output of the functional
when it is applied to nonparametric estimators of the input distribution
functions, we obtain a nonparametric estimator of the stationary waiting
time distribution function. Using appropriate continuity and differentiabil-
ity properties of the functional, we show that statistical properties of the
input estimators carry over to corresponding properties for the stationary
waiting time distribution function estimator.

1. Introduction. This paper is concerned with a classical stochastic
model, that of the GI/G/1 queue. Customers arrive in a renewal process to
a single server; are served in order of arrival, with successive service times
being independent, identically distributed random variables, independent of
the interarrival times; and then leave the system. Write us and ur for the
probability distributions [on the Borel sets of R, concentrated on (0, c0)] of the
service and interarrival times, respectively. In the above description, s and ur
are unspecified; fixing these fixes the stochastic evolution of the queue and, in
particular, fixes various quantities of interest. One of these is the stationary
waiting time distribution, which is defined when the traffic intensity

_ Jxus(dx)

=<1,
P= Txur(d)

in which case successive customer waiting times converge in distribution to a
proper random variable, called the stationary waiting time, with distribution
uw [see, e.g., Asmussen (1987), Chapter 8].

Here we consider the statistical problem of estimating the stationary waiting
time distribution function given random samples from each of the service and
interarrival time distributions. A functional approach is taken as in, for exam-
ple, Griibel and Pitts (1992), in that the. GI/G/1 queueing model is regarded as
a functional that maps the pair consisting of the service and interarrival time
distributions onto the stationary waiting time distribution. The nonparametric
estimator proposed in this paper is defined by evaluating the stationary waiting
time functional at the pair given by nonparametric estimators (the empirical
distribution functions) of the input distributions. Statistical properties of the
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resulting output estimator are obtained by combining corresponding properties
of the input estimators with local properties of the functional. This approach is
the same as that taken in Griibel and Pitts (1993), where a similarly defined
nonparametric estimator of the renewal function is studied.

This procedure may be compared to that taken in a parametric context, where
the input distributions are supposed to belong to certain parametric families
(e.g., they may both be assumed to be Erlangian). The parameters of the input
distributions are estimated from the data and any output quantity is then
“estimated” by calculating the corresponding quantity for a queue with the
estimated input distributions.

For this parametric approach, attention in the literature is focused on esti-
mation of the parameters of the input distributions, under various paramet-
ric assumptions and observation strategies, as in, for example, Basawa and
Prabhu (1988). A nonparametric approach is taken in Gaver and Jacobs (1988),
where a nonparametric estimator of the probability of a long customer delay
in an M/G/1 queue is studied in the case where the interarrival distribution
is known and a random sample from the unknown service time distribution is
available. This estimator is obtained by replacing an exponential approxima-
tion for the tail of the waiting time distribution by its empirical counterpart.
A non-functional approach to the problem of estimation of output quantities
for queues concerns inference from direct observation of the output processes
themselves [see, e.g., Heyde (1988) and the references contained there].

In Section 2 we introduce notation and give a precise description of the sta-
tionary waiting time functional in terms of harmonic renewal measures. We
also define the spaces that are to form the setting for the functional. Section 3
deals with continuity of the functional and strong consistency of our estimator.
In Section 4 we establish a suitable differentiability property of the functional,
which, together with an asymptotic normality result for the input estimators,
leads via the delta method [as described in Gill (1989)] to a corresponding
asymptotic normality result for the estimator in terms of convergence in dis-
tribution to a Gaussian process. The differentiability also leads to asymptotic
validity of bootstrap confidence bands in an appropriate function space for the
unknown stationary waiting time distribution function. These are simultane-
ous bands, having a different interpretation from that of pointwise bands and
allowing for consideration of global properties of the unknown Fy, for example,
whether Fy stochastically dominates some given stationary waiting time dis-
tribution function. In Section 5 results from van der Vaart (1991) are used to
obtain asymptotic efficiency of the estimator, again relying on the differentia-
bility of the functional. Section 6 contains an example and discussion, and the
proofs of the continuity and differentiability results are in the Appendix.

2. Definitions. Using the connection between the stationary waiting time
distribution and that of the maximum of an associated random walk, we give
a decomposition of the functional into several simpler maps. This connection is
described in, for example, Asmussen (1987).

Let {X,}, ¢~ be independent, identically distributed random variables with
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distribution p the same as that of S—T', where S and T are independent random
variables with distributions ug and pg, respectively. Throughout we assume
that the queue is stable, that is, p < 1, and that the distribution of S — T' is
not concentrated on (—oo, 0] since this case is not of interest for the stationary
waiting time. Let {Z,}, ¢ N, be defined by Z, = 0 and Z, = ¥}_ , X;, so that {Z,}
is a random walk with step distribution u. Then the stationary waiting time
distribution py is the same as that of the maximum of the random walk, and
we approach this distribution via harmonic renewal measures. Define the har-
monic renewal measure v(u) associated with a (possibly defective) probability
measure 4 by

oo 1 .
V(/"’)=Z£,uka
k=1

where 1** denotes the k-fold convolution of .. When p is proper, v(u) is an infinite
measure. Write p, for the (defective) distribution of the first (strict) ascending
ladder height of the random walk. The following two relations together form
the crux of our decomposition:

(1) v(uy)(A) = u(p)(A N (0, oo)) for all Borel sets A,
and, writing 7i(9) for the Fourier transform [ exp(ifx)u (dx) of p,
) aw(0) = exp{v(u.)"(6) — v(p,)R)} forall § € R,

where (1) is obtained from the Spitzer-Baxter equations [Feller (1971), 18.3]
and is discussed in Griibel (1989), and (2) is Spitzer’s identity for the maximum
of a random walk with drift to —oco [Feller (1971), 18.5], written in terms of
harmonic renewal measures. Thus the stationary waiting time functional can
be decomposed as

3) (ps, pr) = = v(p) — v(pe) = pw;

see also Griibel and Pitts (1992).

We need to translate (3) to a map taking the pair (Fs, Fr) of service and in-
terarrival time distribution fuctions to the stationary waiting time distribution
function Fi, and this requires specification of appropriate spaces for the domain
and codomain for the functional. Let D, be the space of right-continuous real-
valued functions on [—o0, co] with left-hand limits and left-continuous at oo; this
space provides a natural setting for distribution functions. However, we shall
see below that we need to consider weighted spaces of right-continuous func-
tions with left-hand limits. In order to motivate the introduction of these spaces,
we turn to a consideration of convolution. We need a definition of convolution in-
volving infinite measures. Let 3 be the set of real-valued functions H on R that
are right-continuous and nondecreasing and that satisfy lim, _, _ o, H(x) = 0. For
H in 3 and measurable g: R — R with the map x — g(¢ — x) integrable for all ¢
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in R with respect to Lebesgue-Stieltjes measure defined by H, the convolution
g~ H of g and H is given by

gxH(t) = / gt — x)H(dx).

If H, and Hy are in H and H, « H, exists, then so does Hy « Hy, and the two are
equal. Provided the relevant integrals exist, convolution powers of elements
of H can be defined by letting H*? be the indicator function I 10, 00) Of [0, 00)
and H** = H x H*®*~V for n in N. We define the harmonic renewal function V'
associated with a (possibly defective) probability measure p with distribution
function F and

4) / %|F(dx) < 00,  my = / <F(dx) > 0

to be
V(x) = v(u)((—o00,x]) forxinR.

From Heyde [(1964), Lemma 1], 0 < V(x) < co for allx in R, so Visin . If
is defective, then v(u) is finite and V can be extended to an element of D, by
defining V(oo) = lim, _, o, V(x) and V(—o0) = 0. However, when 1 is nondefective,
V is not in D, and so we consider other spaces as in Griibel and Pitts (1993).
For a real-valued function f on [-o00,o0] and « and 3 in R, let T,gsf be the
function from R to R defined by

(1+x)f(x), if x>0,

Tapf(x) = { (1+[x])F(x), if x < 0.

We write D,z for the set of real-valued functions f on R with T,z f extendable
to an element of D. For f in D,g, define

[ fllap = | Tapfloo;

where || - || is the supremum norm. Then D, is a nonseparable Banach space.
If 3 is negative, then D,z contains functions which do not have a finite limit
at +oco. Now let F be a distribution function satisfying (4) with finite second
moment my. The renewal function U associated with F is defined by

[ee)

Ux) =Y F¥x) forzinR.
k=0

Under the above conditions, from Daley (1980) we obtain

®) 0< V() < U < 2204 2
mi Yn1

where x V y is max{x, y}. By the elementary renewal theorem U is in Dy _1,

and (5) yields a bound on ||U||o, —1. From Alsmeyer [(1991), Theorem 1.2], we
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have V(x)/(1 +x) = o(1) as x — oo, that is, V is in Dy _;. We write C,p for the
set of continuous functions in D 4.

Let F = Fr x F_g, where F_g is the distribution function of —S, and let
V be the harmonic renewal function associated with F. Let V, be defined by
V(%) = v(p )(— 00, x]), where . is the right Wiener—Hopf factor for the random
walk with step distribution F_7 x F§g, so that, by (1), V.(x) = V(0-) — V(—x—)
for x > 0, where V(y—) = lim,4, V(¢). Then, from (2),

®) Fu(@) = exp{~ lim Vi(0)} Y 2 ViH)
k=0""

3. Continuity and consistency. Theorem 3.1 gives continuity of the sta-
tionary waiting time functional. Throughout, for n in Ny, let F , and Fr , be
the distribution functions of the service and interarrival times, respectively, for
a stable GI/G/1 queue, and let Fy , be the associated stationary waiting time
distribution function.

THEOREM 3.1. Assume [x2Fr ,(dx) < oo and [x"Fs ,(dx) < oo for some
v > 2,and

|Fs,n —Fs,olloy =0 and |Fr,—Frllcc =0 asn— oco.
Then

|Fw,» — Fw,ollcc = 0 asn — oo.

The proof of this theorem is given in the Appendix. Borovkov [(1976),
Section 21] gives sufficient conditions for continuity of the stationary wait-
ing time functional. His conditions are weaker than ours, requiring only the
existence of first moments and

/ «Fs n(dx) — / xFs o(dx) asn — oo,

However, we shall use the techniques developed in our proof when we go on to
consider differentiability of the functional.

Now suppose that Fs and Fr (and Fy) are unknown, and that {S,}, cn are
independent identically distributed random variables on a probability triple
(Q, A, P) with distribution function Fg, and {7}, }, <N are independent identi-
cally distributed random variables on Q,A, li) with distribution function Fp,
with {T},} independent of {S,}. Let Fs, and Fr ,, be the the empirical distri-
bution functions based on S, ...,S, and T4, ..., T,, respectively, so that, for x
in R and win Q,

Fsn(x,0)=n"1Y I oo (Siw) and  Fr(x,w)=n""Y I_q q(Tiw)).

i=1 i=1
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Define <I>(FS n,FT ) to be zero if the queue with input (Fs n,FT ») is not
stable and otherwise to be the stationary waiting time dlstrlbutlon function
FW » for the queue with this input; our estimator is ®(F. S, n> F. T,»). By the strong
law of large numbers, with probability 1, <I>(FS n,FT ») is well-defined as FW n
eventually.

For measurability purposes, we give D,z with its open ball (projection) o-
field, Dzﬁ [see Pollard (1984), Chapter 4, for details of this notion and of con-
vergence in distribution in nonseparable metric spaces]. It is straightforward
to check that the estimator evaluated at x in R is a random variable and hence
that the estimator is a random element of D,

An appropriate consistency result for the input estimators is provided by the
following weighted version of the Glivenko—Cantelli theorem.

LEMMA 3.2. Let {X;};cN be independent, identically distributed random

variables with continuous distribution function F. Let F w be the empirical dis-
tribution function based on X1, ..., X,. Then, for v > 0,

E(|X1VO[") <00 = ||Fy—Floy—0 asn — ocoalmost surely.
This is proved by rescaling the weighted Glivenko—Cantelli result for random
variables uniformly distributed on (0, 1), which is given in Shorack and Wellner

[(1986), 10.2]. Theorem 3.1 and Lemma 3.2 yield the following theorem.

THEOREM 3.3. Suppose that Fg is continuous with, for some v > 2,

/ x"Fg(dx) < oo, / x2Fp(dx) < 00.

Then, with probability 1,

|®Fs, n,Fr.n) — Figlloo = 0 asn — .

4. Differentiability, asymptotic normality and the bootstrap. We
show that the stationary waiting time functional is differentiable along cer-
tain curves of pairs of distribution functions. Let F_g ,(x) = 1 — Fg ,(—x—) and
g-s5(x) = —gs(—x-).

THEOREM 4.1. Assume [x"Fg ,(dx) < oo and [x"Fr ,(dx) < oo for some
v > 2. Assume that, for some continuous gs and gr in Dy,

IvVn(Fs,, —Fs,0) —gslloy = 0 asn — oo
and

|vVn(Fr , — Fr o) —grlloy = 0 asn — co.
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Then

VAW, » — Fiw,0) - @ip, rp&s, 80l — 0 asn — oo,

where

D(ps pp)(85,81) = —h % Fy, o,
U(-t), if t>0,
he) = 18" S ff 20,
07 lft<0,
g=g—S*FT,0+gT*F_S’O

and U is the renewal function associated with F_g o x Fr .

This is proved in the Appendix. The derivative (I)st, Fpy at (Fg,Fr)is alinear
bounded map from Dy, x Dy, to D.

The appropriate asymptotic normality result for the input estimators is given
next. Let B[= B(¢,w) for ¢in [0, 1] and w in ] be a standard Brownian bridge, and
let B o F be defined by (B o F)(x,w) = B(F(x),w). We call Bo F a Brownian bridge
rescaled by F. As in Pollard [(1984), Chapter 4], we say that random elements
{X,} in D, converge in distribution to a random element X in D3 and write
X, —q X asn — oo in D,g, if E(f(X,)) — E(f(X)) as n — oo for all real-valued
bounded continuous measurable functions f on D,s. For random elements X
and Y of D, we write X =; Y if X and Y have the same distribution.

LEMMA 4.2. Let {X;}ien, F and ff‘n be as in Lemma 3.2. Let v > 0 and
suppose that E(|X; V 0|7) < oo. Then, for every 0 < 8 < v/2,

n'%(F, —F)—»4BoF asn— coin Dyg.
This is proved using the corresponding result for uniformly distributed ran-
dom variables given in Shorack and Wellner [(1986), 3.7.1]; see also Pyke and
Shorack (1968). The result is translated to the general case by rescaling.

THEOREM 4.3. Suppose that Fs and Fp are continuous and satisfy
/ x?'Fg(dx) < 0o and / x2VFr(dx) < o0,

for some v > 2. Then
Vn(®(Fs,»,Fr,,) — Fw) =4 Z asn — oo in Do,

where Z is a Gaussian process obtained by applying the derivative of the sta-
tionary waiting time functional to the pair (B, o Fs,Bg o Fp) for independent
Brownian bridges B, and Bs.
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Proor. Apply Lemma 4.2 to obtain convergence in distribution in Dy,

2 < v < 4,o0f /n (Fs » — Fs) and of \/n (FT n — Fp). The limiting rescaled
Brownian bridges concentrate on a separable subspace of Dy, and so we can
apply the Skorohod-Dudley—Wichura theorem [see, e.g., Shorack and Wellner

(1986), 2.3.5] to. conclude that there exists a probability space Q,A4, P) and ran-
dom elements FS n=d FS ns FT n =d FT » and 31 and 32 independent Brownian
bridges, defined on this space such that, with P-probablhty 1,

Vn(Fs , —Fs) — ByoFs and Vn(Fr, , — Fr) — By o Fr in Do,

Fix @ in a set of 13-probabi1ity 1 such that the above relation holds and, in
addition,

& / xFs n(dx) — / xFs(dz) and / xFyp o(dx) — / x Fr(de).
Write
gs(x) = By (Fs(x),3) and gr(x) = By(Fr(x),3).
Using (7), eventually the conditions of Theorem 4.1 are satisfied, and we obtain
Vn(®(Fs ,,Fr,,) - Fy) — P(pg, rp)(8s,87) asn — co0in Do,

Write Z for the process obtained by applying <I>(Fs Fp) O the sample paths of

(31 ) FS,32 ) FT) Since this map is 11near and bounded, Z is Gaussian in D
Further, \/n (<I>(FS ,,,FT n) — FW) —q Zin D, and this implies that \/n (<I>(FS s
FT,n) —Fy) —q Z in D,

The process Z has zero means and its covariances can be calculated by track-
ing through the processes obtained at each stage of the decomposition of the
functional. Defining

oft,u) = / / Fr((t — %) A — ) F_s(d0F_s(dy)
+ //F_S ((t =) A (u — ) Fr(dx)Fr(dy),

we find that
COV(Z(t, ')7Z(u, ))
@ = / / / / (=t — % — v, —tu — y — WU (dV)U(dw)Fy(dx)Fy(dy)
[0,u] J]0,¢]

—2H x F(t)H * F(u),
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where
FxU(—x), ifx>0,
H(x) = -
) {o, if x < 0,
F =F_g x Fr and U is the renewal function associated with F.

In order to assess the precision of the estimator, some form of confidence re-
gion is needed. Since we regard the estimate as an element of D, it is natural
to consider confidence regions in this function space. This leads to a considera-
tion of simultaneous (rather than pointwise) confidence bands for the unknown
distribution function. It would be straightforward to obtain asymptotically cor-

rect 100a% confidence bands if the distribution of ||Z||., were known, because
if P(||Z|co < q(@)) = a and P(|Z]|s = g(a)) = 0, then Theorem 4.3 implies

P(\/'_lH‘I’(ﬁs,n,f’T,n) — ®(Fs,Fr)|leo < qla)) - a asn — oo,
However, this distribution is unknown. To deal with this problem we use the
bootstrap. Write F§ , and Fy, , for the empirical distribution functions based on

random samples of size n drawn from distributions IA"S » and f‘T », respectively.
For large n, we estimate the distribution of ||/n (<I>(Fs ,,,FT 2) — P(Fs, F1))||oo
by that of ||/n (<I>(F§ F; w)— <I>(Fs ,,,FT 2)|loo- Monte Carlo methods are used

to approximate the o quantlle gn(a) of the distribution of
V(25 . F, )~ 2(Fs,n Fr,) [
The confidence band is then calculated as
@(f’sy n,f‘T, ) &+ n~Y2 x approximation to g,(a).

The justification for this procedure is given next and depends on the differ-
entiability of the functional. The proof is not included here as it is a simple
modification of the proof of Theorem 2.3 in Griibel and Pitts (1993), which in
turn follows the steps given in Gill [(1989), Theorems 4 and 5].

THEOREM 4.4. Suppose 0 < o < 1. Assume that Fs and Fr are continuous
with

/ x2'Fg(dx) < oo, / *2Fr(dx) < oo,

for some v > 2. Then
lim P(Va|®Fs,n, Fr,n) — ®Fs, Fr)l|oo < Gnle) =

If interest is in Fyy(x) for fixed x, then modification of the above result gives
asymptotic validity of pointwise bootstrap confidence intervals for Fy(x). From
(8), var(Z(x)) is complicated, and it seems that studentization to improve the
order of accuracy of pointwise bootstrap confidence intervals is not practicable
in this case.
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5. Asymptotic efficiency. Asymptotic efficiency is used here in the sense
of van der Vaart (1991), and is related to a convolution theorem, Theorem 2.1
in van der Vaart’s paper. Efficiency of the stationary waiting time distribution
function estimator will be proved by first showing that (I - Fs ,,I—Fr ,)(where
I is I, o) is efficient for (I — Fg,I — Fr) in Dy, x Dy., and then using the
differentiability of the map taking (I — Fg,I — Fr) to Fy (v > 2, essentially
Theorem 4.1) and applying Theorem 3.1 in van der Vaart (1991); see that paper
for further details.

For v > 0, let P; be the set of probability measures u on R, concentrated on
(0, 00) with [ x27u(dx) < co. For p in Py, let

9 Ti(pw) = {g € Lo(p): /gdu =0, /le27g2(x)u(dx) < 00},

and let P1(u) be the collection of maps [0,1] — P, ¢t — w4, such that, as¢ | 0,

2
(10) / [—}{(du»m @V - %g(dmlﬂ] o,
for some g in T';(u), and
11) / |2 () — / %2 ().

For p in Pq, using the construction in Groeneboom and Wellner [(1992), page 7],
for every g in T() we can find a path in P;(u) such that (10) holds. We think
of us and 7 as elements of P;.

Let P be the set of probability measures 1 on (X, B) = (R?, B(R?)) [B(-) denotes
the Borel o-field] of the form p = us ® pur (® denotes product measure), where
us and pur are in Py. For p in P, let T'(u) be the set of g in Lo(u) with g(x,y)
= gg(x) + gr(y) for some gg in T;(us) and some g7 in T;(ur) [so that gg(x)
= [g(x,y)ur(dy) etc.]. Let P(u) be the set of paths [0,1] — P, ¢ — p; = ps  Qur,,
such that ¢ — pg ; and ¢ — ur , are paths in P;(ug) and P1(ur) satisfying (10)
with gg and g7, respectively. Then (10) is satisfied by {u:} with g = gs + g7. Let
k: P — Dy, x Dy, take pug ® ur to (I — Fg,I — Fr), where Dy., x Dy ., has norm
given by |[(f,g)|| = max{]|fllo,, lgllo~} for f and g in Do.,. Using (9~(11), we
have the following lemma.

LEMMA 5.1.  For p € P, there exists a bounded linear map «;,: T(p) — Dy X
Do such that (1/8)(k(ue) — k() — &,,(g) for every path in P satisfying (10).
Further, k,(g) = ([ 1., 8s dus, [ 1., 00) &r dur).

Following van der Vaart (1991), a regular estimator sequence T}, for « at u
in (B, A) = Dy, % Dy, Df 5 X Df 4) (D} 5 X Df  1s the product o-field) satisfies

(12) 'C’#,,-J/z [\/ﬁ(Tn — Ii(,unvx/z))] - L,
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for every path ¢ — p; in P(u), where L is a tight probability measure on (B, A),
and the convergence is convergence in distribution in (B, A). By Lemma 5.1
and the convolution theorem [Theorem 2.1 in van der Vaart (1991)], there ex-
ists a tight Borel measure N, on B with N,[«},(T())] = 1 and N, o b*~ 1=
N, ||Ry, b+ ||ﬁ) for all b* € B*, where B* is the space of all continuous linear
maps b*: B — R; ||f||i = [f2dpfor f in Ly(u); and K, 5+ in T(y) is the gradient
of x in direction b* given by b* o ), (g) = S Fu, pogdp for all g € T(p). By the
convolution theorem, L is the same as the law of the sum of two independent
random elements of (B, B(B)), one of which has distribution N,; an estimator
sequence T}, is asymptotically efficient for « at x in B [relative to T'(u) and P(u)]
if it satisfies (12) with L = N,,.

Let e, , be the map from (R, B(R")) to (D, 9357) that takes (x1,...,x,) to
I-(1/n)%} Iy, «), and let Eg , be eq ,(Sy,...,S,). Define

E,=(—Fs I —Fr )= (e1,,(S1, .., 80),e1,n(Th, ..., To).

LEMMA 5.2. Let v > v > 0 and assume that Fs and Fr are continuous,
[ %2 us(dx) < oo and [ %2 ur(dx) < co. Then E, is efficient for k at p = ps ® pr
in Dy, x Dy, [relative to T(p) and P(w)].

ProOF. Define w, to be the map taking f in Dy, to wu(f) = (To,f)w) in
R and consider Dy, = {wy: u € R}, a subset of D, . It is easily checked that
| flloy < sup,, €Dy, Twu(f)| for all f in Dy.,. Using (2.10) in van der Vaart (1991)
and noting that, for © > 0, the gradient of the map taking ug to I — Fg in
direction wy, is (1+u)"(I(,, () — (1 — Fs(u)), we have that w, o Eg , is efficient
for w, o (I — Fg). Furthermore, using the conditions on Fg and Lemma 4.2, we
have that {Lp,[\/n(Es, , —(I — Fs))]} is tight in the sense given in van der Vaart
(1991) and introduced by Dudley (1966). Hence, by Theorem 2.2 in van der Vaart
(1991), Eg_, is efficient for I — Fg in Dy,. The lemma follows by Theorem 4.1 of
van der Vaart (1991). O

Theorem 4.1 can be modified with 1/¢,,¢, — 0 asn — oo, replacing +/n every-
where. Suppose now that v > 2, and let U be the subset of Dy, x Dy, consisting
of pairs (I — Fg,I — Fr), where Fg and F7 are proper distribution functions with
Fs(0) = Fr(0) = 0, [x" Fs(dx) < oo, [ xY Fr(dx) < oo and [ x Fs(dx) < [ x Fr(dx).
Define ¥: U — D, to be the map taking (I — Fg,I — Fr) to Fyy. With probability
1, E, is in U eventually. When E, is not in U, set W(E,) = 0, so that ¥(E,) is
®(Fg, », Fr, ;). Then we see that the modified version of Theorem 4.1 means that
¥ is Hadamard differentiable at (I — Fg,I — Fr) in U tangentially to Cy, x Co,
[as in van der Vaart (1991); see Gill (1989)]. Applying Theorem 3.1 of van der
Vaart (1991) we obtain the following theorem.

THEOREM 5.3. Let ~' > v > 2 and suppose that Fg and Fp are continuous,
JxFs(dx) < [xFr(dx), fxz’yl Fs(dx) < 0o and [x?Y Fr(dx) < co. Then ¥(E,) is
efficient for Fy in Dy, relative to T(us ® pr) and P(us ® pr).
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F1G. 1. The distribution function Fy (dotted), the estimate (solid) and the bootstrap confidence band
(broken lines) for p = 0.5, n = 300.

6. Example. We illustrate the estimator for a GI/M /1 queue where the
interarrival times are uniformly distributed on (0,2) and the service times are
exponentially distributed with mean 0.5 (so p is 0.5). We simulate random sam-
ples from the input distributions and calculate (numerically) an approximation
to the resulting estimate using the program GG1WAIT in Griibel (1991), which
uses the fast Fourier transform algorithm. Figure 1 shows Fy, the estimate
and an approximate 90% bootstrap confidence band when n = 300 using 500
bootstrap repetitions.

In other cases studied, in order to maintain comparable discrepancies, n
needed to be larger for larger p-values. The most obvious feature is that the
bootstrap confidence band is of constant width. It might well be judged more
appropriate to have nonconstant-width simultaneous confidence bands for dis-
tribution function estimators, and this is an area for further investigation. One
way to achieve this would entail analysis of the functional as a map to Dy,,
v > 0. ‘

In summary, we have established continuity and differentiability properties
of the stationary waiting time functional, and these have been used to obtain
strong consistency, asymptotic normality, asymptotic validity of the bootstrap
and asymptotic efficiency of the stationary waiting time distribution function
estimator. Similar reasoning would yield asymptotic efficiency of the empirical
renewal function in Griibel and Pitts (1993). The proofs in the Appendix allow
for easy modification and extension to corresponding results for a variety of
stochastic models where quantities of interest are related to the Wiener—-Hopf
factors of a random walk. For other stochastic models, whether or not such
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an approach is fruitful depends on the analytic tractability of the functional
in question.

APPENDIX

We need to consider functions H: R — R with sup, |(Ty, _1H)(x)| < oo, but
with Ty _1H not necessarily extendable to an element of D,. For notational
convenience, we write ||H||o, _; for sup, |(Ty, _1H)(x)| in this case.

LEMMA A.1. Let ¢ > 0. There exists a constant c1(¢) such that

1% Hllo, -1 < c1(EI Fll2+¢, 0l Hllo, -1-

ProOF. The proof is similar to that of Lemma 3.2(i1) of Griibel and Pitts
(1993). For x < 0,

| x H(x)| < /

(=00,

Fa—yHEn+Y [ |G -y)lHE
o i/

—1,k]

<1 fllzse,0 1Hllo,—1+ Y Hk) Suf+1|f(y)|,

k=1 y<-

and H(k)supy < _ 5,1 |f(0)] < L+ Rk fllase, 0l Hllo, -1-
For x > 0 use similar arguments on noting that

L+ fxH(x)| <Q+x)7! f(_oo,x] |f(x — y)|H(dy)

+(1+x)—12130=1f(x+k—1,x+k]|f(x_y)|H(dy)‘ =

ProOF oF THEOREM 3.1. The proof of the lemma below is straightforward.

LEMMA A2. Let {F,},cnN, and {Gr}, e, be distribution functions with, for
nin Ny, F,(0) = 0and G,(0) = 1,and with G, in D.,, for some v > 0. Assume that

|Fr —Folloo — 0 and ||Gn —Gollyo =0 asn — oo.
Then
|Fn*Gp — FoxGolly0o =0 asn — oo.
The next lemma refers to stochastic ordering of distribution functions. For

distribution functions F and G, F is stochastically smaller than or equal to G,
F<G,ifl - F(x) <1-G(x)for all x in R.
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LEMMA A3. Lety > 0and p > 0. Let {F,},cn, be distribution functions
with, for all n in Ny,

/ |x|"F,(dx) < 00 and xPFp(dx) < o0,
(=00, 01 (0, c0)

and
|Fr — Follyo » 0 asn — oo.

Then there exists a sequence {Gp}, e N of distribution functions, with Ijy ) — Gy
inD.,, Gy X Fp,form >nand m=0,and |G, — Fy||,, = 0asn — oo.

Proor. Let G, = Fy V sup; , Fj, so that G, < Fj for j > n and j = 0. For
t <0,

(13) (1+¢))"|Gn(®) — Fo(®)| < sup ||Fj — Fo 0.
jzn

For any g > 0 and 0 < ¢ < ¢,

(14) (1+8Y1Gn(® = Fo®] < (1 +20)° sup||F; = Foll-o.
JzZ

For t > ¢,
(1 +1)°|Gn(t) — Fo(t)| < sup [Fi@®) = FoOl 7, > Fy 0} (&)
(15) < (@ oP (1 F®)
< /[t )(1 +x)°Fo(dx).

From (13), (14) and (15), |G, — Fyl|y» — 0. The remaining properties of G, are
easily checked. O

LEMMA A.4. Let {F,},cn, be distribution functions with, for all n and for
some 7y > 2,

/ < Fo(dx) > 0, / £?F(dx) < oo, / x|V F(dx) < oo
(0, 00) (= 00,0]

and '
|\Fr — Follyo = 0 asn — oo.

Let —M,, be the infimum of the random walk with step distribution F,, and let
Fyr n be the distribution function of M,. Then

|Fat,n — Fur,olloc 0 asn — oo.

Proor. By Lemma A.3 there exists a distribution function G, with positive
mean and finite second moment, such that G < Fy and G < F, for all n large



1442 S. M. PITTS
enough. For n and % in N, define
I, 00)s if k=1,

H,, = k-1 . 4
" N ORI Fy if k>2,

i=0

k=1

and

Hn,k
k b

so that, if V), is the harmonic renewal function associated with F,, we have
Vo — Vo = (F, — Fy) x Hy. Since ||H,ljo,-1 < ||[Ugllo, -1 < oo, where Ug is the
renewal function associated with G, we have |V, — Vy|lo,_1 — 0 as n — oo by
Lemma A.1.

Let V, . be the harmonic renewal function associated with the first strict
ascending ladder height for the random walk with step distribution lim,;.(1
—F(—x)). For x > 0 we have V,, .(x) = V,,(0-) — V,,(—x—) and, using (6),

|Fag,n (%) — Fag, o()|
< eXP{—Vn(O—)}|(Vn+ -Vou) *Jn(x)|

+|exp{~Va(0-)} — exp{~Vo(0)}| 3 2 Vi),
k=0 "

where
Io, o) if k=1,
Jn k= k-1
’ D Vrkl-Dvel i k> 1,
i=0
and
=1
Jn=) HJn,k.
k=1

For n large enough,
(Vs = Vo) x Jp(®)] < [|[Vay — Voullooexp{Vo(0—) + 1}.

Since ||V, — Vollo, -1 — 0 and ©£° ((1/EDVE#(x) < exp{V((0-)} < oo, the lemma
is proved. O

Theorem 3.1 now follows from Lemmas A.2 and A.4. O
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Proof of Theorem 4.1.

LEMMA A1, Let {F,},enN, and {Gr}, ¢, be distribution functions with, for
n in No and some v > 0, G, in D, Go(0) = 1 and F,(0) = 0. Suppose

Vi(F, —Fo) > f inDs and n(G,—Gy) —g in D.,
where f in Dy, and g in D. are continuous. Then
Vi, Gy, —FoxGy) > gxFo+f«Gy asn — 00 in D.y.
ProOF. For x < 0 and n large enough,

(1+ |x|)7|{\/ﬁ(Fn *Gp —FoxGo) — f Gy —g*Fo}(x)|
< [Wn(Gr = Go) - gllyo + IVAF — Fo) — flloo {|Gollyo + 1}
+(L+12])[(f % G — f x Go)()|.

For the third term, use the continuity of f to approximate it by a polynomial over
[0,%0], to > 0, and use lim, _, o, f(x) = 0. Similar arguments work for x > 0. O

The next lemma is the same as Griibel and Pitts [(1993), Proposition 3.11].

LEMMA A.2. Let {F,},cnN, be distribution functions and v > 2. Suppose
that, for all n,

/ xFo(dx) > 0, / x|"Faldx) < 0o and |Fn —Follr — 0 asn — oo.

Let U, be the renewal function associated with F,. Then
|Un — Uollo,-.1 — 0 asn — co.

LEMMA A.3. Let o and f3 be such that 0 < 3 < a < oo, and let g be in D..
Then, for each ¢ > 0, there exists a function g. which is a linear combination of
indicator functions of intervals of the form [a,b), —co0 < a < b < 00, such that

lg ~gellss <.
This is similar to Griibel and Pitts [(1993), Lemma 3.12].

LEMMA A.4. Let {F,},cnN, be distribution functions with, for all n and for
some v > 2, [xF,(dx) > 0 and [ |x|"F,(dx) < co. Assume that

|Vn(F, — Fo) —glly0 — 0 asn — oo,

where g is continuous and in D.,.. Let Fy ,, be as in Lemma A.4. Then

[VR(Fy, — Far,0) +h % Fig ollo = 0 asn — oo,
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where

_ (gxU-t), if t>0,
h(t)‘{o, if t<0,

and U is the renewal function associated with F.

PRrROOF. Let G be as in Lemma A 4. Using notation from that lemma, we
have

lvn(Vy, — Vo) —gx Ullo, -1

(16)
< ||(ValFn — Fo) — g) x Hally _y + g *Hn — g x Ullo, -1.

The first term tends to zero by Lemma A.1. For the second term, by Lemma A.7
we can find {g;}; e n such that g; is a linear combination of indicator functions
of intervals of the form [a, b), —0c0 < a < b < o0, with |lg; —g|ly v — 0asl — oo
for 2 < v/ < v, so that

lgxH, —g*Ullo,-1<|I(g —&)*Ullo, -1+ (g1 — &) * Hnllo, -1
+|lgixH, —g1%Ullo, -1-

It is easy to show that the first two terms on the right-hand side of (17) tend
to zero, using Lemma A.1 and ||H,|o, -1 < ||Ug|lo, -1 for all n large enough. For
the last term in (17) we use the following result.

If G; and G5 are distribution functions with positive means and finite second
moments such that G; < F,, < Gy, then, writing U; for the renewal function
associated with G;, i = 1,2, we have

(18) g1 * Hy, — g1 % Ullo, -1 < c2(gD||U2 — Uillo, -1,

where cy(g;) is a constant depending on g; but not on G; and G,. This follows
from

(17)

Mta, 5y * Hp — Ita, 5y x Ullo,—1 < (2 + |a| + |B]) [|Uz — Uillo, -1

and the triangle inequality. We apply Lemma A.3 to {F,, } and to the distribution
functions 1— F,,(—x—) to obtain G; and G5, each having positive mean and finite
second moment, with G; < F,, < G, for n = 0 and all n large enough, and such
that ||Uy — Usl|o, -1 is arbitrarily small. This is possible by Lemma A.6 since we
can choose G; and Gy arbitrarily close to F in || - ||,. Applying (18) we see that
lg*H, —g*Ullp, -1 — 0asn — oo, and so, from (16),

(19) VAV, — Vo) —gxUllo,.1 — 0 asn — oo.

Hence ||v/n(V,,+ — Vo) — h1|lc — 0 as n — oo, where, noting that g x U is
continuous,

g*xU0) —g+xU(-¢), if t> 0,
hi@) = .
0, otherwise.



STATIONARY GI/G/1 QUEUE 1445

Writing K, = 32 ((1/EDV; k we have

n+s

IVn(Far,n — Far,0) + b % Far ol oo
< lexp{=IVa+lloo} — exp{ —||Vo+lloo }| 171 * Kolloo
+||vVn(K, — Kp) — b1 * Kol oo

+| V7 (exp{=IIVaslloo} — exp{~IIVo+]})
+ exp{~ Vo oo }& * U(O)| | Kollco-

The first and the third terms tend to zero by (19). For the remaining term,

V(K. — Ko) — h1* Kol oo
< | (VaVis = Vou) = hy) xdu| o + [1B1 % I = b1 % Ko|oo

<[(VR(Vis = Vou) = hy) xdn|  + 18 * UO)] |J, — Kolloo
+||h*xJy — h *x Kploo-

By arguments similar to those of Lemma A.4, the first two terms can be made
arbitrarily small by taking n large enough. Note that & satisfies hA(¢) = 0 for
t < 0and A(t) — 0 as t — oco. Approximating h by a polynomial over [0, ¢] for
to large enough, we can show that ||k * J, — h x Kp||cc — 0 as n — oo, and the
lemma is proved. O

Theorem 4.1 now follows from Lemmas A.5 and A.8. O
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