The Annals of Statistics
1994, Vol. 22, No. 3, 1177-1194

COHERENT INFERENCES AND IMPROPER PRIORS!

By PATRIZIA BERTI AND PIETRO RIGO

Universita di Firenze

Formal posteriors for improper priors are investigated in connection with
coherence, both in the sense of Regazzini and of Heath and Sudderth. Those
priors 7 which are linked with the improper prior by the relation n(B) = 0
whenever v(B) < +oo are studied in particular. Moreover, a characteriza-
tion of the inferences which are coherent according to Heath and Sudderth
is found, and several examples, exhibiting several phenomena, are given.

1. Introduction. When facing a Bayesian inferential problem, a standard
practice is to use so-called improper priors. Roughly speaking, this means that
the inferrer does not explicitly state his initial opinions by assessing a proba-
bility on the parameter space ©. Rather, he selects an unbounded measure v
on © and declares the inference

Jlx, 6)v(db)
Jol(x, 0)y(d6)’

for each sample observation x for which the denominator of (1.1) is finite and
positive, I(x, -) denoting the likelihood of x.

In spite of its popularity, the substantial meaning of the aforementioned pro-
cedure is not totally clear. Indeed, when dealing with improper priors, different
authors intend different things. This circumstance can clearly give rise to mis-
understandings. A related shortcoming is that improper priors are sometimes
used mechanically, without uniquely specifying their role within the problem,
and this can lead to (presumed) paradoxes.

This kind of difficulty does not occur when the inferential analysis is based
on the notion of coherence. As far as coherence is concerned, it is immaterial
that the inference (1.1) is linked in a certain way with the improper prior v. The
only fundamental fact is whether (1.1) is coherent with respect to the other “in-
gredients” of the problem (i.e., the sampling model, the prior distribution etc.).

Since the inferrer has not assessed any prior probability on ©, however,
one such ingredient is not available. Hence, to test coherence of (1.1), some
probability = on © is to be selected. Plainly, any choice of 7 is acceptable and
leads on to some conclusion on the coherence of (1.1). Yet, it seems convenient
to pay particular attention to those n’s which are linked, in some reasonable
sense, with v. In other terms, it is plausible to suppose that « is able to give us
some rough (and partial) indication about the inferrer’s initial opinions.

(1.1) q(B) = BcCo,
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1178 P. BERTI AND P. RIGO

In most of this paper, 7 and + are assumed to satisfy
(1.2) v(B) <+00 = w(B)=0,

for each B C © in the domain of . Under this hypothesis, (1.1) is investigated
in connection with two distinct notions of coherence for statistical inference:
one proposed by Heath and Sudderth (1978), the other by Regazzini (1987).

Assuming v is not independent of the inferrer’s opinions, condition (1.2) is
able to grasp something of the latter. As a classic example, take © = R and
let v be the Lebesgue measure. In that case, when B is compact, the “ratio”
between v(B) and v(B°) is finite versus infinite; if 7 is asked to preserve such a
ratio, then imposing some form of (1.2) seems unavoidable. Looking back at the
general case, we also note that if - is supposed to be o-finite, under (1.2) there
is a countable partition {B,} of © such that =(B,) = 0 for each n. Thus, (1.2)
implies that 7 is not o-additive. Actually, in this paper all probability laws are
intended to be finitely additive.

A further remark concerns the two above-quoted concepts of coherence. A
discussion of the underlying ideas, as well as a comparison between them, is
beyond the aims of this paper. The interested reader is referred to Heath and
Sudderth (1978), Lane and Sudderth (1983), Regazzini (1987), Berti, Regazzini
and Rigo (1991) and Brunk (1991). Here we only point out that, in our opin-
ion, an inference is acceptable only if coherent in Regazzini’s sense. Indeed,
Regazzini’s definition has been obtained by applying to the inferential setting
a strengthened version of de Finetti’s coherence principle. On the other hand,
coherence in the sense of Heath and Sudderth is generally not fundamental in
order to regard an inference as acceptable. Nevertheless, if viewed as an op-
tional requisite, Heath and Sudderth’s coherence is surely interesting and is
important for many classes of problems.

Finally, this paper is organized as follows. Section 2 is devoted to some ter-
minology and notation. Section 3 includes a characterization of the inferences
which are coherent according to Heath and Sudderth. In Section 4 it is proved
that if 7 fulfills (1.2), then the inference (1.1) is coherent in Regazzini’s sense.
Moreover, at least for discrete models, a partial converse is obtained. Section
5 deals with the issue of identifying those priors = which are “permissible” for
(1.1) when the latter is coherent according to Heath and Sudderth. More pre-
cisely, conditions are given amounting to the existence of a prior 7 such that
the following hold: (i) 7 makes (1.1) a coherent inference; (ii) 7 satisfies (1.2), or
7 is (in some suitable sense) a limit of truncations of v or 7 is o-additive. It is
also proved that, under some assumptions, a necessary condition for (i) is that
(1.2) holds.

Moreover, throughout the paper several examples are given. In particular,
in connection with coherence in Heath and Sudderth’s sense, it is shown that,
unlike what is stated in Lane and Sudderth [(1983), Proposition 2.1], consis-
tency of an inference does not imply coherence. It is also proved that (1.1) can
result in a coherent inference without admitting any prior of one of the types
listed in (ii).
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2. Terminology and notation. In this paper, given any set S, the term
probability is meant as a nonnegative, finitely additive set function, defined on
some field § of subsets of S, and assuming value 1 at S. A probability x on F is
said to be diffuse whenever the singletons {s} are in § and u({s}) =0Vs € S.
Let 4 C § — {@}. A conditional probability on § x il is a function P: § x {{ — R
such that the following hold: (i) V H € 4, P(-| H) is a probability on § with
P(H|H) = 1; (i) (ENF|H) = P(E|F n H)P(F| H) whenever E, F € § and
FnH, He{l

Next, the same symbol that designates a subset of S designates its indicator
as well. Thus, if E C S, then E also denotes the function on S assuming value 1
on E and value 0 out of E. Moreover, P(S) designates the class of all subsets of
S, and L(F) denotes the family of bounded, §-measurable functions f: S — R.

Let us turn now to the notation specifically connected with an inferential
problem. As usual, X and © are nonempty sets to be regarded, respectively,
as the collection of possible outcomes of an experiment and the collection of
possible realizations of a random parameter. Also, X, © and X x © are equipped
with o-fields of subsets Ax, Ae and A; in particular, A coincides with the product
o-field Ax ® Ao.

If C is a subset of X x ©, then C* := {6: (x, §) € C} and Cy := {x: (x, §) € C}
denote the sections of C with respect to (w.r.t.)x € X and § € ©. Similarly, given
a function ¢ on X x O, ¢* and ¢y are the functions, on © and X, respectively,
defined by ¢*(6) = ¢(x,0) and ¢o(x) = ¢(x,6). Let pg and g, be probabilities
defined, respectively, on P(X) and P(0) (or, possibly, on Ax and Ag). Then the
integrals of ¢y and ¢* w.rt. py and g, are also written as py(¢s) and q.(¢*),
that is,

Po(do) = / 6(x, Opo(dx) and qu(d) = / 6(x, 0)q.(d0).

Finally, the above integrals, as well as all the integrals included in this paper,
are to be intended in the sense of Dunford and Schwartz [(1958), Chapter 3].
However, we point out that, in the particular case where the integrand f is
measurable and the involved measure v is o-additive, [ f dv can be equivalently
regarded as a Lebesgue integral.

3. Some results on coherence in the sense of Heath and Sudderth.
The main result of this section is a characterization of the inferences which are
coherent according to Heath and Sudderth (in short, HS-coherent inferences).
In addition, some remarks are given together with a counterexample.

Let us start by introducing the notion of HS-coherence [Heath and Sudderth
(1978)]. A (sampling) model is a mapping p on © which associates a probability
po on P(X) with each 6 in ©; likewise, an inference is a function ¢ on X which
associates a probability g, on P(©) with each x in X. Moreover, any probability
7 on P(O) is said to be a prior. For a fixed model p, each prior 7 induces a
probability r on P(X x ©) given by r(C) = [ps(Cp)n(d8) for C C X x ©. In its
turn, r induces a probability m on P(X), also called the marginal of = on X,
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by setting
(3.1) m(A)=r(A x©) = /.pe(A)ﬂ'(dG) VACZX.

We are now able to state the concept of HS-coherence.

DEFINITION 3.1. An inference q is HS-coherent, w.r.t. a given model p, if
there exists a prior 7 such that

(3.2) / / $(x, O)po(dx)n(do) = / / 6(x, 0)qu(dOImldx) V¢ € L(A),

where m is defined by (3.1). Moreover, if (3.2) holds, then ¢ is said to be a
posterior for # and/or 7 is said to be a prior for q.

From now on, it is assumed that a model p has been assigned, so that any
statement is to be referred to the fixed model p. In addition, we denote by V
the class of HS-coherent inferences. The following (drastic) example shows that
V #@; note, however, that, for a fixed prior 7, it may be that a posterior ¢ for =
does not exist.

EXAMPLE 3.2. Pick ¢ € © and take the prior as 7 = §; and the inference as
qx = & for every x, 6; denoting the unit mass at ¢. Then, the marginal m of 7 on
X is given by m(A) = [pe(A)m(d) = p,(A) for each A C X. Hence

/ qu(d*Im(dx) = / 546 pald)
- / $x, Opu(d) = puldy) = / poldo)n(dd) ¥ b€ LIA).

The following theorem provides a criterion for testing whether an inference
is the posterior for a certain type of prior.

THEOREM 3.3. Let {q"} be a sequence of elements of V; for each n, let m, be
a prior for q* and let m, be the marginal of ©, on X. Given an inference q, the
following statements are equivalent:

() inf, [lg?(¢*) — q2(¢™)Im,(dx) <0 V ¢ € L(A);
(ii) there is a probability p on P(N) such that

// [a2(¢") — q=(¢°)|mn(dx)uldn) =0V ¢ € L(A);

(iii) there is a probability u on P(N) such that q is a posterior for the prior
7(+) = [ 7,(-)uldn).
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ProOF. [(i) = (ii).] Let F be the set of functions f: N — R defined by
fn) = / [4%(6") — qu(¢)]ma(dx) Vn €N,

for ¢ varying in L(A). Clearly, F is a linear space of bounded functions and, by
(),inf f <0 V f € F. Hence, by a suitable version of the separating hyperplane
theorem [Heath and Sudderth (1978), Lemma 1], there is a probability x on
P(N) such that [fdu <0V f € F. Since f € F implies —f € F, it must be that
Jfdu=0VYf € F, and this amounts to (ii).

[(ii) = (iii).] Let 7(B) = [ m,(B)u(dn)V B C ©. Then 7 is a probability on P(0),
and [g(0)n(df) = [ [g(0)m,(dO)u(dn) for every bounded g: © — R. Accordingly,
the marginal of = on X is given by

m(A)=/pg(A)w(d9)=//pg(A)ﬂn(dG)p(dn)=/mn(A)u(dn) VACZX.

Fix ¢ € L(A). Then

(3.3) / poldo)n(do) = / / po(do)mn(dO)pu(dn) = / / (S Ima(d)dn),

where the second equality depends on the fact that ¢” is a posterior for =,.
On the other hand, since [f(x)m(dx) = [ [f(x)m,(dx)u(dn) for every bounded
f: X — R, one obtains

/ qu(¢)mi(dx) = / / (S Imn(d)dn)
(3.4)

/ / 1) — qul @) ma(do)u(dn).

Hence, comparing (3.3) with (3.4), condition (ii) implies that q is a posterior
for =.

[(iii) = (i).] Since it is trivial that (ii) = (i), it suffices to prove that (iii) =
(ii), and this follows from (3.3) and (3.4). O

As a consequence of Theorem 3.3, it is possible to state the following charac-
terization of HS-coherent inferences.

COROLLARY 3.4. Let q be an inference. Then q is in V if and only if there is
a sequence {q"} C V such that condition (i) of Theorem 3.3 holds.

The remaining part of this section includes a few remarks concerning some
results of Heath, Lane and Sudderth. Recently, Heath and Sudderth [(1989),
Theorem 3.1] have stated that an inference q is HS-coherent if and only if there
is a sequence {g"} C V such that

3.5) lim / sup|q”() — qx(g)|ma(dx) = 0
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where g varies in {f € L(Ae): sup|f| < 1} and, as usual, m, is the marginal on
X of some prior 7, for g”. Now, once a particular sequence {¢"} C V is fixed, it
is easily shown that (3.5) implies condition (i) of Theorem 3.3 but the converse
is not true. In this sense, in order to test HS-coherence, condition (i) seems to
be a more flexible tool than condition (3.5). Indeed, while (i) implies that q is a
posterior for 7(-) = [ 7,(-)u(dn), for some particular y, (3.5) implies that q is a
posterior for any prior in a certain class.

COROLLARY 3.5.  Let q be an inference. If a sequence {q"} C 'V exists such that
(3.5) holds, then n(-) = [ m,(-)u(dn) is a prior for q, for every diffuse probability
non P(N).

PROOF. Let F be as in the proof of Theorem 3.3. Under (3.5), lim f(n) = 0
V f € F. Thus, for a fixed diffuse p, condition (ii) of Theorem 3.3 is satisfied for
such p. O

We also note that Corollary 3.5 implies (the nontrivial part of) the result of
Heath and Sudderth, so that the latter actually holds. Yet, their proofis not tech-
nically correct. To make this point more precise, we need one more definition.
An inference q is said to be consistent with a model p if there are probabilities
m on P(X) and 7 on P(O©) such that [ pg(pe)m(d) = [ g.(¢*)m(dx)V ¢ € L(A), or,
equivalently, if

(3.6) ilé}f Polde) < supq.(¢*) V¢ e L(A).

In a 1983 paper, after having introduced the notion of consistency, Lane and
Sudderth [(1983), Proposition 2.1] claim that consistency of ¢ with p is equiv-
alent to HS-coherence of ¢ (w.r.t. p). In their 1989 paper, Heath and Sudderth
show that (3.5) implies (3.6) and, basing themselves on the quoted 1983 state-
ment, conclude that (3.5) implies HS-coherence of q. However, unless suitable
measurability constraints hold, consistency of ¢ with p does not imply HS-
coherence of q. The latter assertion is proved by the following example.

ExXAMPLE 3.6 (Consistency of ¢ with p does not imply HS-coherence of g
w.r.t. p). Given the finite sets X = {x1,...,x4} and © = {6y, 6,}, define p and ¢
as follows:

Po, =30 +8n),  Po,=3(0x +8x),  n=dm =, Ty = qay = by,

where 6; denotes the unit mass at . Suppose now that Ax and Ag are taken to
be Ax = {D, X, {x1,x2}, {x3,%4}} and Ag = P(©). IfC = A x B, where A = {1,229}
or A = {x3,x4} and B = {6} or B = {6}, there is an x such that ¢,(C*) = 1. Since
every ¢ € L(A)is constant on such sets A x B, it mustbe that sup, q.(¢*) = sup ¢.
Therefore (3.6) holds, that is, g is consistent with p. On the other hand, let 7 be
any probability on P(©) and let m be the marginal of 7 on X. If 7 is a prior for
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g, then setting C = {x1,x0} x {61} yields

w((61)) = [ polComnds) = [ gu(CImia@ =m({)) = dn((0n)),

so that 7({61}) = 0. However, for C = {x3,x4} x {62}, the same argument gives
w({62}) = 0, a contradiction. Hence, q is not HS-coherent w.r.t. p.

It can be easily shown that if the function x — q,(B) is Ax-measurable for
all B € Ao, then consistency of ¢ with p implies HS-coherence of ¢ (w.r.t. p). In
other terms, consistent measurable inferences are HS-coherent. Indeed, asking
measurability for ¢ is not an actual constraint in most practical problems.

4. Coherence, in Regazzini’s sense, of a formal posterior for an im-
proper prior. Inthe restofthis paper, contrary to Section 3, the various prob-
ability laws (i.e., pg, qx, 7,r and m) are intended to be defined on the o-fields
Az, Ae and A, and not necessarily on P(X), P(©) and P(X x O). In addition, it
is assumed that

{x} e Ax and {f} € Ao V(x,0) e X xO.

Let v be an improper prior, that is, a c-additive and o-finite measure v: Ag —
[0, 0] such that v(©) = +oo. Let us suppose that the model p is “dominated,” in
the sense that there are both a finitely additive measure A\: Ax — [0,00] and a
function I: X x © — [0, co) such that

4.1) po(A) = / I, OMdx) VOO VA€ Ax.
A

Suppose also that, for every fixed x € X, the function § — l(x, #) is Ag-measurable.
Under these assumptions, define

o) = / Ix,00/(dB) Vx e X,
Then, after setting D = {x: 0 < p(x) < +o0}, any inference q such that
4.2) 0.(B) = —— / I(x,00y(d0) VxeD,VBeAo

p(x) /B

will be called a formal posterior (for «y). Plainly, it is tacitly assumed that D # @.

This section is essentially concerned with dF-coherence, that is coherence in
Regazzini’s sense [Regazzini (1987)], of a formal posterior. In particular it is
shown that, provided that the inferrer’s initial opinions are linked with v in a
certain manner, there always exists a dF-coherent formal posterior.

Let us introduce the notion of dF-coherence. Let p be a model [not neces-
sarily the dominated model (4.1)], = a prior on Ag and r any probability on A.
Briefly, an inference q is dF-coherent, w.r.t. (p,n,r), if all the “ingredients” of
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the problem (i. e , p,m,r and q) are restrictions of the same conditional proba-
bility on A x A° , where A=A — {@}. In this sense, a dF-coherent inferrer is
actually Workmg with a conditional probability on A x A°. We refer to Regazzini
(1987) for the precise definition, since we need only the following characteri-
zation, which is a slightly different version of Theorem 2.2 of Berti, Regazzini
and Rigo (1991).

THEOREM 4.1. Let p be a model, 7 a prior on Ag and r any probability on A.
An inference q is dF-coherent, w.r.t. (p,w,r), if and only if the following hold:

(a) m7(B)=r(XxB) VBEcAeg;
(b) po(Ar(xx {0}) =r(Ax{6}) VOO, VAE Ay;
(c) qx(B)r({x} x©) =r({x} xB) VxecX, VBe Ag;

HPGL {xz+1} qx; {9} HPGL {xz qx,+1({9 })
(d)
Hpe {%:})qx ({6:41}) = Hpo”1 {x:})a= ({6:3),

i=1

Vxi,...,%, € X, V01,...,6, € O, %1 = %1, Ops1 = 61 and r({x;} x ©) =
r(xx{6;})=0Vi.

Let m be a prior on Ag. After selecting a probability @ on P(©) such that
a(B) = n(B) for B € Ag, define

4.3) 7C)= [ pulCoatdn) VCea.
Further, let g be the formal posterior such that, for x ¢ D,

r({x} xB) . 3
44 B = rw <o) TriExe)>o,

d.(B), ifr({x} x©) =0
where B € Ag and d, is any diffuse probability on Ae.

PROPOSITION 4.2. Let y be an improper prior, p the model (4.1), & a prior
on Ag,r the probability (4.3) and q the inference defined by (4.2) and (4.4). A
sufficient condition for q to be dF-coherent, w.r.t. (p,w,r), is that

(4.5) VBe€ Ag, ¥(B)<+o00 = w(B)=0.

ProoF. By Theorem 4.1, it suffices to verify conditions (a)-(d). First, (a)
and (b) are direct consequences of (4.3). Second, (c) trivially holds for x ¢ D.
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Let x € D. Then l(x, ) is y-integrable, and (4.5) implies that any v-integrable
function g is such that [ gdr = 0. Hence

r({x} x ©) = /pg({x})a(dO) = /)\({x})l(x, 0)old6) = A({x}) /l(x, 0)r(df) = 0,

so that (c) is satisfied. Third, to check (d), fix x1,...,x, with r({x;} x ©) =0V i.
If there is an index i with x; ¢ D, then, since g, is diffuse, (d) is trivially true.
On the other hand, if x; € D V i, then (d) follows by a direct calculation. O

At least for discrete models, Proposition 4.2 has a partial converse.

PROPOSITION 4.3. Let © be a topological space, let Ag be a o-field including
the compact sets, and let p,m,r and q be as in Proposition 4.2 [without asking
(4.5)]. Suppose there is an xy € D such that \({xo}) > 0 and l(xo, -) is continuous
and strictly positive. Then a necessary condition for q to be dF-coherent, w.r.t.
(p,m,r), is that ©(K) = 0 for every compact K.

ProoF. Since A({xo}) > 0 and I(xg, )A({xo}) =pe({xo}) <1, 1(xp,") is bounded
and hence 7-integrable. Let a = [ I(xo, 0)7(d6). Since I(xo, -) is continuous and
strictly positive, it suffices to prove that a = 0. Suppose on the contrary thata €
(0, +00), and define 7*(B) = a1 fB l(x0,0)m(d6)VB € Ag.Then, since A({xp}) > 0,
condition (c) of Theorem 4.1 implies that 7* = q,,. In particular, since xy € D, 7*
is o-additive. Decompose 7 as 7 = 71 + w3, where 7 is o-additive and 75 is a pure
finitely additive measure [cf. Bhaskara Rao and Bhaskara Rao (1983), Theorem
10.2.1]. Let 75(B) = a1 fB l(xg, O)mo(dB). If m3(©) > 0, then 7} is easily shown to
be non-c-additive. Hence, o-additivity of 7* implies 73(©) = 0, that is, 7* has the
density a=(xo, -) w.rt. the o-additive measure ;. Thus [[1/l(xq, O)l7*(d8) =
a~!m1(0) < +oo, while [[1/1(xy, §)lqy,(df) = +00, a contradiction. Hence,a =0. O

EXAMPLE 4.4. Let p be an exponential family, so that

k
U(x,0) = exp < > ai(0bx) - c(6)> :

i=1
where the a;’s and ¢ are Ag-measurable. Given any improper prior v, let g be a
formal posterior. By Proposition 4.2, q is dF-coherent w.r.t. (p, 7, r), whenever 7
satisfies (4.5) [and g, is defined as in (4.4) for x ¢ D]. Further, suppose Ag is the
Borel o-field on some © C R™, the a;’s and ¢ are continuous and A({x}) > 0 for
all x. Then, in view of Proposition 4.3, the only possibility to make q dF-coherent
is that = vanishes on compact sets.

Before leaving this section, we introduce a certain class of priors satisfying
condition (4.5). Let 1 be a diffuse probability on P(N), and let {V},} be a sequence
of elements of Ag such that V,, 1 © and 0 < 4(V,,) < +oo. Then, setting

(4.6) (B) = / ﬁi—@@mdn) VB e Ao
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yields a probability = on Ag. Furthermore, since p is diffuse, one obtains

YBNV,)
Y(Va)

In particular, since v is o-additive and v(©) = +oo, 7 fulfills (4.5). Incidentally,
(4.7) also shows that Proposition 4.2 generalizes some results of Regazzini
[(1987), Section 3].

The next example shows that not every  satisfying (4.5) admits representa-
tion (4.6).

4.7 m(B) = li’fn whenever B € Ag and the limit does exist.

EXAMPLE 4.5. Let © =R, let Ag be the Borel o-field, let v be the Lebesgue
measure and let € = {B € Ag: v(B) < +00 or v(B°) < +o0o}. It is easily checked
that Cis a field and that, setting 7(B) = 0 or 7(B) = 1 according to v(B) < +oo or
v(B) = +00, T turns out to be a probability on €. Hence, 7 has an extension 7 to
Ae which is still a 0-1 probability. Plainly, (4.5) holds for . Yet, representation
(4.6) fails whatever the sequence {V,} may be. In fact, given {V,}, there is a
B € Ag such that (B N'V,) = (1/2y(V,,) V n, so that [[v(B N V,,)/v(V,)lu(dn)
= 1/2#m(B) for each probability 1 on P(N).

A result about the 7 in (4.6) is included in the next section. Here we note
that, assuming that v has some connection with the inferrer’s opinions, such a
7 is a reasonable candidate to describe the latter. Actually, besides satisfying
(4.5), 7 is, in some sense, a “limit” of truncations of v. Thus, by suitably choosing
these truncations (i.e., the sequence {V, }), it is sometimes possible to reproduce
some features of v which are seen as significant for the problem at hand. For
an example, see Heath and Sudderth [(1978), Section 4].

5. In search of a prior for a formal posterior. Throughout this section,
q always denotes a formal posterior. According to HS-coherence, q is “permissi-
ble” if and only if it is the posterior for some prior. When this happens, however,
there is usually more than one prior for q. Indeed, it is quite possible that every
probability on Ag is a prior for ¢ [see also Brunk (1991), page 842].

ExAMPLES.1. LetX =[0,00)and © = {0,1,2,...};let Ax be the Borel o-field
and Ag = P(0); let X be the Lebesgue measure; let I(x,6) = 1ifx € [6,6+ 1), and
l(x,0) = 0 otherwise. Taking v as the counting measure yields g, = 6}, where
1) denotes the unit mass concentrated on the integer part of x. Hence, for fixed
0 € © and ¢ € L(A),

/ :(F)po(dz) = / 4u(¢)po(dx) = / oz, O)po(dx) = po(d),
[6,60+1) [6,6+1)

and this clearly implies that q is a posterior for  whatever T is.

In real problems, the situation is not so extreme as in Example 5.1, and
the possible priors for g are often bound to belong to some particular class of
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probabilities on Ag. Hence, it is useful to give conditions implying either the
existence or the nonexistence of priors of a given form. The present section
is just concerned with the identification of those priors which are behind an
HS-coherent q. Specifically, we are interested in three kinds of priors: those
satisfying (4.5); those of the form (4.6); and o-additive priors.

Henceforth, we assume the following hypotheses:

(56.1) D € Ax and \D°) =0;
(5.2) A is o-additive and o-finite;
(5.8) l: X x © — [0,00) is A-measurable.

Condition (5.1) is clearly needed in order to define ¢ uniquely, up to A-null
sets. Conditions (5.2) and (5.3) are essentially for applying Fubini’s theorem,
which, as will become apparent, is a basic tool in dealing with HS-coherence of
q. Note also that, under (5.1)—(5.3), there are no measurability problems.

As noted in Section 1, according to us an inference is acceptable precisely
when it is dF-coherent. Consequently, before analyzing any other requisite of
q, we must check its dF-coherence. The following corollary of Theorem 4.1 shows
that if ¢ is a posterior for some prior 7 and if g, is suitably defined for x ¢ D,
then q is dF-coherent w.r.t. p, 7 and a particular r.

COROLLARY 5.2. If q is a posterior for some prior 7, and if q, is a diffuse
probability on Ag for x ¢ D, then q is dF-coherent w.rt. (p,m,r), where r(C) =
fpa(Ca)?T(de) VCeA.

After these preliminaries, we begin to give conditions which amount to the
existence of priors satisfying (4.5).

PROPOSITION 5.3. There is a prior « for q such that v(B) < +co = 7w(B) =0
if and only if

(5.4) Ye>0,V¢e LA, 7({9: Poldg) — /qx(¢")pa(dx) < e}) = +00.

Proor. Let Z be the set of functions f: © — R defined by

£(6) = polga) / 4:(¢)po(da),

for ¢ varying in L(A); 7 is a prior for ¢ precisely when [ fdr =0V f € Z. Suppose
now that there are ¢ and € such that (5.4) fails, and denote by f the element of Z
associated to ¢. If 7 is such that v(B) < +co = 7(B) =0, then 7({6: f(6) < e}) =0,
and hence [fdr > e. Conversely, assume that (5.4) holds. Let M = {f +g: f
€ Z,g € L(Ap), g is y-integrable}, and let = 0 on M. If suph > OV h c M,
then the Hahn—Banach theorem implies that T can be extended to L(Ag) as a
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positive linear normed functional. Then the restriction 7 of T to Ag is a prior
for ¢ such that v(B) < +c0o = n(B)=0.Fixe > 0, f € Z and g € L(Ag), where
g is y-integrable. Let B = {0: f(#) > —¢}. Since Z is a linear space, (5.4) gives
~v(B) = +00, and this implies that g cannot be uniformly negative on B. Thus

sup(f+g)zsgp(f+g)231;p(—5+g)2—e. O

We now give three results implying that, under some assumptions, the pos-
sible priors for q are to be sought among those satisfying (4.5), or at least some
form of (4.5). The first one is an immediate consequence of Proposition 4.3 and
Corollary 5.2, and can be useful when dealing with discrete models. The other
two arise from the observation that, for fixed x € D, q, is absolutely continu-
ous w.r.t. v, in the sense that ¢,(B) — 0 as y(B) — 0. Hence, it is natural to
investigate what happens when such absolute continuity is uniform in x € D.

COROLLARY 5.4. Let © be a topological space, and let Ag be a o-field in-
cluding the compact sets. Suppose there is an xo € D such that A({xo}) > 0 and
l(xg, ) is continuous and strictly positive. Then a necessary condition for q to be
a posterior for some prior 7 is that w(K) = 0 for every compact K.

ProposITION 5.5. If I is strictly positive and, for any fixed B € Ao with
Y(B) < +00,

(5.5) lim sup q.(V) = 0,

i
+(V)>0,VCB zcp

then a necessary condition for q to be a posterior for some prior « is that (4.5)

holds.

PROPOSITION 5.6. Let © be a o-compact subset of R¥, and let Ao be the Borel
o-field. Suppose that l is strictly positive, q satisfies (5.5) when B is compact, v is
finite on compact sets and there is an A € Ax with M(A) > 0 and {0: pe(A) > ¢}
has compact closure for every € > 0. Then a necessary condition for q to be a
posterior for some prior w is that w(K) = 0 for every compact K.

In order to prove Proposition 5.5, fix a prior 7 for ¢. Since 7(V) = [ g.(V)m(dx),
where m is the marginal of m on X, condition (5.5) clearly implies that = is
absolutely continuous w.r.t. v on B, for every B such that v(B) < +oco. But then
m is o-additive on all such B’s, so that it is enough to prove the following lemma.

LEMMA 5.7. Let [ be strictly positive. If 7 is a prior for q which is o-additive
on B, for every B € Ag such that v(B) < +o0o, then n(B) = 0 for all such B’s.

PrROOF. As in the proof of Proposition 4.3, decompose 7 as 7 = 7, + mg,
where 7 is o-additive and my is purely finitely additive. Suppose that 71(0) > 0.
Under this assumption, define 7(-) = m1(-)/m1(0), glx) = [ I(x,0)7(dF), G = {x: 0
< g(x) < +o0o} and g,(B) = [1/g(x)] fB I(x,0)7(dO) for B in Ag and x € G. By
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Fubini’s theorem, it is easily verified that 7 is a prior for g. Now, let B € Ao
with v(B) < +o0o and A € Ax with my(A) = 0, where my(F) = [ pg(F)me(db) for
F € Ax. Since 7 is o-additive on B, mo(B) = 0. After fixing A and B in such a
way, define the o-additive measures r; and ry on A by

ry(C) = / (BN CHx),  ro(C) = / G(BNCHRdx) VCeA,
A A

where m is the marginal of 7 on X. Using mg(A) = m3(B) = 0, g is a posterior
for 7 and q is a posterior for «, one obtains r; = ry. In particular, since [ is
strictly positive,

5.6) ~(B) / £

If A(A) € (0, +00), (5.6) is absurd, since B can be chosen such that v(B) is arbi-
trarily large. Hence, if A(A) € (0, +00), it must be that 71(©) = 0 and the proof
is concluded. We show that, actually, there is an A with ms(A) = 0 and A(A) €
(0, +00). Since ) is o-finite, it is easily checked that there is an A with A(A)
(0;+00) and [, pdX < +oo. Then y({#: ps(A) > £}) < +oo for every € > 0, for
otherwise [, p(x)X\(dx) = [ pg(A)v(df) = +oo. Thus me({6: ps(A) > €}) = 0 for
every € > 0, so that mo(A)=0. O

)\(d )_/l( H)rl(dx df) = /l( H)rg(dx df) = T(B)A(A).

As far as Proposition 5.6 is concerned, its proof essentially coincides with that
of Proposition 5.5, by considering compact sets instead of sets B with v(B) < +o0.

EXAMPLE 5.8. Let X = © = R, let Ax = Ag be the Borel o-field and let
be the Lebesgue measure. Suppose that [ > 0, A\(D°) = 0 and, for x € D, g, is
symmetrical and unimodal around its median m, with q,((m, — ¢, m, +¢)) <
qx,((my, — €, my, + ¢)) for all sufficiently small € > 0 and some x, € D. For
instance, this is the case when x; = 0, \ is the Lebesgue measure and I(x, §) =
f(x — 60), with f > 0 even and unimodal. Then (5.5) holds. In fact,

¥(V) ¥(V)
(V) < qx ((mx - Ty my + T))
< Qx, ((mxo - @a my, + g)) -0 asy(V)—0.

Thus, by Proposition 5.5, only probabilities satisfying (4.5) can be priors for q.

ExAMPLE5.9. Letp be a univariate regular exponential family as defined in
Diaconis and Ylvisaker (1979). In particular, ©, X C R, © is an open interval and

I(x,0) = exp(xf — M(6)).

Assume further that A(X°) > 0, where x° is the interior of X. Let ~ be such that
(D) = 0 and v is strictly positive on nonempty open sets. Proposition 5.6 applies
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to this example, so that the only candidates to be priors for g are probabilities
vanishing on compact sets. Indeed, since A(X°) > 0, there is a compact A C
x° with A(A) > 0. Further, for fixed x € X°, I(x,6) — 0 as 6 approaches the
boundary of © [Diaconis and Ylvisaker (1979), page 273]. Hence, {6: pg(A) > ¢}
is compact for every € > 0. Next, let V C [a,b] C ©. Then, forx > 0,

exp(xb) [, exp(—M(6))v(d6)
%€ exp (x6 — M(6))v(d6)

J exp(—M(6))~(d6)
= 7 exp(—M(6))(d6)

(V) <

as y(V) — 0,

and likewise for x < 0. Hence, (5.5) holds when B is compact.

Let us now analyze the existence of priors of the form (4.6). To this purpose,
fix a sequence {V,} C Ag such that 0 < v(V,,) < +o0 and V,, 1 ©. For every
n, define

YBNV,)
¥(V,)

Tz v, Uz, 0v(d6)
Jy, U, 0)y(d6)

where Dy, = {x: 0 < [, I(x,0)(df) < +oo}.
In view of Fubini’s theorem, it is easily shown that ¢” is a posterior for =,.
The latter fact, together with Theorem 3.3, suggests the following statement.

ﬂ'n(B): VBGA@,

q"(B) = Vx € D,, VB € Ao,

PROPOSITION 5.10. There is a probability . on P(N) such that q is a posterior
for () = [ m,(-)u(dn) if and only if

5.7) igfﬁ / [0 (Vi) ~ x(V)gu69)] foNd) <0 ¥ € L(A).
Moreover, if
(5.8) AM{xreD:0<gV)<1}) >0 VneN,
then u is forced to be diffuse.
PROOF. After some algebra, (5.7) can be written as
inf [ [a26°) — @) ma(dn) O V6 € L),
where m,, is the marginal of 7,, on X. Thus, since ¢" is a posterior for =, the first

part of the proposition follows from Theorem 3.3. [Notice that, in Theorem 3.3,
the various probability laws are defined on P(X) or P(©), while here such laws
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are defined on Azx or Ag; however, because of the measurability assumptions
holding in this section, this difference can be easily overcome.] To prove the
second part, define

fii= [ [0V~ auVal]md) Vi e,

If q is a posterior for 7, then [ £,( /)u(dj) = 0. Moreover, f,(j) > 0 and, under
(5.8), YV, )fn(n) = [ qx(V)gx(VE)p(x)M(dx) > 0. Hence,

2(Nudj) =0
p({n}) f()/f Didj o
Informally, condition (5.7) states that the integral of the posterior covariance
between ¢* and V,/y(V,), w.rt. the measure p(x)A\(dx), cannot be uniformly
positive.
As is easily proved, a sufficient condition for (5.7) is

(5.9) irrzf/qx(VfL)m,,(dx) =0

where m,, is the marginal of 7, on X. Condition (5.9) has been introduced by
Heath and Sudderth [(1989), Theorem 3.2], who have shown that it suffices for
HS-coherence of g. We do not know whether (5.9) is also necessary for (5.7), but
we suspect it is not. Nevertheless, (5.9) is very useful in practice, since it avoids
the checking of (5.7) for every particular ¢.

A further remark concerns the possibility of taking u to be diffuse. Suppose
that (5.8) fails, that is, \({x € D: 0 < ¢,(V,,) < 1}) = 0 for some n. Then it is
easily shown that

(5.10) ma({x €D NDy: qu(B)=qXB)VB € Ao}) = 1,

and since ¢" is a posterior for m,, (5.10) implies that q is a posterior for =, too.
In short, when q is a posterior for 7(-) = [ m,(-)u(dn), either (5.8) holds and
is bound to be diffuse or (5.8) fails and q is a posterior for a o-additive prior
(precisely for some truncation m, of 7). This circumstance leads to our third goal
in this section: the analysis of o-additive priors. Let

E = {(x,0): l(x,6) > 0}.

PROPOSITION 5.11. Let 7 be a o-additive probability on Ag, and let m be the
marginal of m on X. Suppose Ag is countably generated. Then q is a posterior
for w if and only if there is a set H € Ax such tha: m(H) = 1 and

n(E*NB) _~(E*NB)

(5.11) o R

VBeAg, Vx e H.

ProOOF. Letg(x)= [l(x,0)n(df), G = {x: 0 < g(x) < +o0} and

1
'(B) = —— v .
q,(B) 20 /Bl(x, Ordd) VxeG,VBeAg
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If (5.11) holds, then ¢,(B) =q,(B)Yx € HNGND, VB € Ag. Since m(H N G
N D) = 1 and since q’ is a posterior for =, it follows that g is a posterior for .
Conversely, suppose that 7 is a prior for g. The proof can be divided into two
parts: (1) ¢’ is proved to coincide with g a.e. w.r.t. m; (ii) it is checked that (i)
implies (5.11).

(i) Since g and ¢’ are both posteriors for =, for every fixed B in Ag one
obtains

A A

Hence, there is an H(B) € Ay such that m(H(B)) = 1 and q,(B) = q.(B) for
x € H(B). Let {B,} be a countable field generating Ag, and let H =G N D N
(N, H(B,)). Then, m(H) =1 and

(5.12) q:(Bp)=q,(B,) VxeH,VneN.

Since H C DN G, q, and ¢, are o-additive for every x € H, and consequently
(5.12) yields q,(B) = q,(B)VB € Ao, Vx € H.

(ii) For fixed B € Ag, let h(x,0) = B(0)/l(x,0) for (x,0) € E, and h(x,0) = 1
otherwise. Then, forx € DNG, q,(h*) = n(BNE*)/g(x) and q,(h*) = v(BNE®)/p(x).
Consequently, (i) implies that 7(B N E¥)p(x) = v(B N E*)g(x) V x € H, and since
m(H) =1, (5.11) follows. O

The following corollary of Proposition 5.11, whose technical proofis omitted,
gives conditions equivalent to the existence of a prior for ¢ which is a truncation
of 4.

COROLLARY 5.12. Let Ag be countably generated. Then q is a posterior for
a prior of the form 7(-) = y(- N V) /v(V), for some V € Ag with 0 < v(V) < +o0,
if and only if there is an H € Ax such that 0 < y({0: po(H) = 1}) < +o0 and
v({6: 0 < pe(H) < 1}) =0.

Some remarks concerning Proposition 5.11 are in order. First, a necessary
condition for g to be the posterior for a s-additive prior is

)\({x: v(E¥) < +oo}> > 0.

In a sense v, restricted to the relevant region E* = {§: I(x, #) > 0}, does not act as
an improper prior for every x in a set of positive \-measure. Second, as noted in
the proof, if g is a posterior for the s-additive prior 7, then ¢ must coincide with
q’ a.e. w.r.t. m, where ¢’ is the inference obtained by 7 using the standard Bayes
theorem. Third, condition (5.11) means that 7 and v induce the same conditional
probability P on Ag x i, where i = {E*: x € H} and P(B | E*) = v(BNE*)/v(E*).
In this connection note also that, for x € H, one is really working with P(-| E¥),
that is,

_ Jglx,0)P(d6| E)

@ B) = e, 0P (a0 | )

=q,(B).
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We close the paper with a result concerning Proposition 5.10. Such a propo-
sition refers to a fixed sequence {V,}, V,, T ©, but nothing is said about the
possibility of finding {V,} in such a way that the proposition at issue applies
and n(-) = [[y(- N V,)/v(V)lu(dn) is a prior for q. Plainly, when q is not HS-
coherent, no sequence {V,} can work. The ensuing question is: provided q is
HS-coherent, is there a sequence {V,,}, V,, 1 ©, such that = is a prior for q? The
following example answers the above question negatively and, actually, shows
a little more; indeed, an HS-coherent ¢ is found which is neither the posterior
of a prior satisfying (4.5) nor the posterior of a o-additive prior. We also notice
that the example substantially answers a conjecture of Heath and Sudderth
((1989), page 911].

EXAMPLE 5.13. Let ¥ = © = (0, 00), let Ax = Ag be the Borel o-field and let
v = X be the Lebesgue measure. Setting f(x) = x~ 1+ 1ifx € (0,1) and f(x) =
x~*+1ifx > 1, let E be the union of the sets C; and C, defined by

Cr={@0xe©0m), 0 (Lf@)}, Cr=Jhn+Dx (27277

n=1

Moreover, let py be uniform on Ey, that is, l(x, 6) = E(x, 6)/\(Es). We show that
(i) q is HS-coherent, (ii) no 7 satisfying (4.5) is a prior for ¢ and (iii) no s-additive
7 is a prior for q. In particular, no 7 of the form «(:) = [[v(- N V,,)/v(V)lu(dn),
with V,, 1 ©, is a prior for q. In fact, by Proposition 5.10 and the subsequent
comments, if ¢ has a prior of the previous form, then either 7 satisfies (4.5)
(because p is diffuse) or there is a o-additive prior (precisely a truncation of vy).

(i) Let m,(B) = 2"~ 14(B N (0,21 ~")) and let

Jp U, ), (d6)

(B = e, O @d)

VBeAg, VrReN, Vx >n.
It is easily shown that m,((0,n)) = 0, where m,, is the marginal of , on X. Let

1 be a diffuse probability on P(N). Since ¢" is a posterior for m,, it suffices to
check condition (ii) of Theorem 3.3 for {¢"}, {m,}, ¢ and p. Fix ¢ € L(A). Since

(x, l(x,0)do

fl
;z( x) — J0
= Jy Ux, 0)d8

forx > n,

and since ¢,((1,f(x))) — 0, as x — +oo, then [g¥(¢*) — q.(¢*)] — 0 as x — +oo.
Consequently, being m,([n,c0)) = 1 and u diffuse, condition (ii) of Theorem 3.3
follows. Notice that, setting V,, = (0,21~"), then V,, | @ (instead of V,, T ©).
Hence, since p is diffuse, g is a posterior for a prior 7 such that 7((0,¢)) =
1V e > 0; in particular, neither is 7 o-additive nor does 7 satisfy (4.5).

(ii) Let C = {(x,6): § > 2, 0 < x < 1/2(6 — 1)}. Then ps(Cp) = 3 V 6 > 2 while
q.(C*) < 1V x. Hence, no 7 satisfying (4.5) can work.

(iii) Let 7 be a o-additive prior for q. By Proposition 5.11, there is an H €
Az, m(H) = 1, such that (5.11) holds. If m((0,1)) < 1, then m((0,¢)) >0V e >0
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and, consequently, H N (0,¢) #@. By o-additivity of «, there is a ¢ > 1 with
m([1,£)) > 0. Since [1,#) C E* for x sufficiently small, (5.11) gives =n([1,¢)) <
~([1,2))/v(E*) — 0 as x — 0, which is a contradiction. Hence, 7((0,1)) = 1. By o-
additivity of 7, there is an £ with m((¢, 1)) > 0. Let n be such that 2" < ¢ < 217
and C=(1,n+1) x (27",1). Then

/pg(Cg)ﬂ'(dG) =m((1,n +1)) > supq(C*)m((1,n + 1)) > /qx(C")m(dx),

contrary to the assumption that = is a prior for q. Thus, there are no s-additive
priors for q.
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