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SECOND-ORDER PITMAN CLOSENESS AND
PITMAN ADMISSIBILITY
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and Indian Institute of Management

Motivated by the first-order Pitman closeness of best asymptotically
normal estimators and some recent developments on higher-order asymp-
totic efficiency of estimators, a second-order asymptotic theory is developed
for comparison of estimators under the Pitman closeness criterion, covering
both the cases without and with nuisance parameters. The notion of second-
order Pitman admissibility is also developed.

1. Introduction. Bestasymptotically normal (BAN)estimators are known
to be first-order efficient in the light of conventional quadratic risk as well as
the Pitman closeness criterion (PCC), and an asymptotic first-order represen-
tation of estimators plays a vital role in this context [see, Keating, Mason and
Sen (1993), Chapter 6]. The past two decades have witnessed a phenomenal
growth of research literature on higher-order asymptotic efficiency wherein
Edgeworth expansions, bias corrections and (asymptotic) median unbiasedness
have made significant contributions toward the accomplished unifications, al-
though the work is mostly confined to quadratic or related (e.g., bowl-shaped)
risk functions. The pioneering work of Rao (1981) has led to a revival of in-
terest in recent years in studies on the PCC. In a logically integrated form, a
systematic and detailed account of the advantages and disadvantages of the
PCC compared to the classical measures based on risk functions is contained in
the recent work of Keating, Mason and Sen (1993). The earlier chapters of this
monograph deal with the genesis of the PCC along with the related anomalies
and controversies, while the last two chapters are devoted to characterizations
of Pitman closest estimators (for various parametric families) and unification of
the PCC with the conventional decision-theoretic measures in a simple asymp-
totic framework. However, very little progress has so far been made beyond
the first-order asymptotics. Even in a conventional decision-theoretic setup, in
the context of higher-order asymptotics, it is not uncommon [see, Ghosh and
Sinha (1981)] to confine attention only to a (smaller) class of estimators which
is in a sense asymptotically second-order complete, and the recent noteworthy
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work of Severini (1991, 1992) also pertains to a similar class (where transitivity,
equivariance and other desirable properties in a decision-theoretic formulation
may not be that important, and may not even hold, in general). To us, the use
of the PCC in the context of this higher-order optimality of estimators seems
to be an interesting supplement to the usual decision-theoretic formulation for
the following reasons. It shows that there is an intuitively reasonable way of
comparing estimators which may not preserve transitivity so that transitivity
may not be as fundamental as we usually assume it to be. This seems to be the
view of Blyth and Pathak (1985) and is shared by others. Moreover, it points
to the importance of the joint distribution of estimators which is also ignored
in the usual decision-theoretic formulations. In this context, it seems to be of
some interest to compare from this point of view members of a class of estima-
tors which is asymptotically second-order complete in a certain sense [cf. Ghosh
and Sinha (1981) and Ghosh (1994)]. It therfore appears to us that much work
remains to be done on higher-order asymptotic comparisons of estimators with
regard to the PCC and with reference to general parametric families, and the
current study pertains to this general objective.

The PCC, essentially a measure of pairwise comparisons, extends to compar-
isons within a suitable class of estimators only under additional restrictions
such as equivariance (with respect to suitable groups of transformations), an-
cillarity (of the difference of pairs of estimators in the class) or asymptotic
first-order representation (yielding the asymptotic normality) and so on. As
mentioned before, the usual definition of Pitman closeness extends in a nat-
ural way to cover the second-order case (see Section 2), but it has a natural
appeal only when the competing estimators are first-order efficient, that is,
they are BAN in a general sense. For this reason, and given the affinity of BAN
estimators to the classical maximum likelihood estimators (MLE’s), in the cur-
rent study we confine ourselves to the class of estimators which essentially
adhere to the MLE (by small bias corrections). This also enables us to study the
second-order Pitman admissibility of estimators within the same class. In this
parametric framework, the present work attempts to study the second-order
admissibility results in light of the PCC. We confine ourselves to the case of a
single parameter of interest, although the results in Section 3 pertain to a more
general case where there are some nuisance parameters.

2. The one-parameter case. Let {X;; i > 1} be asequence of independent
and identically distributed (i.i.d.) random variables (r.v.’s) with a distribution
function (d.f.) F admitting a density function f(x; #) with respect to some sigma-
finite measure u, where 6 is an unknown scalar parameter; ©, the parameter
space for 0, is the real line R or some open subset of R. We adhere to the
Assumptions in Bhattacharya and Ghosh (1978) with s = 3 (in their notation)
and with f(-; ) and g(-; ) in their notation interpreted, respectively, as log f(-; 6)
and f(-;6) in our notation. Let § (= 8,) be the MLE of 6 based on X3,...,X,
(where n is the sample size), defined in the sense of Theorem 3 of Bhattacharya
and Ghosh (1978). Then, along the lines of Ghosh and Sinha (1981) [see also
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Pfanzagl and Wefelmeyer (1978)], we consider a class € of estimators of the form
T, = é\n + n_lQ,

where the following hold:

1. @ = d(6) + 0,(1) under 6,d(-) being continuously differentiable with a func-
tional form independent of n;
2. for every positive ¢, free from n, and every 6 € ©,

Pp{|Q —d(®)| > e} =o(n %) asn — .

The class € is quite large. In particular [see, Ghosh and Sinha (1981)], by Theo-
rem 3 of Bhattacharya and Ghosh (1978), it includes all estimators of the form
6 + n=1d(8), where d(-) satisfies condition 1.

LetI = Eg{((@/ 96)log f(X;6))?} denote the per-observation Fisher informa-
tion at 6, which is assumed to be positive for every § € ©. Also, let Ly =
E¢{((0/06)1og f(X;6))%}. Note that both I and L, 1 ; are functions of . The fol-
lowing lemma will be useful in the sequel.

LEMMA 2.1 Let Ty and T, be distinct members of C such that T = 0+ n-1Q*
and T, = 0+n -1Q with @* = d*(9) + 0p(1) and @ = d(9) + 0,(1), under 6. Then,
for each 6 such that d*(0) #d(6),

Po{|T3 ~ 0] < [Tu — 6]} = 3+ (3)@rn) V212 sgn{d(0) — d*(®))
x {d(@) +d*() — 31 °Ly11} +o(n/2).

Lemma 2.1 is similar to a result in Severini (1992), who considered biased
and bias-corrected estimators of a one-dimensional interest parameter with
bias defined in the usual sense of expectation. For § such that d(§) > d*(6), this
lemma can be proved if one notes that, by conditions 1 and 2 (pertaining to the
class C), Po{Q < @*} = o(n~1/2), and hence,

Po{{T: — 0| <|T, - 0|} =Py{& > 0} +o(n"1/2),

where &, = (nDY2(6, — 6) + (1/2)(n" DY2{d(6) + d*(9)}, and then employs an
Edgeworth expansion for the distribution of ¢, under 6. A similar proof holds
for d(8) < d*(9).

Lemma 2.1 does not cover the case of § such that d(§) = d*() since then
neither Pp{@ < @*} nor Py{Q > Q*} may be o(n~/2), in general. For such 6,
it may be possible to discriminate between T, and Ty even at the first order of
comparison. For example, under the univariate normal model with unknown
mean 6 (€ R) and variance 1 (known), let 7 = and T,, = 0 + n=162 + n=3/230,
where ( is a constant which is free from n. Then d*() = 0, d(§) = 62 and
d(6) = d*(6) only when 6 = 0. At 6 = 0, it can be shown that lim,, _, o, Po{|T" — 0|



1136 J. K. GHOSH, P. K. SEN AND R. MUKERJEE

< |T» — 0|} can assume any value between 0 and 1 depending on the choice of
B. Anyway, in the sequel we will be comparing estimators with distinguishable
stochastic expansions up to o,(n?!) [i.e., with distinct d(-)]; for this purpose,
Lemma 2.1 plays a vital role.

THEOREM 2.1. Let Ty, and T, be distinct members of C such that Ty, =
O+n -1Qo and T, = O+n -1Q with @ = d(6) + 0p(1), Qo = do(8) + 0,(1), under
8, and

2.1 do(0) = (3)I%L11.1.
Then, for each 6 such that d(8) #dy(6),
(2.2) Po{|Ton — 60| < |Tn — 0|} = § + (3)@mn)~Y21/2|d(6) — do(6)| +0(n"1/?),

so that

(2.3) n— oo

lim l:nl/2{P9{|Ton 0| < |T, — 0|}—1/2}]
= (3)(1/27)*1d®) — do(®)] > 0.

The proofis a direct consequence of Lemma 2.1, and hence is omitted.

Let us discuss the implications of Theorem 2.1 by introducing the notion of
second-order Pitman admissibility. An estimator T, = 0 +n1Q (e ©), with
Q = d(6) + 0,(1), under 6§, will be called second-order Pitman inadmissible
(SOPI) in C if there exists an estimator T} = 0+ n~1Q* (e @), with @* =
d*(0) + 0,(1) under 6 and d*(6) not identically equal to d(6), such that T is
superior to T, with regard to the second-order Pitman closeness in the follow-
ing sense. Let a,1(0) = Po{|T; — 6| < |T,, — 6|} — 3 and a,2(0) = n/20,1(6). Then
(a) lim,, _, o, a,e(8) > 0, for each @ for which the limit exists, and (b) lim, _, o
0,1(0) exists and lim,, _, o a,1(8) > 0, for each 6 for which lim,, _, o, a,2(6) does
not exist, the inequality being strict for some 6 (€ ©) either in (a) or (b).

An estimator T}, (¢ C) will be called second-order Pitman admissible (SOPA)
in € if it is not SOPI in C. An implication of Theorem 2.1 is that the estima-
tor T, considered there is SOPA in C: as a referee suggests, T, can as well
be interpreted as representing a subclass of € consisting of estimators having
the expansion 8 + n~1[do(6) + op(1)], under 0, where dy(f) is given by (2.1). In
particular, it follows that the estimator 6 + n=1d(6) (¢ €) is SOPA in €. Note
that T,, considered in Theorem 2.1, is second-order median unbiased in the
sense that Po{Ty, > 0} = — + o(n‘l/ 2) for every 6 € ©, as one can prove by
using an Edgeworth expans1on for the distribution of (nI)Y/2(T, — ) under 6.
Hence, the second-order Pitman admissibility of T, is comparable with the ex-
act findings in Ghosh and Sen (1989), who proved, under certain conditions, an
optimal property of median unbiased estimators with regard to Pitman close-
ness. It also follows from Theorem 2.1 that an estimator T, = 8 + n~1Q (¢ @),
with @ = d(8) + 0p(1) under 6, and d(0) #dy(6), for each 6, will be SOPI in €.
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Thus, Theorem 2.1 yields a class of SOPA estimators, namely, that represented
by Ton, and provides a quick way of identifying SOPI estimators.

REMARK 1. Under suitable conditions, like those in Johnson (1970), to-
gether with an assumption regarding the existence of an ny such that the
posterior distribution of 6 given Xj,...,X,, is proper, it can be shown from
Theorem 2.1 that the posterior median of § under the Jeffreys prior is SOPA in
C. [c.f. Welch and Peers (1963)]. This frequentist result may be contrasted with
the findings in Ghosh and Sen (1991) on properties of the posterior median in
terms of posterior Pitman closeness.

REMARK 2. The property of T, depicted in Theorem 2.1 is in fact much
stronger than the second-order Pitman admissibility. It implies that a rival
estimator T, = 0 = n~1Q (e @), with @ = d(8) + 0p(1) under 4 and d(8) not
identically equal to dy(6), will be inferior to T,, with regard to second-order
Pitman closeness, for each 6 satisfying d(6) #dy(6). Incidentally, for 6 such that
d(0) = do(9), additional regularity conditions (e.g., asymptotic ancillarity) may
be required to depict clearly the relative picture.

REMARK 3. Under squared error loss, Ghosh and Sinha (1981) charac-
terized second-order admissible estimators (SOAE) of the form 6 + n~1d(6),
where d(-) is continuously differentiable. Many examples, like the following
one, indicate that neither a SOPA estimator in our sense is necessarily SOAE
in their sense nor a SOAE in their sense is necessarily SOPA in our sense.

EXAMPLE 2.1. Let f(x;6) be the univariate normal den81ty with mean 6
and variance 6%, where 6 € R*. Then I = 36072, L; 1, = 1463 and, by (2.1),
do(9) = (7/27)6. Let Ty, = 8(1 +7/27n) and T, = 6(1 — 1/9n). By Theorem 2.1,
Tor is SOPA in C while T}, is not so. On the other hand, proceeding as in Ghosh
and Sinha (1981), we obtain that T}, is SOAE in their sense, while T, is not.

REMARK 4. A multiparameter extension of Theorem 2.1 can be formulated
along the same line. However, in such a case, a quadratic norm involves a non-
negative definite (nnd) matrix, and, in general, the dominance results depend
on the choice of such a matrix. Sen (1986) incorporated the Fisher information
matrix in this formulation (albeit in a first-order setup), and recently Sen (1994)
has shown that this result extends generally to a larger class of loss functions.
It seems quite natural to formulate analogous second-order properties, and we
would like to pursue the same in a follow-up study. In the multiparameter
case, one needs to take into account the classical Stein phenomenon [see, Sen,
Kubokawa and Saleh (1989)], and the picture becomes more complex.

3. A case with nuisance parameter(s). We proceed now to consider a
more general case where the density f(-;-) involves some nuisance parameters
(in addition to the parameter of interest). For the sake of notational simplic-
ity, we describe the results with a one-dimensional nuisance parameter (along
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with a one-dimensional parameter of interest). The treatment for a multidi-
mensional nuisance parameter will be exactly similar, and only the notational
system will become more involved.
Consider a sequence {Xj;i > 1} of i.i.d. r.vs with a density f(x; ), where
0 = (61,6)', 6, is the parameter of interest and 6; is the nuisance parameter. It
is assumed that € © C R?, and other regularity assumptions are very similar
to those in Section 2. Let us formulate the per-observation Fisher information
matrix at 0 as
Eo{(9/06) log f(X;0) - (8/06") log f(X; O =I= (1)), .,
and assume that I is positive definite at each 6 € ©. Since 6, is scalar, we may

suppose (without any loss of generality) that global parametric orthogonality
holds, that is, I;5 = 0 =I5y, for all € © [see, Cox and Reid (1987)]. Let

S111=Eo{(D1log f(X;0)°} and Si =Eo{ (D:D3log f(X;0)},

where D; is the operator of partial differentiation with respect to 6;, i = 1,2.
Note that I11,159,S51.1.1 and S99 are all functions of 6.

Based on a sample X3, ...,X, of size n, let 8 = (41,02) be the MLE of 0. As
an analogue of the class € considered in Section 2, we consider here a class C*
of estimators of 6; of the form T, = 6; + n~'Q, where the following hold:

1. @ = d(0) + 0,(1) under 6, d(-) being a continuously differentiable function
whose functional form is free from n;
2. for each positive ¢, free from n, and each 6,

Po{lQ —d(0)| >e} =o(n"?) asn — .
Define then [analogous to (2.1)]
(3.1 do(8) = (6IF) ~'S1.1.1 + (211I55) "S5

Then, analogously to Lemma 2.1 and Theorem 2.1, respectively, we present the
following results. The proofs are omitted to save space. They involve an Edge-
worth expansion and rest on computations of certain higher-order cumulants.

LEMMA 3.1. Let T, and T, be distinct members of C*, such that T} = 51 +
n=1Q* and T, = 6; +n~1Q, with Q* = d*(0) + 0p(1) and @ = d(0) + 0,(1), under
0. Then, for each 6, such that d(6)+d*(6),

(3.2) P0{|T;; =01 <|Tw - 01!} =1/2 + (I11/8mn) "/ sgn{d(0) — d*(0)}
| x {d(0) +d*(8) — 2do(0)} +o(n~1/2),

where dy(0) is defined by (3.1).
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THEOREM 3.1. Let Ty, and T, be distinct members of C* such that T, = 51
+n71Qy and T, = 61 + n~1Q with Qo = do() + 0,(1) and Q = d(0) + 0,(1), under
6, where dy(0) is given by (3.1). Then, for each 0 such that d(0)#dy(0),

(8.3) Pg{|Ton — 01| <|Tn—61]} =1/2+ (111/87rn)1/2|d(0) —do()] +o(n"1%),
so that

Tim_[nY/2Pg{|To, — 6] < T — 6]} — 1/2]

(3.4) "
= (I11/87)7"|d(8) — do(8)| > O.

It can be shown that an estimator T,, as introduced in Theorem 3.1, is
second-order median unbiased, that is, Pg{To, > 61} = 1/2 +o(n~1/2) for each
0. Lemma 3.1 is a powerful tool for comparing estimators in C*. In the present
setup, defining SOPA and SOPI estimators in C* along the lines of Section 2, it
follows from Theorem 3.1 that an estimator T\, as introduced in the theorem,
is SOPA in ©*. Also, an estimator T}, = 6; + n~1Q(c C*), with @ = d(6) + 0,(1)
under 6, and d(0) #d(0), for each 6 € ©, will be SOPI in C*. In continuation
of Remark 1 (in Section 2), under suitable conditions, it can be shown by using
Theorem 3.1 that the posterior median of §; under a prior with density propor-
tional to %{2 [where the constant of proportionality may involve 6, but not 6,;
cf. Tibshirani (1989)], will be SOPA in C*.

ExXAMPLE 3.1. Let f(x;6) represent the univariate normal density with
mean 0 and variance 0, so that 8 € R x R*. Under this parameterization,
the global parametric orthogonality, as mentioned before, holds. Here I;; =
(20%)_1, Iy = (91_1,S1‘1‘1 = 91_3 and S99 = 91_2, so that, by (3.1), do(0) = (5/3)8;.
The MLE of 6; based on Xj, ..., X, is given by 8; = n=15?_ (X; — X,,)%, where
X, = n‘12?= X is the MLE of 65. Allied to the MLE T, = 51 is the usual un-
biased estimator T} = n(n — 1)71T, = 0:(1 + (n — 1)~1), whereas the median
unbiased estimator of 6, is given by Ty, = n(m, 1 )T, where m,, _ is the me-
dian of the central chi-squared distribution with n — 1 degrees of freedom. It is
well known that, for large n,

(3.5) mn =n —2/3 + (32/405n) + O(n"2),

so that we may even replace m,, _ 1 byn —5/3, and define T, = 51(1+5/3n). Note
that all these estimators belong to the class €%, and Ty, is the Pitman closest one
in the sense of Ghosh and Sen (1989, 1991). Moreover, the unbiased estimator
T can as well be obtained by maximizing the conditional likelihood of Cox and
Reid (1987). We have then Ty, = 0; +n~1Qo, Ty, = 61 +n~1Q and T = 6, +n~1Q*
with @ = do(0)+0,(1), @ = d(6) = 0 and @* = d*(0)+0,(1), where dy(8) = (5/3)0,
and d*(@) = 6,. Moreover, both d(8) and d*(0) are different from each other and
from d(9), for each 6. As such, we conclude from Theorem 3.1 that T, is SOPA
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in C* and both T, and T} are SOPI in C* and are dominated by T, (under the
second-order PCC). Next, in order to compare the MLE T, and the unbiased
version T (under PCC), we write

an2(0) =n1/2{P0{|T;: - 91' < ITn - 01|} - 1/2},

and from Lemma 3.1 we obtain that

(3.6) nlimoo ane(0) = 7/(124/7) = 0.3291 (> 0) for each 6.

This shows that T7 is superior to T, with respect to the second-order Pitman
closeness. Exact computations are not hard in this example, and the exact val-
ues of a,,2(0) forn = 3,5, 7 and 9 can be seen to be equal to 0.3443,0.3372,0.3346
and 0.3333, respectively, for each 6 [cf. Rao (1981)]. Since even for small values
of n the values of a,2(0) are quite close to the asymptotic value in (3.6), the
asymptotic results in Theorem 3.1 appear to be reasonably good indicators of
the small to moderate sample behavior of the estimators in this specific case.

In general, each of our results is based on a second-order Edgeworth ex-
pansion which is used to approximate the probability that a certain random
variable is less than 0. Since Edgeworth expansions tend to be very accurate
in this central part of the range, this may explain why, as observed in the last
example, results for small to moderate samples have a tendency essentially to
follow the pattern expected from asymptotic considerations.

Acknowledgment. The authors are grateful to the reviewers for their
helpful comments on the manuscript.
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