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BAYESIAN ROBUSTNESS WITH MIXTURE CLASSES OF PRIORS!

By Supip BoSE
George Washington University

Uncertainty in specification of the prior distribution is a common concern
with Bayesian analysis. The robust Bayesian approach is to work with a
class of prior distributions, which model uncertainty about the prior, in-
stead of a single distribution. One is interested in the range of the posterior
expectations of certain parametric functions as the prior varies over the
class being considered—if this range is small, the analysis is robust to mis-
specification of the prior.

Relatively little research has dealt with robustness with respect to pri-
ors on several parameters, especially the problem of imposing shape and
smoothness constraints on the priors in the class. To address this problem,
we consider neighborhood classes of mixture priors. Results are presented
for two kinds of “mixture classes,” which yield different types of neighbor-
hoods. The problem of finding suprema and infima of posterior expectations
of parametric functions is seen to reduce to numerical maximization and
minimization. In the applications we consider mixtures of uniform densi-
ties on variously shaped sets. This allows one to model symmetry and uni-
modality of different types in more than one dimension. Numerical examples
are provided.

1. The robust Bayesian viewpoint. In a Bayesian analysis, one com-
bines the likelihood and a prior to obtain a posterior distribution for the param-
eter(s) of interest and typically one is interested in the posterior expectation
of one or more parametric functions. Possibly the most common criticism of a
Bayesian analysis is that it supposedly requires one to quantify the available
prior information as a probability measure on the parameter space, a process
which would require probability judgments about uncountably many sets even
for a real-valued parameter.

However, there has long been, at least since Good (1950), a robust Bayesian
view, as it is now called [Berger (1984)]. Briefly put, this view assumes only that
prior knowledge can be quantified in terms of a class I of prior distributions. A
procedure is then said to be robust if its inferences are relatively insensitive to
the variation of the prior distribution over the class I'. Berger (1990) provides a
thorough look at different approaches to the selection of I and techniques used
in the analyses.

Depending on the class of priors, robust Bayesian analyses can be classified
as “parametric” or “nonparametric.” In parametric analyses, the prior is allowed
to vary in a parametric class, usually consisting of priors that are conjugate to
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the likelihood. Restricting the prior to a parametric class often imposes fairly
restrictive moment constraints and forces severe restrictions on the allowable
prior tails. Tails of priors involve very small probabilities and are therefore very
difficult to determine.

We feel that nonparametric classes of priors are a more accurate reflection
of prior uncertainty, in that they usually place far fewer restrictions on the
structure of the prior, particularly its moments. Various classes of nonpara-
metric priors have been considered in the literature, c-contamination classes,
unimodal and symmetric priors with quantile constraints, density ratio and
density bounded classes.

DeRobertis and Hartigan (1981) worked with the density ratio (DR) class of
measures. For their class, a dominating measure ) exists, so it can be defined
in terms of densities as

e { L) _ w6 _ U®)

. < < /
U@ = o) = L) for almost all 6,6’ € e},

which can also be written as
I'= {1r:L(0) < (@) < U(®) for almost all § @},

where L and U, satisfying L < U, are specified nonnegative functions. In the
above definitions, the densities were not normalized, that is, the corresponding
measures were not necessarily probability measures.

Lavine (1991a, b) considers the density bounded (DB) class I'" (which is related
to the density ratio class),

= {7r:L(0) < m(@) < U(H), for almost all 6 € O, / m(0)dN0) = 1},
e

where [ L(6)dA(6) < 1 < [g U(6)d\(6) and A(6) is a sigma-finite (dominating)
measure. He considers the effects of uncertainty about the likelihood as well as
the prior.

1.1. Neighborhood classes with shape and smoothness constraints.

Shape constraints in one or more dimensions. Classes of priors that incor-
porate shape constraints like symmetry and unimodality have been considered
in the literature because such shape constraints may well reflect one’s prior be-
liefs. It is not clear how one may impose such shape constraints on the DR and
DB classes alluded to above. For that matter, what does one mean by symmetry
and unimodality in several dimensions? We will see in later sections how one
can impose various forms of unimodality and symmetry by considering mix-
ture priors. We will obtain classes of priors that share the appealing features of
the DR or DB classes and also impose shape constraints like unimodality and
symmetry. The progression is a natural one. The DR and DB classes are neigh-
borhood classes of priors—they are classes containing priors that are “close,” in
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some sense, to one’s base prior. Often, it is the case that one’s base prior (e.g., a
normal or Cauchy) is symmetric and/or unimodal in some sense. One can then
look at a neighborhood class where the priors are “close” to the base prior with
an additional degree of closeness in that they share some shape properties. At
the same time one does not impose the moment constraints (often with severe
associated constraints on tails) that are caused by considering the parametric
classes.

Smoothness. 1t is seen with DR or DB classes that the priors that max-
imize or minimize posterior expectations have densities that jump back and
forth between the functions L and U. In some cases such priors may not be
reasonable in the sense of being realistic representations of prior beliefs. This
could especially be the case when one is starting with a prior that has a smooth
density, and one wants to look at a neighborhood of such a prior. The use of mix-
ture classes provides us with a way to impose “smoothness” constraints that
eliminate priors with densities that vary too rapidly.

In summary, we are interested in modelling “closeness” to a base prior. The
base prior is often unimodal and symmetric in some sense. It may also have
a continuous or smooth density. We are interested in the behavior of posterior
expectations of one or more parametric functions of interest as the prior varies
over a class of priors that are “close” to the base prior and that share some of its
shape and smoothness properties. Looking at neighborhood classes which do
not impose shape constraints and smoothness constraints may well lead us to
think incorrectly that robustness is lacking, in some cases. This may especially
happen when one looks at parameters in several dimensions.

1.2. Alook at some of the literature. We have already referred to Good (1950)
and Berger (1984, 1990) in the context of the robust Bayesian viewpoint and
the DR and DB classes which appear, respectively, in DeRobertis and Hartigan
(1981) and Lavine (19914, b).

A widely used class of priors is the e-contamination class,

{71’:(1—5)77'0 +€q,q € Q}7

where @, the class of allowable contaminations, is a subset of P, the class of all
probability measures on the parameter space ©, and where 7 is the starting
prior or “base” prior. Huber (1973) presented results on the extremes of the
posterior probabilities of sets for the case, @ = P. Berger (1984, 1985), Moreno
and Cano (1991) and Sivaganesan and Berger (1989) consider other classes
of contaminations and other posterior measures. In particular, symmetry and
unimodality constraints are imposed. Wasserman (1989) provides a robust in-
terpretation of likelihood regions in the case @ = P.

Mixture classes have been considered in several contexts. Some recent refer-
ences are Dalal and Hall (1983) and Diaconis and Ylvisaker (1985), who consider
continuous mixtures of conjugate priors and present results on approximating
the prior and the posterior. Dicky and Chen (1985) discuss the elicitation of
spherically symmetric and elliptically symmetric priors.
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1.3. A preview of the paper. In Section 2, we introduce mixture classes and
present results on finding the suprema and infima of posterior expectations for
two kinds of mixture classes. They are classes of mixture distributions where
the mixing density comes from a density ratio (DR) and a density bounded (DB)
class, respectively.

Section 3 will deal with the commonly accepted concept of unimodality and
symmetry in one dimension. There are several different possible definitions of
symmetry and unimodality in many dimensions, and we shall consider a couple
of them in Sections 4 and 5. We express unimodal and symmetric densities of
various types as mixtures of uniforms over bounded sets. These mixtures of
uniforms will be seen to satisfy certain “smoothness” conditions.

We also discuss ways of choosing the densities L and U that define the DR
and DB classes of mixing densities. Several methods are discussed for the one-
dimensional case in Section 3, and the ideas also apply to the multidimensional
cases of Sections 4 and 5. As we point out in the next section, the formal mathe-
matics of mixtures is equivalent to that of a hierarchical prior-hyperprior anal-
ysis. We do not emphasize that point of view because we consider mixtures of
uniforms on bounded sets, and we do not propose such uniforms, by themselves,
as priors to be considered seriously in a single prior Bayesian analysis.

2. Introduction to mixture classes. Let § € ©® C R" be an unknown
parameter with likelihood /(#). (We will assume, unless otherwise stated, that
the data X is fixed.) Let {m:(8)}.c4 be a family of prior densities for 6, where
A Cc R™. Define,

C= {7r: () = / me(6) dp(c) for some 1 € D},
A

where D is some class of measures on A. This is formally equivalent to a hier-
archical analysis with 7,(6) as the prior, ¢ as a hyperparameter and D as a class
of hyperpriors u.

Let m(c) = [ 1(6)m.(6) db. Hence,

/ dN(@)7(0)dO = m(c)E™ [¢(0) IX].
Now, if 7 € C, there is a u € D such that
(@) = / me(8) dplc).
A

When 7 € C and i € D are as above we will say that 7 is induced by p; p will be
referred to as a mixing distribution and its density, if it exists, will be referred
to as a mixing density. For such a , i1, pair, we have

T _ fA m(c)E™ [¢(0) |X] dule)
Erjs01X] = Jy m(c)dpule) )
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2.1. Density ratio classes of mixing distributions. Let L and U be densities
corresponding to sigma-finite measures y;, and py on A, and let L(c) < Ul(c) for
all ¢ € A. Define

Dy = {p: L(c) < plc) < Ulc) Ve € A}

and
C= {n: w(f) = / me(6) dplc) for some p with densityp € Dl}.
A

Such a class C; will be referred to as a DR mixture class. As in Section 1, the
measures in D; are not normalized. The presence or absence of the normalizing
constant does not affect the posterior expectation of a parametric function, that
is, if, for a density 7, we define

_ [ OO (6)do
T = = om@yde

then for a > 0, T(ar) = T(r).

The following theorem shows how to determine the supremum and infimum
of the posterior expectation of real-valued ¢ for the prior lying in a DR mixture
class. Let ¢: © — R be a measurable, parametric function. For each real ¢, define

A= {cea B [30)|X] > ¢}
and B; = A — A,.

THEOREM 2.1. Let {n.(0)}.ca, L, U, D, and C; be as above. Let ¢: © — R be
the measurable parametric function of interest, and let A; and B; be as defined
above. Then

sup E™ [¢(0) | X] = sup M(2),
wEeCy teR

inf E™ [¢(6’)|X] = inf N(2),
TEC teR
where

Jo, MOE™ [$(0) | X]U(c)de + [ m(c)E™ [¢(6) | X]L(c)dc
Ja, m@U(e)de + [z m(e)L(c)de

M) =

and N(¢) is defined by reversing L and U in the definition of M(¢t) above.

PrOOF. We now prove the result for the supremum. For each real ¢, let 1] be
the density in C; induced by the mixing distribution y! that has density p; €Dy,
defined below:
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Then

M@ =E¥%[¢9)|X],
which implies that
sup E"[¢(0) | X] > sup M(0).

TEC
To prove the reverse inequality, we proceed through steps (i) and (ii).

(i) Let 7 € Cy, with E™[¢(6) | X] = s, induced by a mixing distribution with
density p € D;. Let n’ = ¢} be the density which is induced by the mixing
density p;. Then, writing p’ for p.,

p'e)>plk), ceA
p'e)<pl), ceB,.

(ii) (We will now show that E™ [¢(6) |X] > E™[¢(8)|X].) For ¢ € Ay, define
v(e) =p’'(c) — p(c) and, for ¢ € Bs, define w(c) = p(c) — p’(c). From (i), v and w are
nonnegative on their domains.

Then
E™ [$(0) | X]
Ja, MEE™ [$(6)| X |p'(c)de + [z m(c)E™ [¢(0)| X |p'(c)de
= Ja, me)p’(c)de + [ m(c)p'(c)de
Jo, ME™ [¢(0)| X | (p(c) + v(e)) de + [z m(OE™ [¢(8) | X ] (p(e) — w(c)) de
B Ja, m(©)(p(e) + v(c)) de + [ m(c)(p(e) — w(c)) de

> s.

To prove the last inequality, we split the numerator and denominator into four
terms each. The first two terms in the numerator are

/A m(c)E™ [¢(0) | X |p(c)de and / m(c)E™ [¢(0) | X |p(c)de
'8 Bs

and the next two are

/ m(e)E™ [¢(0) | X Jv(c)de and — / m(c)E™ [¢(6) | X |w(c)dc;
A B;

the corresponding terms in the denominator are the same except that the in-
tegrands do not contain E™[¢(#) | X]. Thus the first two terms in the numer-
ator and denominator are, respectively, the numerator and denominator of
E™[¢(6) | X ], which equals s, by assumption, and for the next two terms in the
numerator and denominator we use the following inequalities:

/ m@e)E™ [¢(6) | X Ju(c)de > s [ m(c)v(c)dc;
A, A,

/ m(@E™ [$(6)| X Jw(c)de < s / m(@w(c)de.
B, B,
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[These two inequalities are immediate consequences of the definitions of A; and
B, and of the fact that m(c)v(c) and m(c)w(c) are nonnegative functions.]

This completes the proof in the supremum case.

The proof of the result for the infimum follows by replacing ¢() by —¢(6) in
the above proof for the supremum. O

_REMARK. It can be shown that if s = sup,cp M(¢), then M(¢) > tift < s,
M(s) = s and M(¢) < ¢t if t > s. This allows us to use a regula falsa method to
find s as the solution to M(¢) — ¢ = 0, and at each stage of the search we have a
lower and upper bound on s, one of which is improved at each step.

Similar inequalities hold for N(¢), that is, if © = inf;c g N(¢), then N(¢) > ¢t if
t<u,Nu)=uand N¢) < tift > u.

2.2. Density bounded classes of mixing distributions. Let L and U, with
L(c) < Ul(e) for all ¢ € A, be densities of sigma-finite measures y;, and ug,
respectively, which satisfy

ur(A) <1 < uy(A);
define

D, = {Pt L(c) <pc) < U(c)Vec € Aand /

ple)de = 1}
A

and
Co = {mw(o) = / m(0)du(c) for some p with densityp € Dz}.
A

The following argument is similar in spirit to that of Lavine (1991a, b). Once
again, let ¢: © — R and define

psup = sup E™[¢(9)| X ],
TECy

pinf = inf E"[¢(0)| X].

We show how to compute psup. We can find pinfin a similar fashion. We assume
throughout the rest of this subsection that we can find real numbers M; and
M, satisfying —oo < M < psup < My < oco. The algorithm for finding psup to
within any desired accuracy is based on being able to test, for any s € [M;, M;],
whether psup is greater than s. One finds a v € C; such that

1) s<psup = EY[¢0)|X]>s,
2 s>psup = E"[¢(0)|X]<s.

Once we know how to find such 1),’s, we can conduct a simple bisection search
and bracket psup to within desired “tolerance.”
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We now consider, given s € [M;, M;], how to construct a 1, satisfying (1)
and (2). That condition (2) holds is obvious. Also, (1) is obvious for s < pinf.
Therefore all that remains is to ensure that

s € (pinf, psup) = E¥ [¢(0)|X] > s.

Theorem 2.2. deals with the existence of the ’s.

THEOREM 2.2. Let s € (pinf,psup), and let h(c) = (E™[¢(8) | X] — s)m(c).
Define, for each real z, the sets

A, ={c€A: k() >z},
B, ={ceA: h(c) =z},
C.={ce€A:hc)<z}.

Then the following hold:

(i) There exists ps € Dy, the density of a probability measure us, satisfying
ps(c) = Ule) for ¢ € A, and ps(c) = L(c) for ¢ € C,, for some z.
(ii) If vs € Cq is the density induced by us, that is, 1s(0) = [ 4 Te(0) dus(c),

E¥[$(0)|X] > s.
See the Appendix for the proof of Theorem 2.2.

3. Mixture distributions for a real parameter. Consider the case of
a single real parameter 6. Without loss of generality, we shall take the origin
as the mode and point of symmetry of unimodal symmetric prior densities.
‘Densities that are unimodal and symmetric about 0 shall be referred to as
USO0 densities. USO densities in one dimension can be expressed as mixtures of
uniforms on intervals symmetric about 0. So, one has A = [0, oo] C R and, for
c€EA,

1
7l'c(0) = %I(_c,c)w).

Suppose that one has a US0 base prior 7y, and one wants to robustify the single
prior analysis using 7y by considering a class of priors “close” to my. Let 7o be
induced by the mixing distribution p in the sense of Section 2. Let 1 have density
f w.r.t. Lebesgue measure. Then

o0

m@= [ gl o@f@de
0

(e o)

1
= —f(t)dt

and

f@®= —2t[;—07r0(0)]

6=t
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For 6 € [0, c0), the density is decreasing, and the negative of the derivative is
the rate of fall; hence, by the above representation, it follows that with a DR or
DB class, the rate of fall of the mixed density is in between the rates of fall of the
mixed densities induced by L and U, respectively. Thus these mixed densities
are “smooth”—in particular they are continuous. The fact that priors in DR or
DB classes can “hop” between L and U and that the priors that maximize and
minimize posterior expectations do precisely that is, to many, an undesirable
feature of DR and DB classes. With mixture classes one avoids this difficulty.
Simply requiring continuity as an additional constraint for priors in a DR or
DB class is not enough. If discontinuity is unappealing, prior with arbitrarily
large rates of fall hardly seem more appealing. One wants to have some sort of
“smoothness” requirement.

We now present suggestions for the choice of L and U for DR class and the
DB class of mixing distributions. In the DR case, the statements about the
densities are for unnormalized densities, whereas, for the DB case, they refer
to normalized (i.e., probability) densities.

CAsE 1. One can take, for the DR class,

L) = f(2),
U) = Kf(¢), K>1

The larger value of K, the larger the class.
For DB class, assume that f is a probability density, that is, 4 is a probability
measure on [0, oo), and take K; < 1 and K5 > 1,

L(¢) = Ky f (@),
U@) = Kof (t).

The smaller the value of K; and/or the larger the value of Kj, the larger the
class.

This is probably the simplest choice of L and U, requiring only the input K or
K, and K5, and is a reasonable way to robustify a Bayesian analysis using the
prior my. However, this choice means that one does not allow too much variation
in tail behavior from that of .

CASE 2. One can also take, for the DR class,
L@ =0,
U@ =f@).

This means that there is no lower bound on the rate of fall, so one can have
prior densities that are flat on intervals. Essentially, this is the class of (unnor-
malized) densities that are smaller than my and whose rate of fall (for positive
) is'smaller than the rate of fall of .

With this particular choice of L and U, one gets a large class of densities.
The class of Case 2 is larger than the limit of the class of Case 1 as K — .
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A similar DB class would have, for some K > 1,

L#) =0,
U(t) = Kf(2).

As above, with such a class, there would be no lower bound on the rate of fall,
so this is the class of densities that are smaller than Km(8) and whose rate of
fall (for positive ) is smaller than that of .

Case3. Now suppose that one does not have a base prior 7y, but one wants
a class of priors that contains thin-tailed and thick-tailed priors. In particular,
one has a thin-tailed prior 7, and a thick-tailed prior 73, and one wants a class
of priors that contains both of them and densities with tail thicknesses “in
between” the tail thicknesses of 7; and mo.

Let /A and /5 generate 7; and 73, respectively. One can take

L(#) = min (1), ®)),
U(t) = max (fi(®), fo(®)).

If 7, and 7y are probability densities, then so are f; and f5, hence the above
applies to both the DR and the DB case.

CAse 4. In Case 3 we considered the situation where one wants to include
a particular thin-tailed prior m; and a particular thick-tailed prior 7. In such a
situation one may only want the “tail” of the density bounded by the tails of 7,
and 7y, that is, one wants the mixing density to be between f; and f; only for ¢
“large,” say, t > t¢. It may also happen that in a neighborhood of 0 we may feel
that the density closely resembles a density 7y, generated by f.

Then we can take

f(t), 0 S t S tO’
L@®) =
v {min (A®), L®),  t>t,

U@ = f@, 0<t<ty,
© | max (A@®), @), ¢ >t

We may want to allow some more variation near 0. In the DR case, one may
take U(¢) to be Kf(¢) for 0 < ¢ < £, for some K > 1. In the DB case, one can take
L=Kf and U =K,f for K; < 1 < K.

ExaMmPLE 1. We look at the posterior mean, that is, ¢(0) = 6, and assume
that the likelihood is normal, with unit variance:
1(6]X) ocexp[— (0 — X))

Suppose that one is interested in studying robustness of the analysis using
the standard normal prior my(d) = (1/v/27) exp[—62/2]. The prior m, is a USO
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prior. A possible neighborhood class of USO priors is a class of mixtures of
uniforms on intervals symmetric about the origin, with a DR class of mixing
densities. For such mixtures, m¢(0) is generated by the mixing density f(¢) =
(v2/+/7)t? exp[—t2/2]. For the bounds on the (DR class of ) mixing distributions,
we use functions L(¢) and U(¢) that generate, respectively, 7o and a multiple of
mo. This is the type of choice mentioned in Case 1 of this section. Thus

L) = (%)t%xp [:2t_2] and U(t)=K<%)t2eXP [:26]

[one can, of course, drop the common constant "2 /+/7) in the expressions for
L and U above]. We did not specify the value of K in the above. Naturally, the
larger the value of K, the larger the neighborhood class. In Table 1, we present
the range of the posterior mean for several values of K.

The intervals are presented in Table 1 for X = 1.0,2.0,3.0,4.0 and for K =
1.25,1.50, 1.75,2.00. With the standard normal prior, the posterior expectation
of ¢(0) = 6 is, of course, just X /2.0, which has value 0.5, 1.0, 1.5 and 2.0 for the
four rows of the table.

As K increases, the intervals get wider, since one is looking at larger classes
of priors. It is also seen that the intervals get wider as X increases, that is, as
the location of the likelihood is further and further away from the location of
the prior. It is seen that by the time one gets to X = 3.0, the width has stabilized
somewhat; the intervals for X = 4.0 are not much wider than those for X = 3.0.

4. Uniformsonrectangular setsorthant symmetry and coordinate-
wise unimodality. Letd =(0y,65,...,60,) € R". Without loss of generality we
take the origin as the point of symmetry as well as the mode. We consider
mixtures of uniforms over rectangle sets in B, that is, sets of the form,

[—a1,01] X [—ag,a2] X - - - X [—apn, @],

fora; > 0,i =1,2,..., n. Letting ¢ = (a1,az,...,a,), we denote the above rect-
angle set by [—c, c]. We then have

n 7-1
me(6) = [Zn Haijl I (0)

i=1
TABLE 1
Range of posterior mean with mixtures
Values of Values of K

X 1.26 1.50 1.76 2.00
1.0 (0.477,0.523) (0.458,0.542) (0.442,0.558) (0.429,0.571)
2.0 . (0.961,1.039) (0.929, 1.070) (0.903, 1.096) (0.879,1.119)
3.0 (1.452,1.547) (1.414,1.586) (1.381,1.618) (1.352,1.646)
4.0 (1.948,2.052) (1.905,2.094) (1.868,2.131) (1.837,2.162)
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andc € A =[0,00) x [0,00) x --- x [0,00) C R". Hence,

w 1-1
7(6) = /A [2"Ha,-] I, (O)f(e)de
i=1

n -1
=/ / [Z”Hai] flay,...,an)da;---da,
16a] 161]

i=1

and

z o
,Q2,y ... ,a,) = (=2)* il | =————m(0 .
flai,ag a,) =( )<Ea)[801602-~30n7r( )L=c

Such densities are symmetric in the sense that they depend on their arguments
only through their absolute values, and unimodal in the sense that if 0 < 6;; <
612, 0 < 21 < Boz,...,0 < O,y < Oy, then

(011,021, - .., 0n1) = 7(012, 022, .. ., On2),

and if we define m, and 7y to be the mixture densities generated by L and U
in the same way that = is generated by f above, then the rate of fall of = is
bounded above and below by the rates of fall of 7, and 7y in the sense that if
0 <611 <612,0< 02 <bs2,...,0 <01 < bpg, then

7 (011,021, - . ., 0n1) — 7L (612, 022, . . . , On2)
< m(611,0021,. .., 001) — m(612,022,. . .,0,2)
< my(611, O21, .. .,0h1) — my(b12, Oaz, . - - , On2).

Actually, mixtures of uniforms on rectangular sets satisfy a stronger condition
than the coordinatewise unimodality referred to above. Consider the rectangle
M whose vertices consist of the 2" points of the form x = (¢,1,, .. .,¢,), where ¢;
is either 6;; or 6;2. Let sgny,(x), the signum of the vertex, be +1 or —1, according
as the number of i, 1 <i < n, satisfying ¢; = ;5 is even or odd. The condition is

D(r) = Z sgny(x)m(x) > 0,

where the sum extends over all vertices x of M. In fact, all priors 7 in the class
satisfy the condition D(w;) < D(7) < D(my).

The symmetry above is referred to as orthant symmetry, and the above form
of unimodality is referred to as block unimodality.

The suggested ways of choosing L and U, as discussed in Cases 1—4, now

apply.
ExaMpPLE2. We consider asituation with 6 = (6;, 6;) and a normal likelihood,

(61,6 |X) ox exp[ - § (61 — X2)? + (6 - X)),
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TABLE 2
Effect of shape and smoothness by taking mixtures
Values of K DR class DR mixture class Width ratio
1.25 (0.2050, 0.2872) (0.2390, 0.2486) 0.117
1.50 (0.1769, 0.3259) (0.2354, 0.2526) 0.115
1.75 (0.1556, 0.3606) (0.2321, 0.2561) 0.117
2.00 (0.1388, 0.3920) (0.2294, 0.2591) 0.117

for X; = 0.5, Xy = 0.5. The parametric function is ¢(6) = I, 1)x(0, 1)(61,62) so
that the posterior expectation of ¢ is the posterior probability that 6 is in the
rectangle (0, 1) x (0, 1). We determine the supremum and infimum of the range
of the above posterior probability for two classes of priors. Both these classes
will represent neighborhoods of the normal prior my with zero means and the
identity matrix as the dispersion matrix.

The first class will be a density ratio class with the lower bound being the
same as 7y and the upper bound a multiple of 7y. This class allows priors that are
not unimodal or symmetric about the origin and also priors with discontinuous
densities. Thus it does not impose shape or smoothness constraints. The bounds
are

L) = (2m)~! exp [ — 0.5(63 + 63)],
U(9) = K(2m)~! exp [ — 0.5(6% + 63)],

for the values K = 1.25,1.5,1.75, 2.0. [The common factor (27)~! can, of course,
be dropped from both L and U without affecting the DR class.]

The second class of priors that we will consider is a neighborhood class with
shape and smoothness constraints. We consider a class of mixtures of uniforms
on rectangles symmetric about both axes, with the mixing distributions in a DR
class. The bounds on the DR class (of mixing distributions) will be the functions
L, and U, that generate, respectively, the functions L and U. The expressions
are L1(a,b) = 4a2b%(27)~ ! exp[—0.5(a® + b2)] and Ui(a,d) = KL,(a,b). Thus the
choice of L; and U, is similar to that suggested in Case 1 of Section 3.

Notice that the second class is strictly contained in the first—it consists of
the densities between L and U whose rates of fall in any direction are bounded
by those of L and U and which are orthant symmetric and block unimodal. With
the smaller class of priors one naturally gets intervals of less width. To observe
the magnitude of the effect of imposing the additional shape and smoothness
constraints, we calculate the ratio of widths, smaller divided by larger. For the
single prior 7, the posterior probability is 0.2438. All the intervals, therefore,
contain the value 0.2438.

The interval for the mixture class is more than eight times narrower than the
other. For the DR class, the upper bound is a little further from the single prior
value than the lower bound, and the difference becomes more pronounced as K
gets larger. On the other hand, for the mixture class, the intervals are almost
symmetric around 0.2438, with the upper bound being very slightly further
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away from 0.2438. Once again, remember that the densities are unnormalized.
Even though, nominally, only the upper density changes as K increases, one
can as well imagine that the lower bound is being made smaller with the upper
bound held fixed, or that the lower bound is being made smaller as well as the
upper bound being made larger.

5. Mixtures of uniforms on spheres and ellipses. We will now consider
classes of elliptically symmetric or spherically symmetric densities. Once again,
the origin will be the point of symmetry as well as the mode.

Suppose that one has a base prior ¥, and one wants to robustify the single
prior analysis using 1y by considering a class of priors “close” to 1. Suppose
that 1)y is elliptically symmetric in 0, that is,

Yo(0) = mo(6'2710),

where 7y: [0, 00) — [0, 00) is a nonincreasing, absolutely continuous function and
Y is a positive definite matrix. Whenever vy is of the above form, the dispersion
matrix is ¢X, for some ¢ > 0. If ¥ = I, the identity matrix, then the density is
spherically symmetric.

With ¥ = and a density that is radially decreasing away from 0, we repre-
sent it by

o0

m(0) =

du(o),
li6]| 8no™ e

where || - || denotes the Euclidean norm and g, = 27"*/2/nI'(n/2) is the vol-
ume of the n-dimensional unit sphere. Thus, 7 is a mixture of 7.’s, where
me(0) = Is,(0)/gnc™, Sc denoting the n-dimensional sphere of radius c, centered
at the origin, and Iz being the indicator function of the set B. Elliptically sym-
metric densities are generated as mixtures (with respect to ¢) of densities (uni-
form on ellipses) 74(8) = Ijp 1(6'A8)/g%c", where g4 denotes the volume of the
n-dimensional ellipse {#’Af < 1} and A is a positive definite, n x n matrix. The
mixing p is a measure on subsets of [0,00). Dickey and Chen (1985) discuss
elicitation of spherically symmetric and elliptically symmetric priors. One can
get a mixing distribution po that generates the base prior 7y. For the DR and
DB classes, one has to choose L and U, but since they are densities on [0, cc0)
the ideas of Section 3 apply.

APPENDIX

Proor orF THEOREM 2.2. We use the notation of Section 2, especially sub-

section 2.2.
Proof of (i). Define the functions g and g, both from R to [0, cc) by

8W) = pu(Ay) + pr(By) + pr(Cy)
and
&) = /J'U(Ay) + IA"U(By) + ,U/L(Cy).
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Then g and g are both nonincreasing functions. Take z = inf{y: g(y) < 1}. We
shall now show g(2) < 1 and g(2) > 1.
From the definition of g(W), we have, for any ¢ > 0,

g(z+1/t) =g@) — (uy — u,;)({c: h(c) € (2,2 + 1/¢] })

Hence lim;,» g(z + 1/t) = g(2) by continuity of measures. However, by the
definition of z, g(z +1/t)< 1fort>0,s0 g() < 1. Similarly, again for ¢ > 0,

Bz —1/t)=5(2) + (uy — pL)({c:h(c) €lz- 1/t,z)}>.
Thus, lim;_,, g(z — 1/t) = g(z) so that g(2) > 1.
We know that g(z) < 1 < g(2).

(a) Ifg(2) = 1, then define ps(c) = U(e), for ¢ € A,, and equal to L(c), for other c.

(b) If (a) does not hold but instead g(z) = 1, then define ps(c) = Ule), for
¢ € A, UB,, and equal to L(c), for other c.

(¢) If neither (a) nor (b) holds, that is, if g(2) < 1 < z(2), then define p, by

Ule), cEA,,
ps(e) = < Lie), ceC,,
aU(e) + (1 — a)L(c), ¢ €B,,

where o = (1 — g(2))/(g(2) — g(2)).

This completes the proof of (i) of Theorem 2.2.

Proof of (ii). Given s < psup, let p; and u, be as above, satisfying (i). Further,
since s < psup, there is a 1) € Cy such that E¥[¢(6) | X] > s. Also, suppose that
9 is induced by a mixing distribution x which has density p € D,. Define S and
T as

S = {c € A: ps(c) > p(e)},
T = {c € A: p,(c) < p(c)}.

Then, S CA\C, and T C A\ A,. Now,
/ h(c)dus(c) — / h(c)du(c)
A A
- / h(©) (palc) — p(©)) de
A

- /S h(e)(ps(e) — p(c)) de — /T h(e)(p(c) — polc)) de
>0

since, for ¢ € S, h(c) > 2; for ¢ € T, h(c) < z; and [¢(ps(c) — p(e) de = [ (p(c) —
ps(e))de and ps(e) — p(e) > 0, for ¢ € S, and p(c) — ps(c) > 0, forc € T.
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Further,
EVGOIX] 25 = [ mEB™[#0)|X]du©) > 5 [ mle)dce)

Therefore, |, [, h(c)dulc) > 0, and so by what we have shown above, ) [, h(c)dps(c) >
0; but then this, in turn, means that [, m(c)E™[¢(6) | X1dus(c) > s [, m(c) dpus(c).
Since s is a mixing distribution that induces s, it follows that E¥:[¢(0) | X] > s,
which completes the proof of (ii). O
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