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ASYMPTOTIC BAYES CRITERIA FOR NONPARAMETRIC
RESPONSE SURFACE DESIGN
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University of California, Los Angeles

This paper deals with Bayesian design for response surface prediction
when the prior may be finite or infinite dimensional, the design space ar-
bitrary. In order that the resulting problems be manageable, we resort to
asymptotic versions of D-, G- and A-optimality. Here the asymptotics stem
from allowing the error variance to be large. The problems thus elicited
have strong game-like characteristics. Examples of theoretical solutions are
brought forward, especially when the priors are stationary processes on an
interval, and we give numerical evidence that the asymptotics work well in
the finite domain.

" 1. Introduction. This paper deals with designs for situations in which
a response function, or “signal,” on the set T is obscured by noise and where
observations may be replicated at the various points (“sites”) in 7. Thus, we
think of production experiments which can be carried out, and even replicated,
under a variety of conditions, or of experiments which make one or more assays
on a given geological core sample. The set of sites under consideration may
have characteristics which vary from case to case. We will, in fact, carry on the
discussion with a completely general T, but our examples are quite specific.

The goal is to predict the underlying signal. The treatment is Bayesian in
that knowledge of the signal is represented by a random function (stochastic
process). Traditional Bayesian design theory, where the prior for the signal is a
random finite linear combination of known functions, falls under this kind of for-
mulation; see, for example, Pilz (1983), Chaloner (1984) and Bandemer, Nather
and Pilz (1987). Here we consider mainly infinite-dimensional random func-
tions as priors. This leads to a kind of “nonparametric” surface fitting method,
so designated to distinguish it from the usual response surface methods, which
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rely on approximation by low-degree polynomials or by other finite-dimensional
families. Specifically, we assume that the prior is the one which derives from
taking the signal to have the form 8 + Z, where 3 is a normal random variable
and Z is a Gaussian process independent of 8. In this respect, our treatment is
similar to that of O’Hagan (1978), Wahba (1978), Sacks and Ylvisaker (1985),
Steinberg (1985) and Sacks, Welch, Mitchell and Wynn (1989). A clear distinc-
tion can be drawn with the last reference: it deals with computer experimenta-
tion in which there is no noise, while we deal here with actual experimentation
and its attendant variable responses.

In Section 2 we give three criteria for selecting prediction designs. In analogy
with classical terminology we designate them as the D, G and A criteria. Direct
optimization of any of these criteria poses a formidable problem. Indeed, this
investigation began with an arduous and direct attempt to answer a very simple
but basic question: If Z is an infinite-dimensional process on the unit interval,
does one ever call for replication? It could be argued, for example, that the taking
of observations in close proximity would prove to be an adequate substitute. If
not, one would imagine that replication would be called for when Z is “smooth”
enough. Our results will suggest that the latter is the right answer.

To make progress, we allow the variance of 3 and the variance of the noise
to go to infinity while the variance of the Z process is held fixed. Through
this device, manageable surrogates are obtained for the original optimality
problems. Our interest lies in the form the new problems take, with the insights
they provide and with the level of difficulty they present. We view it as a bonus
if designs obtained in this way stand up to scrutiny in the finite domain as well,
and some numerics are advanced in support of this.

Early reliance on the simplicity afforded by asymptotics for problems in
the general area can be seen in Sacks and Ylvisaker (1966) and in Bickel
and Herzberg (1979), as two examples. More recently, a report by Lim, Sacks,
Studden and Welch (1988) has rekindled the thought that hard problems might
have easier (asymptotic) siblings—the paper of Johnson, Moore and Ylvisaker
(1990) is a good case in point. The last work considers designs when there is no
noise and then replication is not even an issue.

The criteria we use do not generally have the properties which obtain in
classical or other settings. In particular, the D and G criteria are equivalent in
the approximate theory of Kiefer and Wolfowitz (1960), while in Johnson, Moore
and Ylvisaker (1990) they complement each other in a natural way. Here we
find that they differ in general, but there are cases where they agree, typically
when the prior process 3+ Z concentrates on functions that are suitably rough.

In Section 2 we give a full description of the prediction criteria, while the
asymptotics for them are developed in Section 3. With the problems recast in
this way we give some solutions and examples in Section 4. Section 5 numeri-
cally compares, in some simple cases, exact designs computed for the asymptotic
criteria with exact designs computed for the original nonasymptotic ones. The
former are much easier to compute and, in these examples at least, are quite
efficient over wide ranges of the parameters of the prior process.

This paper could be made a good deal longer by pursuing some of the issues
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raised but not fully investigated. Our concern, rather, has been to point out how
certain asymptotics produce a class of manageable Bayesian design problems
from hard ones.

2. Prediction criteria. The prior distribution for the signal is given by
the random function 8+Z, where §is a Gaussian (normal) random variable with
mean ug and variance 0%, and Z is a Gaussian stochastic process independent of
B, with E(Z;) = u(t), Var(Z;) = 02(¢) and covariance function R(s, ) = Cov(Z,, Z,),
t € T, s € T. The signal is observed with error, at n (not necessarily distinct)
sites?y,...,t,in T. The n errors ey, .. ., &, are taken to be additive, independent
of the signal and of one another, and Gaussian with mean 0 and variance o?2.
Thus the prior distribution for the ith observation is given by the Gaussian
random variable

2.1 Y,‘ = ,3 +Zt,~ +€;.

The objective is prediction of the signal on T, and the design element enters as
the choice of the set {¢;}. Three prediction criteria are considered at length—
they are termed the D (for determinant), G (for global) and A (for average)
criteria. To describe them, let Var denote variance and let GenVar be general-
ized variance, that is, the determinant of the covariance matrix. First let 7' be
a finite set. A design is called G-optimum if it minimizes

2.2) ;ng Var (signal at ¢y | chosen observations);
0

a design is called A-optimum for a given probability distribution 7 on T if it
minimizes

2.3) E . Var (signal at I | chosen observations),
where II has distribution 7; a design is called D-optimum if it minimizes
(2.4) GenVar(signal variables | chosen observations).

Should T be an infinite set, “max” should be replaced by “sup” in (2.2) while for
(2.3) one needs some structure to consider general distributions. As presently
stated, (2.4) relies on the fact that there are finitely many signal variables.
When this is so, one can replace (2.4) by the problem of maximizing

(2.5) GenVar(chosen observations).

(See Remark 3 about the equivalence of the two problems.) On the other hand,
if T is infinite and a design is optimum under (2.5), it follows that the same
design is optimum under (2.4) for any finite (and arbitrarily dense) subset of T
that includes the design sites. It is easier to attack (2.5), but we prefer to think
of the D criterion as it is stated in (2.4).

All three criteria (2.2)—(2.4) depend on the posterior covariance of the signal
variables, which for Gaussian processes does not depend on the prior means.
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Without loss of generality, then, we take ug = 0 and u(#) = 0. For simplicity,
we take o2(¢) to be constant, so Cov(Zs,Zt) = a%p(s, t), where p is a completely
specified correlation function and % is the (constant) variance of Z (but see
Remark 4 in this connection). Letting 0% = vo} and 02 = 020%, we see that 0%
appears in the relevant covariance matrices only as a constant multiplier. We
therefore take 0% = 1 without loss of generality, keeping in mind that v and o2
are the variances of 3 and ¢, respectively, relative to the variance of Z.

To this point, problems (2.2), (2.3) and (2.5) are quite difficult and solutions
depend heavily on v, o2 and the correlation function p. On the other hand, suit-
able asymptotics will produce much more tractable versions, and we turn to
the mechanics of these now. We will let v — oo and 02 — co while v = v/0? is
held fixed. It will turn out that if 0 < v < oo, there is a unique D-optimality
problem in the limit. On the other hand, the G-optimality and A-optimality
problems which result do depend on ~. It is of interest to note that if we take
v =0, so that the model is Y = Z + noise, we get different problems but, at least
mathematically, nothing new surfaces (Remark 2).

3. Asymptotics. We begin by observing that (2.1), along with the usual
formula for conditional variance in the multivariate normal, allows us to write
the variance in (2.2) as

(3.1) v*(to) = 0+ 1) — (V1 + ph) (v + p+ 02I,) " W1, + po),
where py is the n-vector of correlations between Z;, and Z;,,i = 1,2,...,n,pis
the correlation matrix of Z,,, ..., Z;,, 1, is the n-vector of 1’s and J, = 1,1,,. Now

let vy = v/0? and a = 1/02. Then
(3.2)  v*(t) =a (v +a) — (Y1} + app) (v + ap + In) " (v 1, + apo)].
ifW=1I, +~dJ,, then

(W+ap)™t = (I + aW™1p) "W = (I, — aW=1p) W= + O(a?),

where

and (3.2) becomes

2

wpN_ -1) 2y, v / 2
3.3) vty =« {1+n7+a{1 —1_'_n7,001,,+(1 )21,, J+O(a)}.

Thus, ignoring terms of order o(c~2), G-optimality (2.2) leads to the problem of
maximizing, by choice of design {¢y,...,¢,}, the minimum over ¢, of

(3.4) 2(1 + nwzp(to,t ) — VZ Zp(tl,t ).

i=1j=1
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This optimization problem is simplified if we regard a design as a probability
measure £ on T'. Adopting the common terminology associated with this device,
we speak of the exact problem when né({¢}) is required to be integral for all
t € T'[as in (3.4)] and the approximate problem when this restriction is relaxed.
Solutions to the latter are seldom directly applicable in practice; however, they
are often useful for suggesting the nature of optimal exact designs and for
providing bounds on the exact optimality criteria. Except for the numerical
examples of Section 5, the results of this paper are for the approximate problem.
The approximate problem that arises from (3.4) is

3.5) m?x Ir%in {2(1 + 7“1n—1)E€p(t0,X) —E¢pX, Y)},
0

where X, Y is a sample of size 2 from &.

Next consider A-optimality. Return to (8.3) and take the expected value as if
to has distribution 7. Again ignoring terms of order o(c~2), A-optimality leads
to maximizing

n n n
(3.6) 21+n7) Y ExpLt) v > plti,ty);
j=1 i=1j=1
the associated approximate problem is

3.7 max {2(1 + v I YE,, oI, X) — Eep(X,Y)},

where X, Y is a sample of size 2 from &, and II is a sample of size one from 7.
For D-optimality, the generalized variance in (2.5) is

3.8) D =|vd, +p+0%L,| = a "y, +ap+1,|

Since |W + ap| = |W|(1 + atr(W=1p) + O(a?)),
- N I Y/ 2
3.9 D=a |7J,,+I,,|{1+(n 1+n’y1p1>01+0(a )}.

Ignoring terms of order o(o~2), D-optimality requires minimizing 2;;12;‘:1 P, 8),
and this independent of . In parallel with (3.5) and (3.7), the associated ap-
proximate problem is

(3.10) mEin E:pX,Y).

REMARK 1. + has been fixed above, but if we take vy — 0 and v — oo, new
problems can be read off from (3.4)—(3.7). In particular, as y — 0, (3.5) becomes

(3.11) m?xn}inEtho, X)
0
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while (8.7) is
(3.12) mEaxE,,,Ep(II, X).

Note that (8.11) is the problem of finding the optimal strategy for the maximiz-
ing player in a zero-sum game with payoff kernel p. On the other hand (3.12)
calls for the determination of proper play given knowledge of the other player’s
strategy. The last problem is essentially trivial and may be solved with a one-
point design measure. Here we see a connection with earlier Bayesian design
results which quite commonly produce one-point measures [see Section 3.6 of
Bandemer, Nather and Pilz (1987) or El-Krunz and Studden (1991) for infor-
mation on this].

REMARK 2. Consider instead the model Y = Z + noise, that is take v = 0. It
is a point of some curiosity that the asymptotic problems produced by letting
o2 go to infinity are precisely those given already in (3.10), (3.11) and (3.12),
but with p replaced by p?. Inasmuch as p? is a correlation function whenever p
is, the basic nature of the problems is unchanged.

REMARK 3. We shall demonstrate the equivalence of (2.4) and (2.5) when
T is a finite set, and without regard to any asymptotics. Let a design call for
n; observations at ¢, i = 1,...,r, and no observation at the remaining sites
trily.+-stm; N1 + -+ +n, = n. Consider the generalized variance of observation
and signal variables in the order

{Ytl,l"",Ytl,n]_"",Ytr,l"'"Ytr,nr,ﬂ-'-ztl,’",ﬁ+ztr’ﬂ+ztr+]_""’ﬂ+Ztm},

where now the ¢;’s are distinct and Y}, ; is the jth observation at ¢;. The first n,
rows of this determinant are all associated with the observations at the first
design site; the jth such row is

W+ D1, +80%,..., (v+p(,t))1,,,

3.13
¢ ) v+1,...,0+p(t1,8), ..., U+ plty,tm),

where §; is the n,-vector with 1 in position j and 0’s everywhere else. The (n+1)th
row, which corresponds to the signal at the same (first) design site, is identical,
except that it lacks the term in ¢2. Subtract this row from (3.13), leaving the
latter with o2 in the jth position and 0’s everywhere else; the determinant is
unchanged. Do this for all /s at the first site, then carry out the analogous
operation at all design sites, each time subtracting the row corresponding to
the signal at that site from all the rows corresponding to the observations at
that site. Then the determinant has the form

I.®2 0
A Psig

where pgg is the covariance matrix for the m distinct signal variables. Thus

)

(3.14) GenVar(observations, signals) = 0" |pgg|,
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which is constant over design. As the constant is the product of (2.4) and (2.5),
the conclusion is at hand.

REMARK 4. The assumption that the signal has constant variance over T'
reflects the thought that our understanding (or ignorance) of the signal is site-
independent. This allows as priors the random trigonometric polynomials which
appear in the spectral representation of a stationary process with finite spec-
trum, for instance. At the same time, the more usual random polynomials of
some fixed degree d do not fit in. On the other hand it is not difficult to produce
criteria analogous to those given at (3.5), (3.7) and (3.10) that will account for
this added complication.

4. Examples of optimum approximate designs. The intention in this
section is to suggest some qualitative results through a sequence of remarks
about, and examples of, optimum approximate designs. Completeness is not a
goal, but we hope to convey some of the role played by the smoothness of Z,
along with the nature and increase of the difficulties in solving problems as one
proceeds from D- to A- to G-optimality.

A condition for D-optimality. Start with (3.10) in the form of minimizing

@1 D) = /T /T ols, DEs)ES),

and note that positive definiteness of p makes D convex in £. Standard pertur-
bation arguments then show £* to be D-optimum if and only if

(4.2) H(s) = / o(s,DE"(dt) = for all s € Supp(e”®),
T

where A is the minimum of H(s) on T'.

A class of signals. Our main interest is infinite-dimensional processes (not-
withstanding Example 1), so one requires a large enough design space T. A
study of the features stemming from finite-dimensional problems will be re-
ported on elsewhere. Thus for a standard setting we take {Z} to be a stationary
process on [—1, 1] with correlation function «, that is, p(¢,s) = (s — ¢). Then &
has the representation

k(u) = / ” cos \u F(d)).

—00

for a symmetric spectral distribution F'. (We rule out those F'’s with atoms at the
origin, as such signals would be partially confounded with the random constant
B in our model). In this setting, if £ on [—1, 1] is the distribution of a random
variable V, take £~ to be the distribution of —V'. It then follows that D(£) = D(¢ ™)
and, invoking convexity, that D is minimized at a £ which is symmetric about 0.
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Discrete designs. From (4.2), we see that if
4.3) 1+k@2) < k(l-5)+k(l+s),

for |s| < 1, then the symmetric design having all its weight on 41 is D-optimum.
This holds, for example, if F' is supported on [—7/2,7/2] or if  is concave on
[—2,2]. If the spectral distribution has a second moment, « is concave on a
suitably small interval about 0, so if T is a small enough interval in R!, a
D-optimum design exists with all its weight on the boundary of T.

ExampLE 1. Take x(u) = cos(wu),w > 0. The process Z is but two-dimen-
sional here and one might expect a design supported on two points. Rather
directly from (4.3) one finds that if w < 7/2, the D-optimum design puts weight
% on *1. On the other hand, for w > 7/2, the optimum design puts weight % on
+7/(2w).

The case of a finite number of frequencies, x(u) = ¥;A; cos(wju) grows more
complicated, but we recall that if |w;| < 7/2 for all j, the support of F ensures
that (4.3) holds, and the D-optimum design again puts weight % on *1.

ExXAMPLE 2. An analytically convenient correlation corresponding to a
(very) smooth, yet infinite-dimensional, Z is x(u) = exp(—6u?). If § = %,n is
concave on [—2,2] and it follows that the D-optimum design puts all its weight
on 1. This design remains optimum for § = % although the correlation is now
convex on [1, 2]; one checks (4.3). On the other hand, for 6 = 1, the D-optimum
design is supported on 0 and +1, with a weight of about 0.2 at 0.

For a fixed 6, D-optimum designs here have finite support. As # goes to infin-
ity, this support grows dense in [—1, 1]. The first of these points can be argued
by contradiction as follows. Suppose a D-optimum &£* has a cluster point in its
support. Then along a convergent sequence {s;},

1
exp(0s?)H(s)) = exp(6s?) / 1 exp[—0(s; — £)?]¢*(d?)

1
= / exp[20s;t — 6¢%]¢*(dt) = h exp(6s?),
-1

h = min H(s). Now given the equality of two Laplace transforms along {s;}, the
corresponding measures should agree. However, observe that one of them is
supported on [—1, 1] while the other is proportional to a normal distribution.

‘To understand the increasing density of D-optimum measure support points
as § — oo, let §, — oo with £ being D-optimum and Supp(¢*) = {¢;,}. Suppress
the index r and suppose one has ¢, < a < b < ¢, 1. (This can be arranged along
a sequence of #’s approaching infinity, provided the supports are not becoming
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dense.) Then

2minH(s) = H;,) + Htjp ) = > & [exp[—o(tj — £,)%] + exp|—0(¢; — t,-0+1)2]]

(i) omefon o) |

This last is contradicted by the fact that, for each individual term,
2 2 Ljp +tjo+1 ?
exp[—0(t; — t;,)?] + exp[—0(t; — tj,41)%] > 2exp| 0| t; — A=)

forall -1 <#; <aorb <¢ <1, provided 6 is large enough.
Continuous designs.

ExampLE 3. If s(u) = exp(—08|u|), then H(s) = [ exp(—0|s — ¢|)¢*(dt), which
is constant on [—1, 1] if

._ )
€ —mU(—1,1)+ (61 + 61),

1
2(1+90)

where U denotes the uniform measure. Specifically,

1
0
H(S) = /_1 mexp(—éﬂs —tl) dt

1
+ m (exp(—0|1 —S') +exp(—0|1 +S|))

2 — (exp [-0(1 — )] +exp[—0(1 + s)])
2(1+6)

(exp [-6(1 —s)] + exp[—6(1 + s)])

L1
21 +6)
1

1+6

Note that, as § — oo, less weight is assigned to the boundary. A similar solution
applies when x(u) = (1 — 0|u|)?,0 < 0 < 1. Take

1 9
¢ = U(-1,1) + (—2- - 5)(5_1 +61)

and check that H(s) is constant on [—1, 1]. For the (unsquared) linear correlation
k(u) = 1 — 0|u|, (4.3) is satisfied, so the symmetric design on +1 is optimum.
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The correlations in Example 3 are continuously differentiable off the origin
with £'~(0)—x"*(0) > 0. When this is so, D-optimum designs do not have isolated
atoms in the open interval (—1,1). For suppose a D-optimum £* has isolated
atoms with mass w* at +s*,0 < s* < 1. Then

H(s) = / k(s — DE*(dE) + w*K(s* — ) + W*K(s® +5)
Supp(é*)—{£s*}

has a local minimum at s = s* according to (4.2). On the other hand H'~(s*) —
H'*(s*) = w*(k'~(0) — k'*(0)) > 0, and this is inconsistent with such a minimum.
Smoothness off the origin is necessary for this result to hold, for consider «(s) =
(1 — |s|);. Here the D-optimum design is 1(6o + 6_1 + 61) because

H(s) = 31— 8)+ 3n(s) + dc(1+9) = 3,
so we see that 0 is an isolated atom.

Product designs. In suitable circumstances D-optimal designs in “higher
dimensions” can be obtained as products of marginal designs. Suppose T =
To x T; and that the correlation between Z; o and Z; » has the product form
G(s,t)I'(s',t'), where G and I are correlation functions. If £ is D-optimum on T
under G, and if ¢} is D-optimum on T under T', then Hy(s) = J G(s,t)¢3(de) > ho
with equality on Supp(&}) and Hy(s') = [T(s',t")6;(dt') > hy with equality on
Supp(¢}). The product measure £* = £§ x &} is then D-optimum for G - I since

H(Gs,8)) = /T Gls, O, ) d(t, ) = /T /T Gls, OT(s', £)E3(dOES(dE) > ho - b,

with equality on Supp(¢*). The D-optimality of these product designs contrasts
with the poor behavior of product designs in contexts where the problem is to
predict integrals of Z [see, e.g., Ylvisaker (1975)].

EXAMPLE 4. If T = [-1,112 and p((s,s'), ¢, ¢') = exp[—(s — )2 — (s' — ¢/)?]
then Example 2 with 0 = 1 leads to a D-optimum design concentrated on nine
points—the origin, four corner points and four edge midpoints. If p((s, s), (¢,¢)) =
exp(—|s — t| — |s’ — ¢|), Example 3 with 6 = 1 gives a D-optimum design that
is uniform over the square with probability %, is uniform along each edge with
probability 1, and has discrete weight {; on each of four corners.

Scaling. InExamples 2 and 3, as the “scale” parameter 6 becomes larger, the
correlation function becomes weaker and the D-optimum design becomes more
diffuse, with less weight at the boundary. Here we explore this kind of behavior
more generally. Consider a power family of correlation functions py = p° for
positive integers 6, where p is a given correlation function; p? is necessarily a
correlation function also. To be short and specific, we will take T to be finite, p to
be nondegenerate and positive on T'x T', and argue that the uniform distribution
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on T'is asymptotically D-optimum as # — oc. To see this, let £ be any nonuniform
design and let Card(T") = m. Then

¥ 20 P75, EGER) >, E2(s)
Es Zt pO(s, t)/m2 N Zs Zt po(s’ t)/m2
_1m+ Y, () - 1/m)2 _1+m Y (&(s) — 1/m)?
TS A(st)/mE T L+ Y ., 0%, O)/m

2
N 1+m2(§(s)—%) as § — oo.

Thus, for 6 sufficiently large, £ is worse than the uniform design.

Equivalence and G-optimality. In general, D- and G-optimum designs are
different. However, if a D-optimum design £* has Supp(¢*) = T, then £* is
G-optimum. This remark covers both (3.5) and (3.11). The result follows by
considering the zero-sum game on 7' x T with payoffkernel p: If £* is D-optimum
and Supp(£*) = T, then (4.2) implies that £* is the optimal decision measure for
both players, and the value of the game is A. In particular, min;, E¢p(¢y,X) <
ming, E¢« p(t,X), where ¢¢ is the choice of the minimizing player. Then, if ¢ is
“G-better” than £* under (3.5),

n}in (wEgp(to,X) —E¢pX, Y)) > n}:n (wEg‘p(to,X) — EeqpX, Y))
0
> n}anJEg* P(tO,X) - EﬁP(X, Y)a
0

where w = 2(1 + y~1n~1). This implies that miny, E€p(¢o, X) > ming, E¢- p(to, X),
which contradicts the maximin nature of £* noted above. A similar argument
holds for G-optimality under (3.11).

This result can be used in Example 3 and the latter part of Example 4.
Note that there is no dependence on . However, dependence on + does emerge
in the study of A-optimality (and for G-optimality in situations where G-and
D-optimality do not agree). We will make some comments about A-optimality
next. As to G-optimality, it is evident from (3.11) and, all the more, from (3.5)
that one meets the usual difficulties connected with the solution of two-person
zero-sum games. General problems in this area are known to be intractable,
and we have nothing new to offer here.

) A-optimality conditions. Here is a brief look at some features of approxi-
mate A-optimum designs. As above, let w = 2(1 + y~!n1). As a first case take
v = oo or, equivalently, w = 2. Refer to (3.7) and observe that £* = 7 is A-optimal
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because
9F, ¢p(IL,X) — Egp(X,Y) = 2 / / s, DE(ds)n(dt) — / / ols, DE(S)E(dE)
- / / pls, Eyn(ds)n(dD) + / / pls, Eyn(ds)n(de)
(4.4) - / / ols, n(ds)m(dt)
- / / pls, XE — m(dS)E — m)(dD)
< / / p(s, yn(ds)n(de),

with equality for £ = 7. The result is intuitive enough. For a stationary corre-
lation p on [—1,1], and the average posterior variance criterion, the optimum
design is uniform on [—1, 1]—implemented through equal spacing, say. For a
weighted average posterior variance criterion, the optimum design tracks the
weighting directly. In another direction, if prediction at just a finite number
of locations is important, attention is focused on these points alone. This is
reminiscent of phenomena in Sacks and Ylvisaker (1985).

At the other extreme, w = co or, equivalently, v = 0, there is the problem
of determining the maximizer’s strategy for the game with kernel p and with
knowledge of the minimizer’s strategy = [see (3.12)]. Here a design supported
entirely by one point ¢#* suffices, that is, choose ¢* to maximize E p(I1, ).

In the middle range, 2 < w < oo perturbation techniques yield a condition
like (4.2):

(4.5) H,(s) = / p(s,8)(28" — wm)(dt) = h, on Supp(£*),

where A, is the minimum of H,(s) on T'.

ExamPLE 5. Let p(s,t) = exp(—|s — ¢|) on [—1,1] and let 7 be uniform on

[—1,1]. For convenience, let &(s) = J p(s,)¢(dt) and 7(s) = [ p(s, t)w(de). As re-
marked earlier, if w = 2, then £* = 7, and if w = 0o, then £* is concentrated at
one point, the origin, because

1
w(s) = %/ el tdt=1-Lle 1 +e™)
-1

has a maximum there. For 2 < w < co we attempt to satisfy (4.5). Take £ to be
uniform on [—a,a] with a to be determined. Then

) o 6—2—a—(es +e7 %), se€l—a,aqal,
&(s) =
- e_a)’ sc [_1’ —a)~
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If £ is to be 7 - w/2 + ¢ on [—a,a] where ¢ = h,,/2, then

W1 "
(4.6a) ¢ “ o
(4.6b) I
a 2

Consider (4.6a) as an equation for a with fixed w. The left-hand side is greater
than e~1/2 while the right-hand side decreases from co to e~!/2 as a increases
from 0 to 1. Hence we can find a = a(w) and regard (4.6a) as satisfied. (For
example, if w = 4,a = 0.685, and if w = 8,a = 0.4384.) Then take ¢ according to
(4.6b). What remains then is to show that £ > (w/2)% +cons € [-1,—a). This
comes down to

e’ el—a
%(e" —e >

1_e*

1- 1 e e +e®) ) + 1(1 —el ) = e +e™®),
2 a a 2a

but this holds because it is equivalent to exp(s + a) + exp(—a — s) > 2.

These designs are in contrast with the D- (and G) -optimal designs. Recall
from Example 3 that the corresponding D-optimum design is %U(— LD+ % (61 +
6_1) and, further, that this is G-optimum as well because of the full support
feature.

5. Some numerical comparisons. In this section we note some numer-
ical results that compare the behavior of exact designs obtained using the
asymptotic criteria with that of exact designs that are optimum for the origi-
nal (nonasymptotic) criteria. We only report results for D-optimality. Following
Section 4, we chose four cases, with dimension (&) 1 or 2 (see Table 1).We eval-
uate the efficiency of the asymptotic designs here by using Lindley’s (1956)
measure of the amount of information about a multidimensional unknown x
provided by an experiment. This is the change in Shannon’s entropy (i.e., prior
entropy minus posterior entropy) for the random variable X that is used to
represent knowledge about x. If X is an m-dimensional Gaussian variable, this
is (m/2)(log |£1| — log |L2|) , where X; and X, are, respectively, the prior and
posterior covariance matrices for X. We use this to compare the D-optimum
exact design S [calculated by maximizing D in (3.8)] with the asymptotically
optimum exact design S* [calculated to minimize ¥7_; %], p(¢;,¢)]. For the m

TABLE 1
Case ¢ n Correlation Reference
1 1 4 psb= exp[ —(s— t)2] Example 2
2 1 4 pst)= exp( —|s— tl) Example 4
3 2 11 p(G6,8), ¢t)) =exp[—(s -t —(s' —#)?] Example5
4 2 1 p((s,s’), @, t’)) = exp[ —|s—t|— |-t |] Example 5
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TABLE 2
o2  ~ D(S*)/D(S) Eff(S*)
01 01 0.44 0.90
1 0.44 0.90
10 0.44 0.91
1 0.1 0.92 0.97
1 0.93 0.98
10 0.94 0.99
10 0.1 1.00 1.00
1 1.00 1.00
10 1.00 1.00

signal variables, the information provided by a design is (m/2)(—n log o2 +log D).
This can be seen by writing (3.14) as GenVar(observations) x GenVar(signal |
observations) and applying the definition of information. The information pro-
vided by the asymptotically optimum design S* relative to the optimum design
S is therefore

—nlogo? +log D(S*)
—nlogo? +1logD(S)

Eff(S*) =

Case 1[k =1, n =4, p(s,t) = exp(—(s—£)?)]. (See Table 2.) Here the asymp-
totic design S* = (1.0, —-0.36, 1.0, 1.0). For ¢% = 0.1 and ¢2 = 1, S is symmetric
about 0, is very nearly equispaced and includes the two endpoints; the effect of
v is negligible. For 02 = 10, S is similar to the asymptotic design, but with the
single interior point closer to 0.

Casg 2 [k = 1,n = 4, p(s,t) = exp(—|s —t]|)]l. (See Table 3.) Here the
asymptotic design S* = (—1.0,—0.49,0.49,1.0). In all nine cases, S is similar
to this, in that it is symmetric about 0 and includes the two endpoints. The
distance between the two interior points increases from about 0.67 to about
0.89 as o2 increases from 0.1 to 10; the effect of v is negligible.

TABLE 3

o? ~ D(S*)/D(S) Eff(S*)
0.1 01 0.91 0.99
f 1 0.91 0.99
10 0.91 0.99
1 0.1 0.98 0.99
1 0.98 1.00
10 0.98 1.00
10 0.1 1.00 1.00
1 1.00 1.00

10 1.00 1.00
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TABLE 4

o? ~ D(S*) /D(S) Eff(S*)
0.1 0.1 0.06 0.88
1 0.06 0.88
10 0.06 0.88
1 0.1 0.74 0.96
1 0.76 0.97
10 0.76 0.97
10 0.1 1.00 1.00
1 1.00 1.00
10 1.00 1.00

CasE 3 [k = 2,n = 11, p((s,8"), (t,¢)) = exp(—(s — t)2 — (s’ — #)?)]. (See
Table 4.) Here S* has two replicates at each of three corners, one point at
the fourth corner and a point near the middle of each edge. It is symmetric
about the diagonal line passing through the unreplicated corner. (See Figure
1.) For the nonasymptotic D-optimal designs, one sees no replication except
when o2 = 10. For 02 = 0.1, the D-optimal design S is essentially the same
for each 4. There are four corner points, a point near the middle of each edge
and a nearly equilateral triangle in the interior, these designs are symmetric
about one of the diagonals. For o2 = 1, v again has little effect. In each case, S

1 '25 T T T T T T T T T

1.0 © o QO
0.75¢+ 4
0.501 -
0.25+ 1
0.00f o 1
-0.25+r © .

-0.50 -

-0.75+ E

-1.00+ o o o A

3 Il il il Il

-1.2 ! 1 ! 4
-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

F1G. 1. An asymptotic D-optimal 11-run design on [—1, 112, where p((s,s’), (¢,#')) = exp[—(s — ¢)® —
(s’ — ¢)21. Points at which there are replicates are indicated by the double circles.
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TABLE 5

o2 ~ D(S*)/D(S) Eff(S*)
0.1 0.1 0.79 0.99
1 0.79 0.99
10 0.79 0.99
1 0.1 0.95 0.99
1 0.95 0.99
10 0.95 1.00
10 0.1 1.00 1.00
1 1.00 1.00
10 1.00 1.00

is symmetric about both coordinate axes. There are four corner points, a center
point, a point at the center of two opposing edges and two points on each of the
remaining two edges, each at a distance of about one-third from the middle of
the edge. For 02 = 10 and v = 0.1 or 1, S is symmetric about both diagonals.
There is a center point, two replicated corners, two unreplicated corners and
a point near the middle of each edge. In the last case (¢2 = 10, v = 10), S is
practically identical to the asymptotic design S*.

1.2< T T T T T T T T T

1.00 o) o) o g

0.75¢ g

0.50+ -

0.25¢+ -

0.00+ -

-0.25+ i

-0.50+ -

T
[0}

-0.75

-1.00+ o) o) o) .

-I.L ! ! I ¢ } I '
-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Fic. 2. An asymptotic D-optimal 11-run design on [—1, 112, where p((s,s'), ¢,t")) = exp(—|s — ¢| —
|s" —#)).
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CaseE 4 [k = 2,n = 11, p((s,s"), (¢,") = exp(—|s —t]| — |’ —¢'])]. (See
Table 5.) As one might expect from the examples of Section 4, the designs here
favor the interior more than those for the Gaussian correlation. There are no
replicates in any of these designs. The asymptotic design S* has four corner
points, a point near the center of each edge and a large, nearly equilateral,
triangle in the interior (Figure 2). It is symmetric about one of the diagonals,
as are all of the nonasymptotic D-optimal designs. For ¢2 = 0.1, S includes
five interior points, four corner points and the edge midpoints of two adjoining
edges; v has no discernible effect. Very similar designs were obtained for o2 = 1.
For % = 10, S looks like the asymptotic design in each instance, expect that
the interior triangle is slightly shrunken.

Finding optimum designs is a major computational problem, particularly
because of the existence of multiple locally optimum designs, and this has lim-
ited our attention here to these few simple cases. Even so, we cannot guarantee
that we have found the best design in every case. It is nevertheless encouraging
that the asymptotic designs constructed here, which do not depend on ~ or o2,
appear to be adequate over fairly wide ranges of these parameters.
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suggestions which have led to improvements in the paper.
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