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A REVERSE SUBMARTINGALE PROPERTY OF THE RANGE

By J. S. HUANG! AND W. J. HUANG?
University of Guelph and National Sun Yat-sen University

If R,, is the range from an exchangeable sequence of random variables,
then {R,/n} forms a reverse submartingale sequence.

1. Introduction. It is known that {(’;) —lR,,} forms a reverse submartin-

gale (RSM) sequence, where R, is the range of size n from an exchangeable
sequence of random variables. Something stronger is true: {n~'R,} is RSM.
A tighter bound for the moments of R, follows as an immediate consequence.

2. The results. Let X;,Xs, ... be an exchangeable sequence of random
variables; X; , < .-+ < X, » be the order statistics based on {Xi,...,X,} and
R, =X, , — X1, be the range. Bhattacharyya (1970) shows that

-1
() if E|X,| < oo, then { (%) Rn} is RSM, and
(i) if E|X;[* < oo, then

k
of _ 1)
1 ER’?<J—(]——— E[RY), i<j
Result (ii) is a consequence of the RSM property of (i), and (i) is based on
the following inequality:

LEMMA 1. (Bhattacharyya). Given n+m numbers x1 < - -+ < Xp4m, let x(li) <
e<a®i=1,2, ..., ("*'"), be the set of all possible subsets of n-tuples that

n
can be formed from the n +m x’s, and RY be the range of the i-th subset. For
n>2,

) (” “;m> (';)Rmm < (n;m) > RY.

The sum of subsample ranges in the rhs of (2) has a convenient represen-
tation in terms of quasiranges:
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LEMMA la. Forn > 2,

@ Y RY=Y (”*”,jj‘k)(xm-k ~ x18).

i k=0

PROOF. For any (i,j) with 1 <i<j<n+mandj—i>n-—1, there are
exactly (J" 21) subsets such that R, = x; — x;. Thus

ZR(‘) ’inj—fl( -t )(x, - x;)

S —l— m+1 n+m —l—l
252 (05) -2 2 (G5)
i i=1  j=i+n-1 n-
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The proof is complete upon making the change of indices £ = n + m —j and
k =i —1in the last two summations. O

By dropping any number of terms off the rhs of (3) we obtain an approx-
imation to the lhs of (3) at various degrees of accuracy; for m < n — 1, the
approximation is actually a lower bound since the summand in the rhs of (3)
is nonnegative. For large m (> n — 1), some spacings X,,n»_r — X1, Will be
negative. They are, however, the negative of quasiranges, allowing (3) to be
put in the form

l
ZRﬁt) = Z Ck (xn+m—k - x1+k) ’
i k=0

where [ = [(n + m)/2], the greatest integer not exceeding (n + m)/2, and c;, is
either a binomial coefficient or the difference of two. That the c; are positive
follows easily from the fact that for fixed n and m the binomial coefficient

(”*",::}‘k) is decreasing in k. Thus, regardless of whether m < n —1 or not, a

series of lower bounds results. The simplest—and quite useful—lower bound
is obtained by dropping all but the first term (& = 0).

COROLLARY. Forn > 2,

@ SR> (M DR,

Notice that the lower bound (4) is tighter than (2). It also leads to a stronger
RSM property.



476 dJ. S. HUANG AND W. J. HUANG
THEOREM 1. {n~'R,,n > 2} is RSM if E|X}| < co.
PROOF. Rewriting (4) in the form

and taking the conditional expectation of both sides given Rim, - .., Rnsmsk
the proof then proceeds in exactly the same way as in Bhattacharyya (1970). O

REMARK 1. We are indebted to the referee for a simpler proof. He points
out that the proof requires only the m = 1 case of inequality (4). For that case
the inequality (and Lemma 1a) is reduced to a triviality.

REMARK 2. Let H, =R, /n and let

Clearly, if {H,} is RSM, then {B,} is RSM as well:

. 2 .
E(Bn IBn+1,Bn+2, cee) = ‘_“—"E(HnIHn+1an+2v .. )
n-1

2 n
> — = —
_n_lHn+1 n—1

Bn+1 > Bn+1 a.s.

Thus our Theorem 1 implies Bhattacharyya’s. It is also a more “natural” result,
putting {R,} on par with the maximal order statistics {X, .} (see Theorem 2
of Bhattacharyya). Finally, as an immediate consequence of our Theorem 1
we have the following improvement over his Theorem 3(i) and the corollary
[see also David (1981), page 106, footnote].

THEOREM 2. If E|X)|* < oo, then E(R}) < (j/i} E(R}),2<i<j, k> 1.

COROLLARY. If E|X;| < oo, then E(R,,;) <[(n+1)/n] E(R,), n > 2.

The bound is actually tight at n = 2 in view of the fact that E(R3) = 3ERy).

3. Example. Let {A(?),¢ > 0} be a mixed renewal process. The sequence
of interarrival times {¢;,i > 1} then forms an exchangeable sequence [Huang
(1990)], and {n~' max;<; j<» |& — &|} is RSM. Mixed renewal processes occur

naturally in survey sampling [Sugden (1982)]. They have also been used in
describing the lifetimes of some replacement models [Shanthikumar (1985)].
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