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POTENTIAL FUNCTIONS AND CONSERVATIVE ESTIMATING
FUNCTIONS
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A quasiscore function, as defined by Wedderburn and by McCullagh,
frequently fails to have a symmetric derivative matrix. Such a score func-
tion cannot be the gradient of any potential function on the parameter
space; that is, there is no “quasilikelihood.” Without a likelihood function
it is difficult to distinguish good roots from bad roots or to set satisfactory
confidence limits. From a different perspective, a potential function seems
to be essential in order to give the theory an approximate Bayesian inter-
pretation. The purpose of this paper is to satisfy these needs by developing
a method of projecting the true score function onto a class of conservative
estimating functions. By construction, a potential function for the projected
score exists having many properties of a log-likelihood function.

1. Introduction. An unbiased estimating function g(6,y) is defined to be
a function of the data y and parameter § having zero mean for all 4. In other
words, Eg{g(6,Y)} =0 for all §. One purpose of an estimating function is to
produce an estimate 8 of the parameter from data y, the estimate being ob-
tained as a root of the equation g(6,y) = 0. Consequently, if the parameter
0 is p-dimensional, it is necessary at a minimum that the range of g be p-
dimensional with nonvanishing derivative matrix.

A quasiscore function is a linear unbiased estimating function based only
on the first two moments of the observations. Suppose that the n x 1 random
variable Y has mean vector y and covariance matrix V. Both are known func-
tions of the p-dimensional parameter 6, and V(-) is a positive definite matrix.
The quasiscore function is

@ a(6,y) = {(9)} {v(8)} "y — (o)},
where /1 is an n x p matrix with components Jy;/ 86;,. It is easily verified that

@) i = cov(q) = ~Ep(9q/ 86) = 4TV~

This matrix plays the role of Fisher information exactly as in fully parametric
inference. Under the usual kinds of limiting conditions the asymptotic covari-
ance matrix of § is i 1.
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The quasiscore function (1) can be derived as a projection of the true score
function, s(0,y) = 0logpg(y)/ 06, onto the linear space spanned by {y; — p1(8),
«.o»¥n — pn(0)} [see McLeish (1984) and McLeish and Small (1992)]. The pro-
jection is accomplished using the inner product (X,Y) = E4(XY). Since (s,,Y; —
pi) = Op; /06, and (Y; — p;, Y; — ;) = Vjj, a direct application of the projection
formula gives (1). The derivation of (1) by projection of the true unknown score
function onto the space of linear estimating functions is sometimes put for-
ward as a kind of finite-sample optimality property inherited from closeness
to the true unknown score function [see Godambe and Heyde (1987)].

Although the projection (1) has many properties of a likelihood score func-
tion [Wedderburn (1974) and McCullagh (1983)], there is an important prop-
erty of the likelihood score function that the quasiscore function does not
inherit. Unlike the likelihood score function, which is by definition the gra-
dient of the log-likelihood, the projection (1) often is not a gradient of any
potential function. Note that, although E(9q/00) is by (2) symmetrical, the
derivative matrix dq/00 may not be symmetrical even at 8. In general, there-
fore, there can be no “quasi-log-likelihood” Q(6,y) such that 9Q/90 = q(8,y)
[see McCullagh and Nelder (1989) and McCullagh (1991)]. See also Firth
and Harris (1991) for a discussion about the impossibility of constructing de-
viances from the nonconservative quasiscore of a multiplicative error model.
The nonexistence of such a potential function makes the comparison of param-
eter values awkward, particularly when the estimating function has multiple
roots. A potential function, if it existed, could be used to distinguish local max-
ima from minima. From a different perspective, a potential function seems to
be essential in order to give the theory an approximate Bayesian interpreta-
tion.

The purpose of this paper is to satisfy these needs by developing a theory of
conservative estimating functions that are linear in the observations. By con-
struction, a potential function or quasilikelihood exists having the estimating
function as gradient vector.

2. Definition of conservative quasiscore. Let © be the p-dimensional
parameter space and let ) be the n-dimensional sample space. Suppose that
on Y is defined a class of probability distributions {Py: # € ©} with densi-
ties pg, and on © is defined a prior distribution II with density m(#). Let
L2(PyTI) be the class of all estimating functions g: © x Y — RP such that
Jo fyng dPy dIl < co. We shall use g",g° and so on to denote components
of an estimating equation g, and g;,g; and so on to denote different estimat-
ing equations.

Evidently, L2(P,II) is a vector space over the real constants. In other words,
if A1 and )y are scalars (not dependent on # and y), then for g; and g5 in
L2(PyII), M\ig1 + doga is in L2(PyII). For each pair of elements g; and g; in
L2(P,II), we define their inner product as (g1,82)~ = E-Eo(gTgs). It follows
that L2(PyII) is complete in terms of the metric associated with the inner
product; thus L2(PyII) is a Hilbert space. Now let G be the subclass of L2(P,II),



342 B. LI AND P. MCCULLAGH

which consists of functions that are linear in y, unbiased and conservative. By
conservative we mean that there is a potential function @, such that 6Q,/96; =
g°. This is equivalent to the statement that the line integral of g over O is path
independent. If g is continuously differentiable, an equivalent version is

(3) 0g" /00, = 8g° /06, forr,s=1,...,p.

It is easy to verify that G is a linear manifold in L?(PyII). We shall assume
that G is closed in terms of the metric associated with (:,-)r.

DEFINITION 1. Suppose that the true score function s(4,y) = 9l/06 is in
L2(PyII). We call the projection of s onto G the conservative quasiscore, and
its potential function the quasilikelihood function.

To demonstrate that there is no conflict of terminology here, it is necessary
to show that if the quasiscore (1) happens to be conservative, then it is the
conservative quasiscore. Otherwise the definition would give rise to a different
quasilikelihood function.

PROPOSITION 1. If q is in G, then, independently of the choice of I1,q is the
conservative quasiscore.

PROOF. We write the projection of s onto G as g*. It suffices to show that,
if ¢ is in G, then q = ¢* a.e. Pyll for an arbitrary II. Letting g be an arbitrary
element in G, then

p
0N (8,9)x =E+Es(q"g) =) _E<E¢(q'g").

r=1

Since g € G, g" is necessarily of the form {ar(e)}Ty+ b-(0), with a,(0) in R" and
b-(0) in R!. So Eo(g"q") = (Ou/ 80,)7 a,(6). If the differentiation with respect to 6
and the integration over ) commute, then this reduces to E¢(q"g") = Eq(s"g").
Hence the right-hand side of (4) is (s,g). Thus (4) implies that (g —s,8)x =
0, for all g in G; that is, ¢ = ¢* a.e. PyIl. Note that the argument follows
independently of the choice of II. O

In applications, G is approximated by a finite-dimensional space F, say,
which is always closed. Let {g1, ...,gm} be a basis in F. Then the projection
of s onto F can be written explicitly as

(5) a5 = {(,8)x} {(g8)=} {&:},

where {(s,g;)+} is an m x 1 vector, {(g;,gj)~} is an m x m matrix and {g;} is
gn m x 1 vector with entries being p-dimensional estimating equations. Since
a linear unbiased g must take the form

(6) G(0)"{y — n(6)}
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for some (n x p)-dimensional matrix G(6), the inner products needed for the
projection (5) are

(s,g),,:tr{E,,(GTﬂ)} and (gl,g2>,,=tr{E,(G{VG2)}.

These inner products, similar to those for the quasiscore function, depend on
Py only through the first two moments of Y.

3. Some properties of conservative quasiscore function. By con-
struction, g* is an unbiased estimating equation. Since s — ¢* is orthogonal to
q*, (@*,q*)x = (s,q*)r. It follows then that

7) tr{E(q*q*T)} = —tr{E(8g*/6)},

with expectation taken over both Y and 6. Note that the matrices E(g*q*7)
and —E(dq*/00) are not in general equal. The projection argument guarantees
only symmetry of the derivative matrix and equality of the traces.

An optimum property of ¢* is obtained in terms of the efficiency criterion
e(g) in the spirit of Godambe (1960) and Bhapkar (1972). Since 6 is estimated
as a root of g, it is desirable that the root be close to the true 6. From effi-
ciency and power considerations it is equally desirable that |g| should be as
large as possible at all false parameter values. Bearing in mind that g(-) is
random, these requirements are captured in the one-dimensional case by the
efficiency criterion

tr E,Eq(9g/00)}
tr{E.E(ggT)}

This is an efficiency criterion in the sense of Pitman (1949) and Noether (1955):
it depends only on the local behavior of g(-), ignoring entirely the global nature
of the estimating function. An optimal conservative estimating function is
naturally defined as the one in G that maximizes this quantity.

We now demonstrate that g* is efficient according to this criterion. Since
s — q* is perpendicular to G,

o(g) = 1

0,
(8) (g’q*>1r = (g,s),, =—trE Eg (8—5)
By the Cauchy—Schwarz inequality,

(8,9 )
(9) ST S *’ * e

@ =)
Substitution of the last expression of (8) into the left-hand side of (9) gives
e(g), and by (7) the right-hand side of (9) becomes e(q*). Hence e(g) < e(g*) for
all g in G.
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4. Construction of the conservative quasiscore. We now present a
method of constructing a finite-dimensional space, Gk, say, of linear, unbiased
and conservative estimating equations. We shall demonstrate, under certain
conditions, that the projection of s onto Gx approximates the conservative
quasiscore g* if K is large. First, we need a necessary and sufficient condi-
tion for an estimating equation to be linear, unbiased and conservative. In
what follows, A@9) = (A100),...,A,(0))T represents an n-dimensional column
vector, A = {0A;/96;} represents the {n x p}-dimensional matrix of the par-
tial derivatives and so on.

LEMMA 1. Let g be an estimating equation in L%(PyII) having continuous
partial derivatives. Then g is linear, unbiased and conservative if and only if

(10) g= AT{y - u(e)} for some A satisfying ATj = 5TA.
In this case, the potential function of g can be written as

Qe (0,7) =AT(0){y — u(6)}
(1) + / ’ { Zn:Ai(t)gT“li} dty +-- {ZA )On } dt,,

where the second term is the (path independent) indefinite line integral in the
parameter space.

PROOF. Linearity and unbiasedness of g implies (6). By conservativeness
and continuous differentiablity, g must also satisfy (3). Substituting (6) into
(3), we obtain

(12) Z 0C+ (y i Z G g‘zt Z aGSt —H ‘) Z Gsi gz:

i=1 i=1

where G,J is the (r,/)th element of GT. Taking expectation (E,) of both sides
of (12) gives GTj1 = iTG. Substituting this into (12), we have

09 3Gt =3 Gl or 3 (G -G08 i) 0.

Since (13) holds for all y in the n-dimensional sample space, dG,;/80; = 8G; /36,
for all r,s = 1,...,pand i = 1,...,n, and for all § € ©. Hence, for each
i,(Giy,..., Gip)T is the gradient vector of some function A;(#). This proves the
necessity. Sufficiency and expression (11) can be easily verified. O

For computational purposes it is convenient to consider the special case
in which

(14) pi(0) = Q:(6)e™®,
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for some polynomials @;(6) of degree Kg and R;() of degree Kg. Models of this
type arise in many applications. In the examples of Section 6, @;(f) is linear
and R;(9) is constant. For log-linear models @;(f) =1 and R;(f) is linear. We
seek a solution to (10) in which A;(f) has the form

(15) A;(0) = P;(0)e RO,

where P;(0) is a polynomial of degree K with coefficients C; to be determined.
Substitution of (15) and (14) into the second expression (10) gives

=, ([ OP; OR;)\ (0Q; OR;
Z _i_pi__‘) <__' +Qi—'t')
(16) P (80, 00, / \ 06 06

OP; p OR:\(0Qi o ORi\ _
'(%; P‘aos)(aa,’“Q‘ao,)‘O’

forr <s,r,s=1,...,p. On the left-hand side of (16) are polynomials in 6 with
coefficients linear in C = {C4,...,C,}, that is

Z Ln® (C)0’i‘~~0,i,"=0, r<s,r,s=1,...,p,

l],...,ip
11y lp

where i, ...,ip run through the index set
I={(i1,.-1ip): 120, ...,0p > 0;iy +--- +i, <K + Kq + 2Kg — 2},

and Lg;fiip(C) are linear functions of C. Hence condition (16) is equivalent to
a system of linear equations,

amn Lg;f)"ip(C)=0, r<s,r,s=1,...,p,(i1,...,ip) €.

The solution space of (17) corresponds to all possible polynomial n-tuples
of degree not higher than K that satisfy (16). Thus, if we let Gk be

{g: g=AT(y — p),Ai = Pie™®,(Py, ..., P,) satisfy (16), degree of P;’s < K},

then a basis in Gk, say, {g1, --.,8m}, can be obtained by solving (17). The
projection of s onto G can then be calculated using (5). We write the projection
as qy.

V&g now justify the projection onto the finite-dimensional space Gx by show-
ing that the projection g} approximates g* as K tends to infinity. For this pur-
pose, we make some assumptions (possibly stronger than necessary) about II
and the functions in G. We assume that there is a subset O of © such that
() TI(Oy) = 1; (ii) if G° = {g: g = GT(y — p)} is a subset of G and if, for each g
in G°, the entries of G are analytic functions on ©o, then G is dense in G in
terms of the metric associated with (-,-).. These conditions are satisfied if, for
instance, O, is a closed rectangle and, for each g = GT(y — ) in G, the entries
of G are squared-integrable with respect to II.
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THEOREM 1. If u has the form (14), and if the assumptions made in the
last paragraph hold, then ||qx — q*|| — 0 as K — oo.

PROOF. Since ¢* is in G, there is a g in G° such that ||g — ¢*||, < ¢ for
an arbitrary € > 0. Since g is in G°, it has the form (10) for some A(6). Let
PX(6) be the Kth-order Taylor approximation of A; efi (whose Taylor expan-
sion also has a convergence region that contains ©;). We write PXe~Fi as
AKX, (AKX, .  AK ) as AX and the estimating equation (0AX /00) (y — p) as gk.
Evidently gk is in Gk. Since {PX} and {6P¥/06,} converge uniformly on
to A;e® and 9(A;e®)/06;, as K — oo, and supg, {e %} and supg, {|0e~Fi/006,|}

are finite,
0A; 6A{‘ _R: 6(AieR") oPX Oe~ B R,

s&f’{ }'sé?{e { 96, ‘603}* 50, e ‘P‘K)\

< sup{le7 %]} su

(e

00, 00,
Ha i
+ sup 30

}sup{|AeR' ~Pf|} -0 asK - oo.
Choosing K so large that supg, {|0A;/06, — 8AX /86,|} < €1, we have

oA 0AK\T
(‘3—0 - “'5;)‘) (Y -p)
where J is an n x p matrix with entries equal to 1, and C < oo. Since gg €

Ok, llag — a*llx < llgk — q¢*llx < llgx — &lix + llg — @*||lx < €1C + € = €2, where &,
can be arbitrarily small. O

d(AweP)  oPK
00, 00,

”gK _g||1r = < €1||JT(Y — u)”" = €1C,

™

The examples in Section 6 indicate that ¢* can be approximated reasonably
well by small K, as small as K = 3. If 4;(0) is not of the form (14), we can
approximate it by a polynomial 1;(f) and then use the above projection method.
This approximation introduces a bias into the estimating equation. To take
the bias into account, the inner product should be modified as (g1,82)r =

tr{E.(GT(V + B)Gz)}, where B = (u — v)(u — v)".

5. Asymptotic distribution of the quasilikelihood ratio test. Once
the projection ¢*(6,y) is obtained, expression (11) gives the quasilikelihood
function @*(,y) for some vector A(f). We now outline an argument that leads
to the asymptotic distribution (under 6) of the quasilikelihood ratio tests
2{Q*(0, »)— Q*(6,y)} and 2{Q*(0, ¥ - Q*(6, ¥}, where 8 is obtained by maxi-
mizing @*(0,y) globally on © and 6 by maximizing on a subset 6 of ©, and 6§
is the true value.

Assume that, as n approaches infinity, AT/n and ATVA/n converge to
positive definite matrices and that 8 is consistent. Then, under regularity
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conditions [e.g., Cox and Hinkley (1974), page 294] it can be shown that
(18)  vr(0-6) —c N(0,n(ATi) T (ATVA) (ATi) 1) = N (0, ).
Taking the Taylor expansion of 2{Q*(§, ¥) — Q*(6,y)} about 8, we get
(19) 2{@"(.) - Q" (6,)} =n(8 - 0)TA(6 - 6) + 0, (1),

where A is the matrix ATj/n. By (18), the quadratic form {/7n(d — 6?)}7'2'1
x{y/n(0 — )} is asymptotically distributed as xﬁ under 6. Therefore,

20) (VA3 - ) AVA@-0)} ~c SN2,
i=1

where the Z;’s are independent N(0, 1) random variables and the );’s are the
eigenvalues of the positive definite matrix A [Johnson and Kotz (1970), page
151]. By (19) and (20) we conclude that

- 14
(21) 2{Q"(6,7) —-Q*(6,y)} —»c > _ NZ}.

i=1

Notice that when the quasiscore function q(6,y) happens to be conservative,
A is the identity matrix, so that the limiting distribution reduces to xﬁ.

Suppose now that 6 of dimension p is partitioned into two components,
0 = (,)), where 1 of dimension p; is the parameter of interest and \ of
dimension py = p — p; is a nuisance parameter. Now consider the composite
null hypothesis Hy: 1 = 1y versus the alternative Hy: v # 1, in the presence
of nuisance parameter \. Let the matrices ¥ and A be partitioned into

Typ  Tya Ayy Ay
d ,
(EA«/) T ) an (A,\w Axx

respectively, with X,y of dimension p; x p;, and so on; let ($, ) be the global

maximizer of @*(6,y) and let (1o, \) be the conditional maximizer under Hj.
It then follows that

- - P1
(22) 2{Q"(5,3,5) - @ (W0, X.3)} =2 Y %,

i=1

where ,...,7,, are the eigenvalues of the matrix (Ayy — ApaAxsArg)Zyy-
If q(6,y) is conservative, then the limiting distribution in (22) reduces to xﬁl.

The percentage points of the limiting distributions in (21) and (22) can be
calculated using the algorithms given by Griffiths and Hill (1985). The preced-
ing argument also indicates that if the matrix A and £~! are approximately
equal, then the asymptotic distributions in (21) and (22) can be approximated
by x? distributions.
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6. Examples. Two examples are presented to illustrate the application
of the conservative quasiscore and its potential function. Both examples are
assumed to have an underlying probabilistic model so that the present ap-
proach can be compared with maximum likelihood. In practice, the quasilike-
lihood approach is more useful when there is a plausible model for the first
two moments, but the underlying probabilistic mechanism is unclear or not
computationally tractable. The results are also compared with those obtained
using the usual quasilikelihood approach, which does not yield likelihood func-
tions in these examples.

EXAMPLE 1 (Voter transition probabilities). This example concerns the es-
timation of voter transition probabilities based only on the vote totals of each
of two parties, C and L, say, in two successive elections. Let 6; be the proba-
bility that a voter who votes for party C in the first election also votes for C in
the second election, and let X; be the number of such voters. Similarly, 6, is
the probability that a voter who previously voted for L subsequently switches
to C, and X, is the number of such voters. We only observe the vote totals m
for C and m; for L in the first election, and vote totals Y for C and m1+mqo—Y
for L in the second. With transition probabilities #; and 6; being the parame-
ters of interest, we condition on the vote totals of election 1 and assume that
X, ~ B(m,,61) and X3 ~ B(mg, 63). This example is given in McCullagh and
Nelder [(1989), page 337] to illustrate the nonconservativeness of the quasis-
core function.

The quasilikelihood score function has components

(23 ¢(6,Y) =) mil{Y‘i;i_(;;“(e)} and ¢%(6,Y) =3 m"2{Y{',i_(0’;"2(9) },

where p;(0) = m;10, + m;26s and V;(0) = m;16:(1 — 6,) + m;265(1 — 65). The func-
tions (¢!, ¢?) do not form a conservative vector field because dq' /96, # dq?/6;.

We now construct the conservative quasiscore function as described in Sec-
tion 4. We choose 7(6) to be uniform over the parameter space (0, 1) x (0, 1).
Observe that u;(0) is of the form (14) with Q;(8) = m;16, + m;26; and R;(6) = 0.
So according to (15) we let A;(6) = ECZ,,H’{H; , where the summation is over the
set {(u,v): p>0,v>0,0<p+v <3} Thus the conservative condition (16)
becomes 2;?‘=1{m,~2(8P,~ /061) — m;1(8P;/062)} = 0. This is a system of equations
involving only the polynomials 0P;/86; and OP;/d6; of order not higher than 2.
Equating the coefficients of these polynomials to zero, as described in Section
4, the linear system of equations (17) becomes

(24) AC=0,
where CT = (Cy, Cs, Cs), with C; = (C,, Ci;, Ciy, Ciy, Ciy, Csy, Csy, Cip, Cio), and
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A =(A1,A2,Ay), with

m;g —m;y 0 0 0 0 0 0 0
0 0 2m,~2 —miji 0 0 0 0 0
Az _ 0 0 0 mig -—2m,~1 0 0 0 0
- 0 0 0 0 0 3m,~2 —mi 0 0
0 0 0 0 0 0 Zmig -—2m,~1 0
0 0 0 0 0 0 0 mia —3m,~1

Notice that in this case the Cf,o’s do not appear in 8A;(6)/06, and 6A;(9)/50s,
so they are irrelevant for constructing ¢*(6,y), and hence do not appear in
(24).

The solution space of (24) corresponds to all polynomials P(6) = {P1(6), P(6),
P3(0)} of order not higher than 3 that satisfy the conservativeness condi-
tion (16), which result in a basis {g3, ...,g21} of the family Gs. Projection of s
onto Gz using (5) gives g3(0,y). Finally, we use the Newton—Raphson method
to obtain the estimate 6. The covariance matrix of § is estimated by substi-
tuting 6 into ¥ in expression (18). The results of the calculations using the
usual quasilikelihood method (QL) and the likelihood method based on the
conservative quasiscore (CQL) are summarized in Table 1.

To compare the efficiency of CQL and QL, it is fairer to evaluate the two co-
variance matrices ¥/n in (18) and i~! in (2) at the same value of §. Evaluating
both at 8, we get

3y, _ [ 0.24217 —0.22665 17y _ [ 0.24212 -0.22661
5(6)/n = (—0.22665 0.23600)’ i7(0) = (—0.22661 0.23595)'

The difference is negligible, indicating that there is little loss of efficiency
by using CQL rather than QL. Furthermore, the information identity holds
approximately for g3 at the estimate 6:

g3\ | _ (39.7 386\ _ (386 381\ _(n . .
{E"(" W) }f (38.6 42.1) ~ (38.1 42.3) = {Es(aias") };-

[}

Therefore the asymptotic distribution of the quasilikelihood ratio based on @*
can be approximated fairly well by x2.

In Figure 1, we compare the true likelihood and the potential function of
the conservative quasiscore using contour plots and perspective plots. The
maximum likelihood estimate (6y,8,) = (0.2, 1.0) is on the boundary of 6, but
the maximum of @* is in the interior of ©. Nevertheless, the shapes of the
two likelihood functions—in particular, the direction of the longer axis of the
contours—are very alike.

EXAMPLE 2 (Nonhomogeneous Poisson process). Suppose that on the time
interval [0, T is defined a Poisson process with intensity A\(f) = exp(6; + 020),
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TABLE 1
Comparison of QL and CQL for Example 1

Methods Point estimates Covariance matrices

QL 9, = 0.363 0.239 -0.223
9, = 0.837 -0.223 0.233
cqQL 6, = 0.368 0.242 -0.227
6 = 0.832 -0.227 0.236

of which we observe only the numbers of events Yi,...,Y, that fall in cer-
tain overlapping intervals I,...,I, contained in [0,T]. Based on the data
{I1,..., In; Y1, ...,Y,}, we want to estimate 6; and 6,. In the simulation, 6,
and 0, are taken to be 0.7 and 0.5, T' is 6.5 and I, ...,I;; are intervals with
length A = 0.8 and centered at x; = Ti/(n + 1) = 6i = 0.5909i,i =1, ..., 10. Two
hundred random variables are simulated from the nonhomogeneous Poisson
process N(¢). The numbers of events of the process N(¢) that occur in intervals
I,...,I, are recorded to be 1,5,4,5,7,8,12,11, 15, 27.

The likelihood function is obtained by partitioning the 10 overlapping in-
tervals {I1,...,I10} into 19 consecutive and nonoverlapping intervals

{Jl,. .. ,Jlg} = {Il N5, I)NnII, nI‘i r‘|I§,. .1 ﬂlg ﬂI‘io,IQ N I1o,110 nlg}

Letting Y7, ..., Y], be the unobserved random variables representing the num-
bers of events that fall in Jy, ...,J19, we have

Po{Y1=y1,...,Y10 =y10}

= Z ﬁ { (yz‘!)-1 </J. exp (61 + 0at) dt)y; exp( - /J exp(0; + 65¢) dt) },

i=1 i

where the summation is over the set
(25) {(y’{,-~-,y‘{9): Y1 +Ye=Y1,--»Yis +¥19 =Y10,¥; 2 0,) = 1,~-~,19}.

For simplicity, we approximate the integrals [ 7 exp(fy + Ost)dt by ¢; x (the
length of oJ;), where ¢; is the intensity at the center of J;. The number of
elements in the set (25) is about 45 million, so the computation involved is
heavy, not to mention that the counts simulated are moderate. One can also
obtain the likelihood function by considering this as a missing-data problem
and using the EM algorithm [Dempster, Laird and Rubin (1977)], in which
the complete data is {y}, ...,y}s} and the observed data is {yi, ...,¥10}

We now apply the QL approach. The first two moments of Y3, ..., Yy are
given by

1 (6) = / exp(6; +t02)dt and V;(9) = / exp(6: +t0s) dt,
I Ling;
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Fic. 1. Comparison of true likelihood and conservative quasilikelihood for Example 1.
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which, as before, are approximated by the product of the intensity at the
centers of the intervals and the length of those intervals; that is,

u,-(a) = Aexp(el + 1592),

26
@6 Vii(6) = (A—1i—jl6)" exp [01 +{i6+x(li —Jj| = 1)5/2}92] ,
where x is an indicator function. The quasilikelihood method is then applied
to get the estimates 8; and 8, and their covariance matrix. As in the previous
example, since the quasilikelihood score functions do not form a conservative
system, no corresponding likelihood exists.

Finally, we apply the CQL approximation using K = 3. By calculations
similar to Example 1, we obtain the linear system of equations (17) as AC =
0, with

_(B1-- By T _
A‘<A1...Am)’ C"=(Cy,...,Cu),

where
B; = (b;,0)10x100 b =(0,...,0," 1 ,0,...,0)1510,

0i5-1 0 0 0 0 0 0 0
00 02 -1 0 0 0 0 0
oo 0o 0is-2 0 0 0 0
A=00 0 0 0 0385-1 0 o0}
00 0 0 0 0 026-2 0
00 0 0 0 0 0 0 i5 -3

Ci = (Cf)o’ CilO’ Cf)l’ Céo, ill’ Cf)2’ Céo’ Cél’ Cilz’ Cf)B)'

The measure II is taken to be uniform density over the region (0, 1] x (0, 1].
We summarize and compare the results obtained by the three approaches in
Table 2.

Again, we observe a remarkable agreement between the CQL and QL ap-
proaches, and, in this case, they both agree well with the MLE approach. The
information identity holds approximately at the estimate 6:

Oq3\ | _( 636 280.1\ [ 60.6 259.9) _ yoaT
{E"(_ o6 )};‘ (280.1 1400.1) ~ (259.9 1301.6) = {E" (‘13‘13 )};

In Figure 2, we compare the likelihood and the potential function of g3. The
parameters for both the contour plots and the perspective plots are on the
region [0, 1] x [0, 0.7].
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Fia. 2. Comparison of true likelihood and conservative quasilikelihood for Example 2.
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TABLE 2
Comparison among MLE, QL and CQL for Example 2

Methods Point estimates Covariance matrices

MLE 8, = 0.751 0.153 -0.0305
9y = 0.448 -0.0305 0.00674

QL 9, =0.736 0.152 -0.0304
0y = 0.452 -0.0304 0.00676

cQL 6; =0.737 0.153 -0.0306
9, = 0.452 -0.0306 0.00679

7. Discussion. In developing the quasilikelihood function presented here
we have two purposes in mind. First, the quasilikelihood estimate is now ob-
tained by maximizing a potential function, and confidence sets can be obtained
from the contours of the potential functions. This avoids the ambiguity in
defining the estimate as the solution to (1) when it has multiple solutions and
when its potential function is not defined. Second, with a potential function
at hand, it is possible to combine the prior knowledge of 6 into the inference
procedure. One possibility of doing so is to base inference on the “posterior
distribution” exp {@*(8,y) + log m(8)}. When the sample size is moderate, 7(6)
has a significant contribution to inference; when the sample size is large, the
quasilikelihood @*(6,y) dominates. The prior density 7(¢) for Bayesian appli-
cation need not be the same as the one we use for the projection of the score.

There is a degree of arbitrariness in the choice of the measure II on the pa-
rameter space. In the examples, although only one choice has been presented,
we have experimented with various choices of II. In general, it seems that the
effect of the choice of II is very weak. This is perhaps to be expected since
IT has no effect whatsoever in those cases where the quasiscore function (1)
happens to be conservative. In this sense, the effect of the choice of II seems
to be less than the effect of the choice of prior in the Bayesian inference.

We now make some comparison between the projected likelihood ratio (PL)
introduced by McLeish and Small (1992) and CQL. The PL is a function of
two values of the parameter 0, so it needs a reference point to be used as a
likelihood function. The CQL does not need a reference point; it does, however,
depend on II. In certain special cases, PL recovers a likelihood function for
the mixture of random variables, whereas the CQL recovers a likelihood in
the linear exponential family. The function PL(6,,6;) has the property that
E4,PL(6,,0;) = 1, which mimics a likelihood function, and is useful; this does
not hold for exp(CQL).

The CQL can also be developed for quadratic or higher-order estimating
equations [Jarrett (1984), Crowder (1987) and Godambe and Thompson (1989)]
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when the functional form of the higher moments of data, such as skewness and
kurtosis, is available. The idea of projecting the likelihood score with respect
to a prior in the parameter space also finds application in combining likelihood
conditioned on different and nonnested sub-o-fields of sample spaces, which
we shall study further in separate research.

Although a conservative quasilikelihood estimate is in the theory not fully
efficient among the family of linear and unbiased estimating functions in
terms of the Loewner ordering of asymptotic covariance matrices, both exam-
ples indicate that the covariance matrices differ from their QL counterparts
only by a negligible amount. They also indicate that the projection g* may be
approximated well using polynomials of low degree.
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