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CONFIDENCE REGIONS IN LINEAR FUNCTIONAL
RELATIONSHIPS

BY HEPING ZHANG
Yale University

A unified approach to deriving confidence regions in linear functional
relationship models is presented, based on the conditional likelihood ratio
method of Knowles, Siegmund and Zhang. In the case of a single latent pre-
dictor, the confidence region for the slope produced by this approach is the
familiar one of Fieller and Creasy. However, here it is shown how to derive
a confidence region for the slope, when it is known that the slope is pos-
itive, that improves on merely intersecting the regioh for an unrestricted
slope with (0,00). A geometric interpretation is given for Fieller-Creasy
confidence region for the ratio of population means (Fieller-Creasy prob-
lem). Regions are also derived for simultaneous estimation of the slope and
intercept in the model with a single latent predictor, and for the slopes in
a model with two latent predictors.

1. Introduction. Starting with Adcock (1878), there has been much in-
terest in the following model,

Y1 i 3] ,
1 = ’ = PR | b
D (y2i> <a +ﬁ/h‘) * (52i) =1 N

where (i, ..., un are unknown parameters and (e};,ep), i = 1,...,N, are
iid. N(0,X). It is called the linear functional relationship model [see, e.g.,
Anderson (1976, 1984), Fuller (1987), Gleser and Hwang (1987), Kendall and
Stuart (1979), Johansen (1984) and Seber and Wild (1989)]. Although it is
called linear, this model is a nonlinear regression model. In the literature,
the identifiability of model (1) is a concern. A widely used assumption is that
¥ = 025, with £y known. See Creasy (1956), Fuller (1987) and Gleser (1987)
for more information, In what follows, without loss of generality we assume
that ¥ = 0'21 2.

The maximum likelihood estimates of the parameters are known; their
asymptotic behavior has been studied by many authors. A property of the
present model, which causes difficulties for asymptotic theory, is that the num-
ber of nuisance parameters tends to infinity as the number of observations
tends to infinity. For more details, we refer to Anderson (1976), Fuller (1987),
Kendall and Stuart (1979), Johansen (1984) and Seber and Wild (1989).

Finding confidence regions for the slope 8 is of particular interest in the
literature. There are two general approaches, one based on asymptotic theory
[cf. Gleser (1987)] and the other using the idea of constructing a suitable
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pivotal statistic. In the 1950’s, Fieller (1954), Williams (1955) and Creasy
(1956) developed a constructive approach that makes use of a pivotal statistic.
Schneeweiss (1982) offers a very neat summary for this approach and also
extends the idea to multivariate models. This approach is straightforward
if one is able to decide what kind of statistic to use as a pivot. However,
except that one wants to choose a statistic whose distribution is easy to find
and free of nuisance parameters, no standard is provided in the literature
for how to generate the pivotal statistic. Another problem of this approach
is lack of flexibility because confidence regions cannot be naturally adjusted
when models are changed. This will be clearer when we deal with a variety
of concrete problems later on.

This paper presents a unified approach adapted from Knowles, Siegmund
and Zhang (1991) to constructing confidence regions for the parameters in a
linear functional relationship model. This approach is based on a conditional
likelihood ratio test of specified values for the parameters in question. Al-
though the general method of Knowles, Siegmund and Zhang (1991) yields
conservative confidence regions, the regions obtained here are exact. Our ap-
proach can be used as a guide to generating pivotal statistics; for instance,
the Fieller—Creasy—Williams confidence region for the slope 3 is obtained by
our method in Section 2. In addition to its conceptual unity, the conditional
likelihood ratio approach has the advantage of being able to incorporate re-
strictions of range for parameters and yields confidence regions with uniform
conditional coverage probability.

The paper is organized as follows. Section 2 contains the main results. It
begins with the derivation of the conditional likelihood ratio (CLR) confidence
region for the slope 3 and shows how to obtain a region for § when 8 > 0 that
improves on merely intersecting the region for unconstrained 3 with (0, cc).
A joint confidence region for the slope 3 and intercept o is also constructed.
In Section 3, a geometric interpretation is presented for somewhat related
Fieller—Creasy problem of estimating ratios of means. Finally, Section 4 ex-
tends the method to a multivariate linear functional relationship model.

2. Confidence regions.

2.1. CLR confidence region for 3. 'To simplify notation, we rewrite model
1) as

_ 0 IN (67
® = (o a)(3) v
where 0 = (0,...,0), 1y = (1,...,1), Iy is the N x N identity matrix, y =
(yll"“’le’yZIy""yZN)/’ €= (Ell"“’EIN’€21’ ""€2N), and n = (/J'l,""/»l'N)l'
Let

' B I _ N—1/2
® X(@) = (e s )
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and P(B) = X(3)X'(B). For fixed 3, P(Q) is the projection matrix onto the space
spanned by the columns of the design matrix in model (2), and hence the
residual sum of squares (RSS) after minimization with respect to « and p is

@ RSS(8) = ¥'[lan - P(6)]y.
For generic vectors a and b, let
Sab = a’(IN - lN].;V/N)b,

and let s2 = sge. Let y; = (y11, .- .,y1v) and y2 = (y21, - ..,¥y2n). It follows from
(3) and (4) that

®) RSS(B) = (6%2, — 2Bsy,y, +52,) /(1 + 7).
Setting the derivative of (5) with respect to 8 to zero, ;ve have
(6) mﬂin RSS(B) = [s +s2, \/ (s, —s2) +4s§,ly2J / 2.
The log-likelihood ratio statistic for testing Hy: 8 = 3, is

) L(Bs) = -N log [min RSS(8) / RSS(4)].

Note that when 8 = (y, ||y|| and y’X(8,) are sufficient statistics for the nuisance
parameters o, u and o2, and then our conditional likelihood ratio 100(1 — )%
confidence region for 3 is the set of all 5y such that

(8) Prs,[L(6o) > L | Ilyll,y'X(5o)] > v,

where L is the observed value of L(Go). By conditioning on the sufficient statis-
tics, the conditional probability in (8) does not depend on the nuisance param-
eters.

Define r as the sample correlation coefficient of

w=(Y2—ﬂOYI)/V1+ﬁ§ and V=(ﬂ°y2+y1)/\/1+ﬂg’

namely, r = swv/(swSy); T is the pivotal statistic used by Fieller, Creasy and
Williams. Also see Schneeweiss (1982). Note that

yi=(v—Gow) /\/1+ 83,
y2=(w+ﬂ0v)/\/1+ﬂ§-

Then
9) ' (1 + IBO) Sy, = S 2'ﬂOsWV + ﬂosw’
(10 (1 + ﬁo)syxyz =fo (8 ) (1 'BO)SW"’

(11) (1+82)s2, = B3s2 + 2BoSwy + 52,
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It follows from (6) and (9)—(11) that

(12) mgn RSS(,B) = [s%v+s% — (S%w—s%)2+4sa,v }/2

By conditioning on the sufficient statistics in (8), sw and sy are fixed, and
therefore, ming RSS(3) [and L(5,) in (7)] is a monotonic function of r2. The
definition of r implies that, under the null hypothesis, the following are true:
(i) its distribution is independent of nuisance parameters o, s, and o2, and
hence is the same as its conditional distribution given the sufficient statistics
in (8) via Basu’s theorem; (ii) it is distributed the same as the sample correla-
tion coefficient of two independent, standard normal variables. Therefore, the
(conditional and unconditional) distribution of r can be written as

(13)  Fy_g(x) = /_ xl ,,11;2(151[\21\—, %)232] 1)V gy, <1

So we can summarize our discussion with the following theorem.
THEOREM 1. Using previous notation, we have

Prg,[L(Bo) > L | Iyll,y'X(60)] = 2Fn—2(~Irobs|)s

where 1, is the observed value of r.

Now, we see that the Fieller—Creasy-Williams confidence set is also the
CLR one. Unfortunately, it is known that the use of r is problematic. The
distribution of r is the same under 8 = G, and —1/0,. This implies that the
confidence set for 3 obtained from r contains —1/3, if it does for B and is
disjoint unless it is the whole line. To avoid this problem, a naive way taken
by Creasy (1956) and Kendall and Stuart (1979) is to ignore those portions
of the confidence set for 3 which are not around the MLE §. Since § is a
consistent estimate of 3 [cf. Fuller (1987)], there is no loss essentially by doing
that when one has enough data. There are other proposals in the literature
on modifying r to resolve the problem of having disconnected intervals [see,
e.g., Fuller (1987)].

In many applications, we may have an a priori idea about the slope 3. For
example, let us consider 8 > 0; the situation for 8 € (B1,By) is similar. With
the restriction 8 > 0, ming RSS(B) in (7) is replaced with ming,o RSS(8).
Some calculations lead to

ming RSS(8), if >0, thatis, sy,y, >0,

o RSS(p) = {min (s,s2,), otherwise.
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Let d = sw/sy — Sy/Sw. It follows from (9)—(12) that

(14) Prg,[L(6o) > L | Iyll,y'X(6o)]
(15) = P[r* > r?, and (1- B§)r > fod]

[ (1+82) /a2 + 42 + (B2 —1)d
(16) +P r>( +f) +4ﬁ0°"8+(ﬁ° ) and (l—ﬂg)rgﬂod]

L

[ (14 82)y/d? + 472 2_1)d
aamn +P|r< (1+5) Zﬂom-’-(ﬂo ) and (l—ﬁg)rﬁﬁod}.

Therefore, (14) can be computed numerically through the distribution of r,
although it is analytically more complicated than what is given in Theorem
1. For convenience, let Z,(v) and Z(v) denote the 1 — v confidence sets for 3
when the prior information that 3 > 0 is and is not available, respectively.
Since mingso RSS(8) > ming RSS(), Z,(v) C Z(v) N (0, o0). Let

p=Fn_g [ - |3Y1Y2|/(SY1S)’2)] .

When 5, tends to co, the p-value at 5, without the prior information (mono-
tonically) tends to 2p; however, the p-value at § with the prior information
tends to p. Note that 2p is also the significance level for testing hypothesis
B = 0 against 8 # 0, and p is the level for testing 3 = 0 against 3 > 0. When
2p is much smaller than v (i.e., 8 = 0 is rejected at a very significant level),
then Z,(v) and Z(v) N (0,00) are intervals and hardly different. When 2p is
much larger than v (i.e., 3 = 0 cannot be rejected at all), then both Z,(v)
and Z(v) N (0, co0) can be disconnected. In this case, we need to question our
prior information 8 > 0 or be careful with our data. The discrepancy arises
when 2p is at a marginal level. More precisely, when v/2 < p < v,Z,(v) can
be an interval, but Z(v) N (0,c0) is not. When p = v/2, the left end point
of Z,(v) is further away from zero than that of Z(v) N (0,00). To illustrate
these, let us examine two simulated data sets. Take y; =i/2, fori=1, ...,20;
y1; is the sum of y; and a normal random number, and y;; is the sum of
0.2y; and a normal random number. Table 1 lists the generated y; and y;.
Numerical computations give p = 0.02, and this implies that 3 = 0 can
be rejected at the significance level 0.05 from a two-sided test. Moreover,
7,(0.05) = (0.039,0.363) and Z(0.05) N (0, cc) = (0.009, 0.363). So, 7,(0.05) is
about 8.5% shorter than Z(0.05) N (0,00). Next, another set of y; and y; is
generated. This time, we have p = 0.038. The two-sided test rejects the hy-
pothesis: 8 = 0 at level 0.05 but not at 0.1. Z,(0.05) = (0.018,0.495) is again
an interval, but Z(0.05) N (0, c0) = (0, 0.495) U (37.2, cc) is disjoint. A simple S
‘code is available upon request from the author.
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TABLE 1
Simulated data
Set 1 Set 2
Y1 Y2 p 41 y2
1.229 0.59252 —0.0276 —0.6906
—-0.518 —1.44312 2.2531 2.8548
1.195 0.98665 2.2623 —0.0731
2.957 —0.34819 1.9414 -0.5859
5.481 2.47289 2.4705 -0.1612
3.552 —0.00811 47233 —1.4533
3.469 0.93196 4.1708 3.0119
4956 —0.27197 4.3310 2:3677
4.164 1.13357 3.0909 —-0.5976
5.118 1.95072 5.3934 —0.9106
5.703 1.66155 5.0477 1.2049
6.226 2.00264 6.8991 1.3481
6.871 0.67623 7.5014 1.1699
6.896 1.21482 6.0355 —0.4378
8.848 2.45088 8.6153 1.5291
7.025 0.99575 8.2811 1.7803
8.793 —0.36699 10.7966 1.1784
7.400 2.27000 11.1708 0.3557
10.265 2.01203 9.3575 3.7896
11.171 0.69594 11.0389 2.5982

2.2. Joint confidence region for (a,3). The log-likelihood ratio statistic for
testing Hy: 8 = By, a = g i8

(18) L(Bo, ) = —N log [mgn RSS(,B)/RSS(ﬂo, ao)],
where RSS(8y, ay) is the residual sum of squares due to model (2) for (3,a) =

(8o, ap). Our CLR 1 — v confidence region for (3, ) is the set of all (5, ap) such
that

(19) Pry, [L(Bo,20) > L | 8] > v,

where S = {||y1]% + ||y2 — @oln||?, y1+ Boye} is a set of sufficient statistics with

respect to 4 and 02 when o = o and 8 = 3, and L is the observed value of
L(By, ag). Observe that

L(Bo, ao) = L(Bo) + L(Bo, ),

where L(8y, 20) = =N 10g[RSS(80)/RSS(8o, co)).
To evaluate the left-hand side of (19), the following two facts are important.
First,

; _ -1
(8o, @) = N log [1+N* -],
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where t} =N - 1)(W —ao/(/1+ ,83)2 /s%, has Student’s ¢-distribution with
N — 1 degrees of freedom and is independent of S. Second, given S and
L(By, ), L(By) is a monotonic function of r which is independent of L(8,, o)
and S.

Let ¢? = 1—exp(—L/N) and w = 1— RSS(8y, ap)(1—c?)/s2. To summarize our
discussion, we have [see Zhang (1991) for more details] the following theorem.

THEOREM 2. Using previous notation, the left-hand side of (19) equals
Pry, [L(Bo, a0) > L|S] + Pr, [L(6o) > L — L(Bo, @0); L(Bo, a0) < L|S]
C
= 2Fy_1(—c) + / Fy_s [\/(cz /(1 xz)] frva(x) dx,

where Fy_g is defined by (13), Fy_; can be obtained by replacing N — 2 with
N —1in (13) and fy-1 is the density function corresponding to Fy_;.

REMARK 1. Based on the discussion in subsection 2.1, we expect that the
joint CLR confidence region for (3, o) may have two (or more) disjoint pieces.
The one, say R;, around (8, @) can be easily obtained by a contouring algorithm
[see, e.g., Zhang (1991)]. When R, is found, let 3; and 3, be the minimum and
maximum of 3 in Ry, respectively. Now, increase (3, from 3, and also decrease
it from (B; further and further. For any (3, if the left-hand side of (19) is
greater than v for some oy, use the contouring algorithm to find one piece of
the confidence region nearby. This search usually is not difficult because the
conditional probability in (19) may have only two or so maxima.

REMARK 2. In applications, some components of y, defined in (2), may be
assumed to be the same. Then, corresponding to (2), we have the replication
model

0 I L, 0
(20) y=oz(l )+< }") p+e,
N BIn 0 1,

where ¥{n; = N. When the n;’s are equal, modification of the approach sug-
gested here for model (20) is straightforward. The case of unequal n; will be
discussed in a separate‘paper.

3. Geometric interpretation of the Fieller-Creasy problem. Fieller
(1954) considered the following model

. '<
@1) yi = {,u+s,, fori <N,

uB+¢g;, for N<i<2N,

where we assume that the ¢;’s are i.i.d. N(0,02). This model comes from a
situation where one is concerned with the ratio of two population means, and
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it is of particular interest in the literature [see, e.g., Cook and Witmer (1985)]
because its simple structure allows many authors to illustrate constructively
and geometrically their methodology. In contrast to model (1), model (21) does
not include the intercept term «, and p is not a vector but a scalar parame-
ter. These two models have a common feature that both independent and de-
pendent variables (corresponding to regression model) involve measurement
errors. Although the geometry of model (21) is not completely the same as
that for model (1), understanding model (21) is still helpful for getting more
insight into model (1).

3.1. The unconstrained case. First, consider —oo < u, 8 < co. Normalizing
the observed vector y = (y1, ...,¥y2n)', we get a unit length vector, say u.
Partition u into two N-vectors u;) and u). Then 3 = @g)/a(1). The r defined
in subsection 2.1 corresponds to

(fg) — ﬂoﬁ(l))2

(22) )
1 - N(ag +ig)*

Now, introduce a curve v on the unit sphere as

v(8)=(1,...,1,85 ...,ﬁ)’/,/N(l.ng).

The sufficient statistics in the present model are ||y|| and v/(5p)u when 5 = .
Let z = 7/(Gp)u and w = v'(8)u. The 100(1 — )% CLR confidence interval for 3
is the set of Gy for which

(23) Pr[mﬁax v (8)u| > wl'y(ﬁo)'u =z] > v,

where u is uniformly distributed on a unit sphere in R2V. Let p(3,) denote
the conditional tail probability in (23). Note that +(3) is a geodesic curve (zero
geodesic curvature) ending at

(,...,0,1,...,1)'/NY% and -(0,...,0,1,...,1)'/N*2,

By rotation, we can assume that v(3) is a semequator and () is the first
coordinate axis e;. The set, denoted by A, of u for which

v(Bo)u =z

is a circle perpendicular to e; with radius v1-— 22, that is, geodesic
radius cos™!z.

Since the union of v and —v constitutes a full equator, p(3y) is the sum of
volumes of two congruent caps on A; see Figure 1(a). The condition y(8)u > w
implies that the caps are in the tube around v with geodesic radius cos™!w.
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I
I
i
i

(a) (b)

F16. 1. Geometric interpretation for Fieller—Creasy problem.

The boundary of the caps satisfies |ug| = Vw2 — 22. Since the radius of A is
V1 —22, we have

- w? — 22
(24) p(6o) = Pr | |u@-P| > T |
where 42— U g the first coordinate of a point uniformly distributed on a unit

sphere in R2V-1,

It is obvious that (24) gives the same answer as if we start from r in (22).
For model (1), the confidence interval for 3 is always disjoint except when it is
a whole line; whereas the disjoint intervals occur for model (21) only when the
estimate of 4 is close to zero. In fact, if x is near zero, there is an identifiability
problem for 3 because 8 can be +0o or —oo. In this case, one should regard
+oo and —oo as the same point for which the confidence interval for 3 is no
longer disjoint.

3.2. The constrained case. Now, suppose § > 0. For simplicity, let us as-
sume that @) /@) > 0. Otherwise, we take 8 = 0. Then r in (22) is the same
as before; apparently it has a defect, for arg maxgs, y(8)u may not be in (0, co)
for an arbitrary point u.

In the current situation, the curve v traverses

pi=(0,...,0,1,...,1)’/NY/2 and p2=(1,...,1,0,...,0)"/NV2

By rotation, I can still assume that - is one quarter of the equator and v(8;) =
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e;. Hence v and —v are two disjoint pieces of the equator. Let

61=7(fo)'p1 =0 /\/1+ 5,
02 =7(fo)'P2 = 1/\/ 1+63.

Without loss of generality I consider only z > 0.

CASE 1 (6, <z/w and 6, <z/w). The conditional sphere A4 intersects the
tube maxgs y(8)u > w, resulting in two maximum caps of the same volume;
see Figure 1(a). Thus,

w? — 22
1-—22

p(ﬂo) =Pr |u(12N"1)| >

This is the same as with the unconstrained case.

CASE 2 (6, < z/w and 6, > z/w). The intersection gives one large cap
near either p; or —p; and another smaller cap near the other end; see Figure
1(b). We have

2 _ 52 — 26
R R = B

-2 Ja-@)a-=)

CASE 3 (6; > z/w and 6 < z/w). Similar to Case 2, we get

2 _ 2 B
p(Bo) =Pr u(12N~1) S (W2 L pr [ugzzv-l) > w—2z6, ] .

1-2 Ja-)(-2)
CASE 4 (6; > z/w and z/w).

(ﬂo)=Pr u(IZN_l) min{ w— 26 ’ w + 269 }:I
’ [ S W e e rerr ey

+ Pr u(lzN‘l) min W+ 20 , w — 28 }]
[ ” {\/(1—5%)(1—22) Y- (-2

Thus the classical confidence interval for 3 is always conservative since it
assigns the maximum probability Pr{[u®=Y| > /(w? —22)/(1 — 22)] to p(Bo).
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These exercises show how to adjust p(Gy) when the restriction 3 > 0 is intro-
duced. The identifiability of 3 is not an 1ssue, but boundary effects become
very important.

4. A multivariate model. In this section, we discuss the linear func-
tional model with two latent predictors. The extension to the general multi-
variate model is straightforward but the computation would be more compli-
cated.

Analogous to model (1) is

Y1 K1 30
(25) Yoi | = Ha; + | €2 |, i=1,...,N.
3i o+ Buy; + Epa; €3i :

Like (2), model (25) can be written as

Oy Iy Oy a
(26) y= ON 0N IM M1 | +E.
Iy BIn &N/ \p2

We assume that e ~ N(0, 02I3y) for the sake of simplicity. The joint confidence
region for (3,¢) is of interest.

For fixed (8, £), the residual sum of squares due to (26) is y'I — H(3,€))y;
here H(3,¢) = X(83, O)X'(3, ¢) with

§7 Uy —BE(6A) Iy —B(NA) 1y
27) X(B,6)=| oy sA7 Iy —€(NA) 'y |,
g6~y —¢(6A)"Uy  (NA) 'ly

where § = \/1+ 32 and A = \/1+ 32 + £2. Note that H(3,¢) is the projection
matrix onto the space spanned by the columns of the design matrix in (26)
or, equivalently, by the orthonormal columns of X(3,£). In fact, the column
vectors of X(83,£) are obtained by the Gram—Schmidt scheme, starting from
the second column of the design matrix in (26) to the last one and ending up
with the first one.

Given (3, ¢), the sufficient statistics with respect to the nuisance parame-
ters o2, a, 1, and up are |ly|| and X'(8,£)y. The conditional likelihood 1 — v
confidence region for (3, £) is the set of all (8, &) such that

(28) Prg,, e [L(Bo, o) > i'llYll,X'(ﬂo,ﬁo)Y] > v,

where

lyll* — maxs,¢ y'H (ﬂ,E)Y)
L(Bo, &) = —1.5N 1
(o, €0) Og( Iyll2 — y'H (5o, &)y
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and L is the observed value of L(Bo, &0); L(Bo, &) is an increasing function of
maxg,¢ WH(B,§)u (here u = y/||y|) when the sufficient statistics are condi-
tioned on their observed values, say, X'(3, £)u = v. By the conditioning on the
sufficient statistics, we can assume the y ~ N(0, Isy), namely, u is uniformly
distributed on a unit sphere in R®N. The left-hand side of (28) equals

(29) Prig, ¢, [I%aéxu'H(B, £u> wIX’(ﬂo,&))u = v] > v,

where w is the observed value of maxs  wH(3, &)u.
_ To evaluate (29), choose an orthogonal matrix @, such that X’ (Bo, £0)Qo is
diagonal; that is,

, & —Boo(8000) Uy —Bo(NAg)™1
(30) @=| O oA —60(NAy)™ | @ Iy,
Boby ! —€o(0Do)! (NAy)?

where the operator ® is the Kronecker product,

So=1/1+p% and A = \V1+62+¢€2.
—1';'16%0 Iy Ma(&o_zxozo‘)IN %_A%QIN

o) (1+8B0)E€o+5282 1+889)¢ — 6% _

@B X'(8,6)Q=| 2RIy TERRRT Ly LTy |
Q?—g‘ ’ (1+8B0)6o—62€ 1/ 1+ﬁg§+§£g i/
N1/2§, lN Nlm&ozog lN N1/ZA, lN

and then X'(83,, £0)Qou = (u’l,ué,Nl/zﬁ3)', where u = (uf, uj, uj).
Let

It follows that

(B - Bo)Ao 82(& — &) — Boto(B — Bo)
0, = d 6= .
' (1+BBo + ££0) b0 and b2 (1+ 8B +£€0)b0

Using (31), after some tedious calculation (see Appendix 1) we have

”X’(,B, E)Qou”2 = m { 201 (u'1u3 — Nﬁlﬁa) + 202 (u’2u3 - Nﬁzﬁg)
1 2

(32) : + [[ug]|? + [[ug||? + Na2 — 261055u,u,
+62(1-s2) +63(1 —sﬁz)}.

Since the distribution of u is invariant under orthogonal transformation, u
in (29) is now replaced with @ou. The condition in (29) becomes (u}, u), N'/2@})

=v = (V]V}, v2N+1)'. We see now that (32) depends on the distribution of 1)ju3,
vjug, and vjyug, of which 1ju; appears in the condition. We want to rotate ug
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so that (32) depends on only the first two components of uz. Based on a Gram—
Schmidt scheme, this is done by choosing the three basis vectors

—_ !
€2N+1 =( ;V, ),V»N 1/215\/') ’

li
)
(33) €aN41 = (ofv, fv,yl—svﬁ> )

Vi1
’
(vi — %a2y — (sviva /v, ez
(34) €oN43 = ;V» ;V ’ .
\/332 - s%1V2 / s%l

Equations (33) and (34) imply that (viug — N¥1i3) /sy, = €}y,,us = u; and

Vs — V938 — (s /5w

= e’zN +3U3 = U9,

3‘2’2 - 3‘2’1"2 / S%I
where (u1,us) are the first two coordinates of a point uniformly distributed
on the unit sphere in RN~!, After the rotation and via (32), the conditional

distribution of w’H(S, £)u in (29) is the same as the unconditional distribution
of the following, denoted by h(6,, 6,),

1 s
m {291\/ 1 — ||v||2sv,u1 + 292\/1 —[Ivli? (\/3%2 - sglvz/s\zrlu2 + %v—zul)

Vi

+ [[V][% — 261058y,v, + 63(1 — 52 ) +62(1 —s2)) }
We leave it to Appendix 2 for evaluating

(35) Pr[rgll%)zzh(el,oz) > w].

REMARK 3. Extending an idea of Williams (1955), Schneeweiss (1982) sug-
gested a pivotal statistic based on the empirical coefficient of multiple corre-
lation to derive the confidence region for (3,¢) for the model (26). Although
his procedure is simpler, it is not obvious that the confidence region contains
(B,€), and one degree of freedom is sacrificed in his procedure since he uses
only N — 3 degrees of freedom. If there are k latent predictors, then 2 — 1
degrees of freedom will be wasted. This may imply a loss of information. In
contrast, the approach presented here is based on sufficient statistics and uses
all N —2 degrees of freedom after paying 2N +2 degrees of freedom to estimate
Q, 1, H2 and o.

APPENDIX 1

A.1. Derivation of (82). First, note that
A2AZ

Woprorey 24 86 =(1+5860)"+ (8- )"

(36) 1+62+62=
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To find || X"(8, £)Qou||?> we expand it in terms of |ju,|?, |[uz||%, ujuz, ujus, ujus,

1, G, and @3, and also note that 1 — |Jug||? = ||uy]| + [Jug||.
The coefficient for |juy||? is '

(1+860)°  (B=50)® _(B=Fo)® _ [(1+850)¢ — 8%’

5262 52622 5202 2A2AZ
1 (8-80)  £(8-5)
5262 52622
(8- 50)® [(1+BB0)¢ — 6%]" | .

T2 Aé) - 620AZ AZ : [\v1a (36)]
__B=mP (BB _[(1+ph)e-5%]"
STTa YT EAl 2AZAZ

RY 2
=- C X 2? ; ) + (1+ ﬁAﬂzo ;2&0) (note the coefficient for @?)
0 0
—67+1

T 1462162
the coefficient for |uy||? is

(Bo—-5)?  [(1+860)ec0+88)"  (B=B0)2  [(1+5Bo)é - 8]

6362A(2) 626§A2Ag 52Ag 62A2A(2)
__[a+pma-8" (8- _ [(1+6A)E - &)’
sgAasA? 6202 §2A2A2
_ [(1+8B0)60 — 83€)° (14 BBo +£6o)? . .
B SEAZA? + A?AZ (note the coefficient for @3)

. —62+1
T 1462462

the coefficient for ujus is

(1+860) (8= Bo) , €06 = B)[(1+ Bfo)é — 8]
6260A0 6062A2A0

_ (8o = B)(1+ BBy + o)
B 8oAZA,

(note the coefficient for @;ti3)

. S
T 1+62+6%
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the coefficient for ujug is

(B — Bo)? . [(1+ BBo)e&o +6263] [(1+ BBo )€ — 6%0]

6260A§ 6260A2A2
_ [(1+BBo)&o — 82€] [1+ BBo + 133 . o
= 60A(2,A 5 (note the coefficient for u2u3)
-0
1+6% +6%°

the coefficient for uju; is

(1+860)é0(Bo — B) , £(8 = Bo) [(1 + BB )60 +8%83]

62624 626200
- 1 — 62
= (85 0) [(‘ngzﬂfz) b 06] (note the coefficient for 1‘111'12)
_ 616,
T 1+62+62°

Equation (32) is an immediate consequence of these calculations.

APPENDIX 2

A.2, Evaluation of (35). Note the fact that, for some constants a, b and c,

(87 moax(a02+b0+c)/(l+02) = [a+c+\/(a—c)2+b2J /2.

and

(38) moin(a02+b0+c)/(l+02) = [a+c— \/(a—c)2+b2J /2.
Letting 6 = 6,/4/1 + 62, we have

(39) h(6y,62) = (ab® + b6 +c) / [(1 +6%) (1+o%)J,

where a,b and ¢ are (funcﬁons of 6;) defined by

a=(1+63)(1 —3‘2,2),
S
. b=2\/1+402 [\/ 1 |ivi2 (\/s%z ~Sh/sua + 0 ul) - alsvm}»
¢=2011/1 - ||v|2sy,uy + [|VI|2 +63(1 - 52).
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Maximizing & over 0 first, we obtain from (37) and (39) that

a+c+4/(a—c)?+b2

2(1+62)

(40) max h(61,6:) = max

For any 6, it follows from (38) that

a+e—/la-c)2+p?
1-s, = lim h(61,6:) > myin h(01,62) = (a—cp2+8?

2(1+062)

By the definition of w,w > 1 — s2,. Therefore,

“n w>a+c—\/(a—c)2+b2'

2(1+62)
Relations (40) and (41) imply that
(42) max h(61,6;) > w
if and only if
43) 30, c+a+/(a—c)?+b2 S 1+ 8w > c+a—/(a —c)2+b2.

2 2

let wo = w — 1 +52 . Inequality (43) is the same as (note the definition of a)

c—a+/(a—c)2+b2 c—a—/la—c)?+b?
(44) 36y, (a=c) > (1+6%)w, > (@=c) :

2 2

Note that [c —a + v/(a — )2 + b2] /2 are roots of the quadratic equation g(x) =
—x% +(c —a)x + b?/4 = 0, and ql(1 + 62wo] > 0 if and only if (1 + 62w, is in
between the two roots of g(x) = 0. Therefore, (44) is equivalent to

(45) 36, - (1+62)%wi+(c—a)(1+6%)wo+b%/4 >0,
that is, ‘
(46) 361, - (1+6})wi+ (c —a)wo +b%/[4(1+6%)] > 0.

It is clear that (46) amounts to

(47) n},ax{—(1+0%)w§+ (c —a)wo +b%/[4(1+6%)]} > 0.
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Note that c—a and b2/(1 + 62) are quadratic functions of 6;. Then (47) involves
maximization of the quadratic function

‘—[w() (w + s%’] - 1) V1V2]02
2

2
s2 s
/ 1V2 Vive
+2¢/1- "V"2 [(wosvl T s )ul +Svive sg'z - _32_u2] 01
v

1 V1

2
s2 s
ol = 1)+ (1 ) 8, -
vi Vi

It is easy to see that the maximum is of the form
Liu? + lou + lipuyug — wo(w — ||v||2),
for some constants [,/ and /;5 (not depending on u; and us). Let
A = {(waug): 1iu? + loud + liguqug > M},

where ) = wo(w — ||v||?) > 0. Then the evaluation of (35) amounts to finding

=S [0t

Let u; = pcos¢ and ug = psin(, p > 0,u < ¢ < 27. Then

Pr[A] = %H/% (1-p2)N=972pdpd,

and the integration is taken over the domain

{(p,¢): pP(Lycos? ¢ +1p8in® ¢ +lypsinecos¢) > A}

Hence
where
A
8(¢) = Iy cos2 ¢ +1psin® ¢ + l1psin cos ¢’
and

C(() = {Cf Iy cos? ¢ + Iy sin® ¢ + 1y sinC cos¢ > 0}.

Note that sin?¢ = 1 — cos?(, and hence the equation I; cos?( + lysin® ¢ +
l12sin¢ cos ¢ = 0 has four roots (they are not necessarily distinct or real, al-
though those real, distinct roots are relevant here), which can be found by
solving a quartic equation; hence C(¢) consists of at most three intervals in
(0, 27). It follows that P[A] can be easily computed by one-dimensional numer-
ical integration.
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