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PREDICTION FUNCTIONS FOR CATEGORICAL
PANEL DATA!

BY Zvi GILULA AND SHELBY J. HABERMAN

Hebrew University—Jerusalem and Northwestern University

Prediction of categorical responses in panel studies is considered.
Prediction functions based on general conditional log-linear models are
investigated for statistical properties both from a population perspective
and a sampling perspective. Problems such as existence and uniqueness of
optimal prediction functions are addressed, and basic properties of mea-
sures of prediction quality are examined. Estimation, consistency and
asymptotic normality are studied for the proposed parameter estimates
and measures of prediction quality.

1. Introduction. Prediction of a categorical response variable by use of
categorical and/or continuous variables is a traditional statistical problem.
For measures of the quality of such predictions, see Goodman and Kruskal
(1954, 1959, 1963, 1972) or Haberman (1982). Prediction of categorical re-
sponses is especially useful in longitudinal studies in the biological and labor
sciences, as is evident from Pearl (1963), Korn and Whittemore (1979),
Stasny (1987) and Francom, Chuang-Stein and Landis (1989), among others.
In such studies, in which multiple measurements are made on a categorical
response variable, much less attention has been given to assessment of the
quality of prediction of such responses. In Gilula and Haberman (1994),
logarithmic penalty functions are proposed for use with multiple measure-
ments of categorical variables. Such penalty functions lead to measures
closely related to the entropy measure of Shannon (1948). These penalty
functions are used to determine optimal prediction functions subject to
requirements that the prediction functions satisfy a specified model such as a
stationary Markov model or a model based on category distances. Penalty
functions are also used to provide a basis for comparison of the predictive
value of covariates relative to the predictive value of previous responses on
the same variable.

Gilula and Haberman (1994) use penalty functions in conjunction with
prediction functions satisfying conditional log-linear models similar in nature
to path models explored in Goodman (1973). These models are better known
now as multinomial response models. The measures of prediction used do not
assume that any particular conditional log-linear model is true. The approach

Received September 1993; revised July 1994.

Supported in part by the United States—Israel Binational Foundation Grant 88-00047 and
NSF Grant DMS-93-03713.

AMS 1991 subject classifications. Primary 62H20; secondary 62F12.

Key words and phrases. Conditional log-linear models, entropy, penalty functions.

1130

\ %‘ &')
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )20
The Annals of Statistics. RIK@J:Y

=2
®

WWW.jstor.org



PREDICTING CATEGORICAL RESPONSE 1131

taken is that a model which is only approximate but leads to effective
prediction of responses is preferable to an exact model with little predictive
value. The emphasis on conditional log-linear models is important for the
penalty function approach to the extent that such models permit specification
of predicted conditional probabilities of responses. This approach is substan-
tially different from the marginal modeling approach of Liang and Zeger
(1986, 1989) and Liang, Zeger and Qaqish (1992), where such conditional
probabilities are not provided. In addition, the approach of Liang, Zeger and
Qagish (1992) requires that the marginal models under study be correct.

Results in this paper are developed without the assumption that the model
studied must be true. It is contended that an approximate conditional log-lin-
ear model is valuable in describing a known population even if the model is
only approximate, and it is appropriate to study the properties of prediction
measures based on an approximate conditional log-linear model. Since tradi-
tional study of population and sampling properties of estimates for log-linear
models emphasizes the case of correct models, traditional sampling theory
must be modified to treat the problem of approximate models.

The aim of this paper is to provide a solid rigorous footing for the
statistical properties of the prediction functions and measures used in Gilula
and Haberman (1994). Such properties are studied both from a population
perspective and from a sampling perspective. In Section 2, the notion of
prediction functions is discussed and the population perspective is examined.
Problems such as existence and uniqueness of optimal prediction functions
are considered, and basic properties of population measures of prediction
quality are studied. The sampling perspective is given in Section 3. Consis-
tency and asymptotic normality is studied for parameter estimates and for
the proposed measures of model quality. The issue of model selection is
addressed.

2. Prediction functions for populations. Throughout this paper, a
population S is given. The Daniell approach to expectation is adopted as in
Whittle (1992). Associated with the population S is a set ) of extended real
functions on S on which an expectation E and a corresponding probability P
is defined. To define the categorical variables under study, let I be a finite set
of m > 2 states to which a member of population S can belong at time ¢ for
an integer ¢ from 1to T > 1. Let T be the set of integers from 1 to 7. Let Y,
be a categorical variable on S defined for integer time ¢, 1 <t < T, so that,
for member s of S, Y,(s) is the state in which s is found at time ¢. Assume
that the probability P(Y, = i) that Y, = i is defined for each state i and time
¢t. The combined categorical variable Y = (Y,: 1 <¢ < T') with value (Y,(s):
1<t <T)in IT for s in S is then studied.

As in Savage (1971), Haberman (1982, 1991) and Gilula and Haberman
(1994), the variable Y will be predicted by use of a prediction function q. In
this paper, g is a prediction function if q is a nonnegative function on
I X T x S such that, for each s in S and time ¢, ¥, . ;q(k, ¢, s) = 1. Thus for
each s in S in time ¢, (q(k, ¢, s): k € I) defines a probability distribution on
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the set I of possible states. For each s in S, q(k, t, s) predicts the probability
that Y,(s) = k.

2.1. Measures based on expected penalty. Quality of prediction is assessed
by use of expected penalty. For this purpose, a penalty will be defined for
each subject s in the population S, and the expectation of the penalty will be
evaluated by use of the expectation E defined for the population S. If the
prediction function ¢ is used, then, for each individual s and time ¢, the
penalty h,(s,q) = —loglq(Y,(s),t,s)] is assessed. This penalty reflects the
quality of the prediction of Y,(s) by the probabilities q(%, ¢, s) for & in I. The
penalty is nonnegative, and it is 0 if and only if ¢(Y,(s), ¢, s) is 1, so that Y,(s)
is predicted to occur with probability 1. To reflect the quality of prediction of
all the Y,(s) by the q(k,¢t,s), kin I and 1 < ¢t < T, the total penalty assessed
is then the sum

h(s,q) = Y h,(s,q) = —log ]:[q(Yt(s),t,s) .

In this fashion, a total penalty of 0 is assessed if and only if for each time ¢,
q(Y,(s), ¢, s) = 1, so that the observed value Y,(s) was predicted to occur with
probability q(Y,(s),t,s) = 1 for each time ¢.

The total penalty can be interpreted in terms of a probability prediction for
Y. For each individual s, the products I1,q(i,,¢,s) define a probability
distribution of I7, for each product is nonnegative for i = (i,: 1 <t < T) in
I” and the sum of the products is 1. Thus the product IT,q(i,, ¢, s) may be
regarded as a prediction of the probability that Y =i = (i,, 1 < ¢ < T). The
(logarithmic) penalty for use of this product for prediction of Y is then
h(s, q).

To apply the expectation of the penalty as a prediction criterion, it is
naturally necessary to ensure that this expectation is defined. Let a predic-
tion function g be regular if h,(q) = (h(s,q):s € S)isin Q for1 <t <T.If
q is a regular prediction function, then A(q) = (A(s, q): s € S) is in , and
the total expected penalty is H(q) = E(h(q)) = E(X,h,(q)) = X,E(h,(q)) = 0.
Thus the expected penalty E(h(q)) = H(q) for prediction of Y(s) by the
probabilities IT,q(i,, ¢t,s) for i = (i,: 1 <¢t < T)in IT and s in S is the sum
over time ¢ of the expected penalty E(k,) for prediction of Y,(s) by the
probabilities g(k,¢,s) for £ in I and s in S. Since log is a strictly concave
function on [0, ©) under the convention that log(0) = —, it follows that H is
a convex function on the convex population @, of regular prediction func-
tions.

A g in @, exists such that H(g) achieves its minimal value of 0. To verify
this claim, consider the function g, on I X T X S such that, for £ in I,
1<t<T, and s in S, q(Y,(s),¢,5) =1 and q,(k,¢,s) =0 for k + Y,(s).
More generally, for ¢ in Q,, H(q) = 0 if and only if the set O,(¢) = {s € S:
q(Y,(s),t,s) = 1} has probability 1 for each time ¢. Thus H(q) is 0 if ¢
provides an essentially perfect prediction of Y.

Typically, perfect predictions are not obtainable without use of excessively
detailed information concerning the population under study. For example, in
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Gilula and Haberman (1994), attitudes of American youth toward a military
career are studied over a seven-year period. Since the survey population is
finite, a perfect prediction of responses as a function of age at start of survey
period presumably can be achieved just by recording age to sufficient accu-
racy so that each subject in the population has a distinct age. Such a function
would be much too complicated to be approximated by use of sampling and
much too complicated even without problems of sampling to provide a parsi-
monious description of the relationship of age to response.

Practical prediction functions are generally selected from a subset @ of @,
that may be parametrized by use of a relatively modest number of real
parameters. Such a subset aids both in development of prediction functions
by use of sampling and in parsimonious description of relationships. Gilula
and Haberman (1994) provide many examples of such subsets that are based
on conditional log-linear models. Consider a finite set A of parameters and
random variables V,,, in  for £ in I, 1<t <T, and a in A. For a
parameter vector 8 = (B,: a € A), the prediction function f( B) generated by
Vi BinI,1 <t <T,and ain A, is the function on I X T X S with values

exP[ /-"(kat’s, B)]

(21) f(k,t,S, B) = Zmelexp[ ,u(m,t,s,B)] ’
where
(22) ﬂ(k,t, S, B) = Z Batha(s)‘

acA

As shown in Gilula and Haberman (1994), f( 8) is in @, for all B in R4, Let
Q = {f(B): B € R4}, so that @ is a nonempty subset of @,. Then Q is said to
be the set generated by V,,,, #in I, 1 <t < T, and a in A.

Given any nonempty subset @ of Q,, the minimum expected penalty
achieved by use of ¢ in @ is H(Q) =inf .o H(q) > 0. A q in Q is then a
best prediction function for Y relative to  if H(q) = H(Q).

Subsets @ and @, of @, may be compared by consideration of absolute
and proportional reduction in minimum expected penalty [Goodman (1971,
1991); Haberman (1978), pages 75-77, (1982, 1991); Gilula and Haberman
(1994)]. The best achievable prediction is better for q in @ than for ¢ in @, if
H(Q) < H(Q,). The difference I(Q,,Q) = H(Q,) — H(Q) provides a mea-
sure of the improvement in prediction by use of set @ to predict an outcome
concerning the target (response) variables, compared to use of set Q.. If
H(Q,) < H(®), then a negative improvement has been achieved. If @, C Q,
then it is necessarily true that H(Q) < H(Q,.) and I(Q.,Q) = 0.

Alternatively, if H(Q,.) > 0, then one may consider the proportional
reduction criterion J(Q.,Q) =1(Q.,Q)/H(Q,). If @, c, then 0 <
J(Q4,Q) < 1. One has J(Q,,Q) = 1if some q in @ provides an essentially
perfect prediction of Y, so that P(0,(q)) = 1 for each time ¢. If H(Q) = H(Q ),
so that @ provides no improvement over @, then J(Q,,Q) = 0.

2.2. Optimal prediction functions. In typical applications of conditional
log-linear models, a unique optimal prediction function exists. For a more
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precise description of the situation, Theorem 1 provides equations which are
satisfied if and only if a regular prediction function is a best prediction
function for Y relative to Q. Theorem 2 demonstrates essential uniqueness of
the best prediction function for Y relative to @ if any prediction function
exists. Theorem 3 provides a necessary and sufficient condition for existence
of a best prediction function for Y relative to @. In these results, for £ in I,
8, is the function on I such that §,(k) = 1 and §,(;) = O for i in I such that
i#k Forkin I,1<¢<T,and g a prediction function, r,,(q) is the real
function on S with value q¢(k,t,s) at s in S. A prediction function ¢ is
positive if q(k,¢,s) >0 for all 2 in I, 1 <¢ < T, and s in S. For x = (x,:
ac€A)and y = (y,: a €A)in R4, (x,y)is T, x,9,.

THEOREM 1. Let A be a finite set of parameters, and let V,,, be in Q for a
inA,kinland 1 <t <T. Let V,, be the function on S such that V,,(s) =
(Viia(s): @ € A). Let @ = {f(B): B € R4), where f(B) = (f(k,¢,s,B): (k,¢,5)
€I X TXS8) is defined as in (2.1) and (2.2) for B in RA. A prediction
function q in Q is a best prediction function for Y relative to Q if and only if

(2.3) ; kEIE(rkt(Q)th) = Z kZIE(‘Sk(Yt)th)'

t

ProoF. For s in S, let g(s) be the function on R4 with value
g(B,s) = - Llog(f(Y,(s),t,5,)) for finRA.
t

As in Haberman [(1973), Section 3.2], g(s) is concave and differentiable. Let
e( B7t7 S) = Z f(kyty S’ B)th(s)’

kel
Then g(s) has gradient Vg( B, s) = L,[8,(Y,(s)V,,(s) — e(B, t, s)] at B. Given
Corollary 4.2.2 of Haberman (1989), (2.3) implies that g is a best prediction
function for Y relative to . Corollary 4.2.3 of Haberman (1989) implies that
if g is a best prediction function for Y relative to @ and ¢ is in R4, then
(c, E(L, 2, < 18,(Y)V,,, — r..(@)V,,,) < 0. Tt follows that (2.3) holds. O

To discuss uniqueness, let @ in Theorem 1 be said to be identified by V,,,,
kin I,1 <t <T,and a in A, if 0 is the only 7 in R# such that, for some b,
inQ,1<t<T, P(y,(r) =05, for all k in I) =1 for 1 <¢ < T. Then the
following theorem is available. '

THEOREM 2. Let the conditions of Theorem 1 hold. Let q and u be best
prediction functions for Y relative to Q. Then P(r,,(q) =r,,(w)) =1 forkinI
and 1 <t <T. If Q is identified by V,,,, kin I, 1 <t < T and a in A, then
q=u.

PrOOF. Let 7 and p in R” satisfy f(w) = q and f(p) = u. Let M be the
function on R4 such that M(B8) = —H(f(B)) for B in RA. For B in R4, let
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Vi (B) = XocaByVio for kin Tand 1 < ¢ < T and let

o(8) = T T (¥)v(8) ~log] T exp(vktw))]}.
t \kel kel

Then M(B) = E(w(B)). Given concavity and differentiability results in

Haberman [(1973), Section 3.2] and in the proof of Theorem 1,

o(m) 2 0(p) + (T T 8(¥)Vi = £ T ree(@)Vi 7 o),

¢t kel t kel
with equality if and only if for 1 < ¢ < T, v, ,(m) — v,,(p) has the same value
for all & in I. Given (2.3) and the fact that M(7) = M( p), it follows that, for
somec,in,1<¢t<T,v,(7) - v,,(p) =c, with probability 1 for1 < ¢ < T.
Use of (2.1 and (2.2) shows that P(r,(q) =r,(w) =1 for £ in I and
1<t <T.If Qisidentified by V,,,, kin I, 1 <¢t < T and e in A, then 7 = p
and ¢ = u. O

THEOREM 3. Let the conditions of Theorem 1 hold. There exists a best
prediction function for Y relative to @ if and only if for some positive regular
prediction function u,

(24) Z kZIE(rkt(u)th) = Z Z E(ak(Yt)th)-

t kel

ProOF. Given Theorem 1, if q is a best prediction function for Y relative
to @, then u = q is positive and (2.4) holds.

On the other hand, if a positive regular prediction function u exists such
that (2.4) holds, then an argument very similar to that used in Haberman
(1973) may be applied. For 8 in R4, let

é(B) = X ri(u)vy,(B) —log kZIexp(vkt(B)) :

kel
Then M(B) = E(w(B)) = E(Z,¢,(B)). As in Haberman [(1973), Section 3.2],

$(B) < kZIrkt(u)log[rkt(u)] -1<0
€
and ¢, is concave for 1 <t < T. It easily follows that M is a concave
function.

Let A be the population of ¢ = (¢,: a € A) in R4 such that, for 1 <¢ < T,
some b, in () satisfies P(L,. 4¢,V;,, = b, for all & in I) = 1. Let T be the
orthogonal complement of A. If y isin T and 8 isin A, then ¢,(y) = ¢,(y + &)
with probability 1 for 1 < ¢ < T. It follows that M(y) = M(y + 6). Thus there
exists B8 in R“ such that M(B) = H(f(B)) = H(Q) if and only if there exists
v in T" such that M(y) = —H(Q).

Fory in I' and ¢ in R, X,¢,(cy) = — as |c| - = unless v,,(7y) is constant
over k in I for 1 <t <T. Thus M(cy) > —» as |c| = «. By Rockafellar
[(1970), page 265], there exists y in A such that M(y) = —H(Q). It follows
that f(y) is a best prediction function for Y relative to . O
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3. Prediction functions for samples. In practice, prediction functions
and measures of prediction must be estimated by use of samples. For simplic-
ity, consider the standard case of a sequence of independent observations s,
g = 1, such that each s, has distribution E in the sense that for each
function X in Q, E(X(s,)) = E. In this case, for a regular prediction function
q, H(q) may be estimated from s,, 1 < g < n, for an integer n > 1 by

Hy(q) = —n! ilh(sg,q).

Since h(q) = (h(s,q): s € S) has an expectation, the strong law of large
numbers implies that H (@) converges to H(q) with probability 1.

Under the conditions of Theorem 1, the natural estimate of H(Q) based on

,1<g<n,is H Q) =inf, H (q). To find H,(Q), let M, be the func-

tlon on R4 such that M (8) = —H L(f(B)) for B in RA Since M is continu-
ous and nonpositive, —H (@) is the supremum of M, and R* is a separable
metric space, it follows that H,(Q) is a random varlable and that there exists
a random vector b, in R4 such that —M,(b,) = H,(Q) whenever —M,(x) =
Hn(Q) for some x in R4 [Haberman (1989), Section 1.2]. For practical issues
in computation of b,, see Gilula and Haberman [(1994), Section 24]. As
shown in Theorem 4, existence of a best prediction function for Y relative to
Q ensures that H (@) converges to H(Q) with probability 1 [H Q) -
H(@)].

THEOREM 4. Under the conditions of Theorem 1, if there exists a best
prediction function for Y relative to Q, then H (@) —,, H(Q). If Q is identi-
fiedby V,,,, kinI,1 <t <Tand ain A and LfH(f(B)) = H(Q) for B in R4,
then b, -, B.

ProoF. Define I' as in the proof of Theorem 3. Consider vy in I' such that
H(y) = H(Q). Observe that the proof of Theorem 3 implies that, for each
integer n > 1, there exists a random vector ¢, in I' such that H,(Q) =
—M (c,) whenever, for some x in R4, —M,(x) = H,(Q). By Theorem 5.1 of
Haberman (1989), ¢, =, v. Given Lemma 5.1.1 of Haberman (1989), it
follows that H,(Q) —,, H(Q). O

Theorem 4 is readily applied to model comparison measures. Let the
conditions of Theorem 1 hold, and let V,,,, bein Q for 2 in I,1 <¢ < T and
ain A,.Let @, be the set generated by V,,,, for £ in I,1 <¢ < T and a in
A, For each integer n > 1, let

1(Q.,Q) = H,(Q.) — H,(Q)

be the sample estimate of I(Q .., @), and let

J(Q+,Q) =1,(Q.,Q)/H,(Q+)
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be the sample estimate of J(Q,, ). Adopt the conventions that for x real,
x/0 is © for x > 0, 0 for x = 0 and — for x < 0. Consider the following
corollary to Theorem 4.

COROLLARY 1.  Let the conditions of Theorem 4 hold. Let A, be a finite set,
and let Vi, bein Q forkinl,1 <t <TandainA,, and let @, be the set
generated by V., for kinI, 1<t <T and ain A,. Let there exist a best
prediction function q, for Y relative to Q. Then I (Q* Q) =, 1(Q,, Q). If
H(Q.) > 0, then J,(Q,, Q) —,, J(Q,Q).

3.1. Normal approximations. Normal approximations may also be de-
rived from Haberman (1989) under the conditions of Theorem 4, provided
that the V,,, are assumed to have finite variances. For x in R4, let

Co(x) = X r(F(%))V,yy forl<t<Tandain A,
kel

let the matrix C(x) = (C,,(x): a € A, d € A) satisfy

Coa(x) =E( ) kZ Tre( f(x))[vkta = ¢40(%)][Viea — ¢1a(x)] for a and dinA,
t kel

and let the matrix D(x) = (D, (x): @ € A, d € A) satisfy

Dyg(x) = E(Z L 5.(Y) [Viea = Ca( )] [Viea — ctd(x)]) for a and d in A.
t kel

Let F(x) = [C(x)] ' D(x)[C(x)]"t if C(x) is nonsingular. Given these defini-

tions, Theorem 5 may be obtained. In this section, —, is used to denote

weak convergence of the distribution of a random variable or vector to a

probability distribution, and o ? is used to denote a variance.

THEOREM 5. Let the conditions of Theorem 4 hold. Let o*(V,,,) be finite
for kin I, 1 <t <Tand ain A. Let q be a best prediction function for Y
relative to Q. Then

(3.1) n2[H,(Q) — H(Q)| »4 N(0, a%(h(q))).

If Q is identified by V,,,,, kinI,1 <t < Tand a in A and if H(f(B)) = H(Q)
for B in R4, then C(B) is nonsingular and

(3.2) n*2(b, — B) -, N(0,F(B)).

PrROOF. Consider the case of @ identified V,,,, 2 in I, 1 <¢ < T and a in
A and H(f(B)) = H(Q) for a B in R“. Recall the function g(s), s in S, in the
proof of Theorem 1. The matrix D( ) is the covariance matrix of the random
vector Vg(B) = (g(B,s): s € S). Given Haberman [(1973), Section 3.2] and
Haberman [(1989), Corollary 4.2.2], if V2g( 8, s) is the Hessian matrix of g(s)
at B for s in S, then C( B) is the expectation of V2g(B) = (V2g(B,s): s € S).
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If f is identified, then it follows that C( B) is positive definite. By Haberman
[(1989), Theorems 4.5 and 6.1], it follows that (3.2) holds. By the proof of
Theorem 6.1 in Haberman (1989),

n[H,(q) - H,(Q)] - £(n2(b, - B),C(B)n*/*(b, — B)) =, 0.

By the central limit theorem, n'/2[ H (B) — H(Q)] -, N(0, o 2(k(q))). Thus
(3.1) holds.

If Q is not identified by V,,,, £ in I, 1 <¢ < T and a in A, then define I'
as in the proof of Theorem 3. If T' only includes the 0 vector 04, then
H(@ =H .(04) = H (q) with probability 1 and H(f(0,)) = H(®), so that
(3.1) still holds. If T contains more than one vector, then a nonempty subset
A, of A exists such that if @, is the subset of @, generated by V,,,, k in I,
1<t<T and ain A, then H(Q) = H(Q,), H (@) = H (Ql) with probabil-
ity 1 and @, is identified by V,,,, #in I, 1 <t <T and a in A,. If ¢, is a
best prediction function for Y relative to @,, then o2(h(q,)) = o2(h(q)), so
that (3.1) still holds. O

Theorem 4 not only provides conditions for normal approximations; it also
provides information about the bias involved in estimating the measures of
quality of prediction. It is clearly true that E(H (B) is HQ). If @ is
identified by V,,,, £ in I, 1 <t < T and a and A, then the distribution of
n[H (@) — H .(@)] converges weakly to the distribution of 2(Z, C(B)Z), where
Z has distribution N(0, F(8)). As in Box (1954), (Z, C( B)Z ) has expectation
tr((C(B)]~1D( B)). Thus H, (Q) is equal to H(Q) — in 1 tr((C(B)]I"'D(B))/n
plus a random variable with expectation 0 plus a random variable O, such
that nO, converges in probability to 0. In this sense,

—3nttr([C(B)] ' D(B))

may be regarded as the asymptotic bias of ﬁn(Q). The size of this asymptotic
bias is examined by Gilula and Haberman (1994) in a number of examples.

In Theorem 5, asymptotic variances and covariance matrices may be
estimated as in Haberman [(1989), Section 3.2]. For x in R4 and integers
n > 1,let q, = f(b,),

Can(2) =n"" X Y f(k,t,s,,%)V4(s,) forl<t<Tandain A,
g=1kel

let the matrix C,(x) = (C,;,(x): a € A, d € A) satisfy

Cotn(®) =1 5 T F(krty 53 2)[Viral5y) — cuan()]

g=1t kel
X [thd(sg) - ctdn(x)] fora and d in A
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and let the matrix D, (x) = (D,;,(x): a € A, d € A) satisfy

Dyqn(x) = E(Z > Sk(Yt)[Vkm - Cta(x)][vktd - Czd(x)])

t kel
for a and d in A.
Let

Var,(h(q)) =n" ; [A(s4,4,) ﬁn(Q)]Q.

To use these quantities for estimation of asymptotic variances, apply Theo-
rem 6.

THEOREM 6. Let the conditions of Theorem 5 hold. Then h(q) has finite
variance, and Var,(h(q)) —,, Var(h(q)). If Q is identified relative to V,,,, k
inl,1 <t<TandainA, and if F, is a nonnegative definite random matrix
such that F, = [C, (b)) 'D(b,)C,(b,)]"' whenever C,(b,) is nonsingular,
then F, -, F(B).

Proor. In this proof, attention will be confined to the case of @ identified

relative to V,,,, £ in I, 1 <t < T and a in A. As in the proof of Theorem 5,
remaining cases are readily derived. Observe that

Var,(h(g)) = n-! il [h(sp 2] - [Hu(@)]

and

Var(h(q)) = E([h(q)]?) - [H(Q)]*.

Given Theorem 4, it suffices to show that
U, =t 3 ks )] = E(I@T).
g=
Clearly
=t T (ki) 2 B(R)T)
Given standard properties of L,-norms, it then suffices to show that
(3.3) X, =0 3 (Mo, 0) ~ (s, 0)]* = 0

For x in R4, let ||x|| = (%, x)"/2. For £ in I and 1 <t < T, let |V,,| be the
function on S such that at s in S, |V},| has value |V, (s)| = (|V},,(s): a € A).
Given Theorem 4, ||b, — Bl =, 0. Given the gradient formula in the proof of
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Theorem 1, given Taylor’s theorem and given the Cauchy—Schwarz inequal-
ity, it is easily verified that

|h(sg’ qn) - h(sg’q)l S

g)IHan - Bl forl<g<n.

It follows that

Since

Xn < {n_l i ZIth(Sg)l Z}IIbn - Bllz
g=1"1¢
3

2 IVii(s,)] 2} s E(‘ YV, (s 2) <
g=1"1 t

it follows that X, —,, 0. Thus it follows that Var,(h(q)) —,, Var(h(q)). The
claim that F, —,, F(p) is readily verified given Haberman [(1989), Section
32]. O

Given the proofs of Theorems 5 and 6, study of normal approximations for
other prediction measures is straightforward. Consider Theorem 7.

THEOREM 7. Let the conditions of Corollary 1 hold. Let V,,, have finite
variance for each kinI,1 <t < Tand a in A. Let V,,, . have finite variance
foreach kinlI,1 <t <TandainA,. Then

n'2[1(Qu, @) ~ 1(Q4, Q] =4 N(0,7*(h(gx) = 1(4))).
IfH(Q,) > 0, then

22 5(Q4, Q) — J(Q., Q)]

_h(g) )

N|0,c2(h -1-J ,

Proof is omitted since the result is easily verified by standard large-
sample methods.

Given Theorem 7, the approach of Theorem 6 is readily adopted to esti-
mate the corresponding asymptotic variances of n'/ 2[f (@4, Q) — I(Q,, Q)]
and nY%[J (Q,,Q) — J(Q,, Q). The asymptotic bias results that follow
Theorem 5 are easily applied to Theorem 7. Note the examples in Gilula and
Haberman (1994) concerning the practical effect of this issue.

3.2. Chi-squared approximations. We conclude this paper by addressing
the issue of using chi-squared approximations for model selection. Consider
the case of @ C @,. The statistic 2n[ /] @4, Q)] is the conventional likeli-
hood-ratio chi-squared test for the null hypothesis that the conditional proba-
bility function p is in @ against the alternative hypothesis that p is in @,
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but not Q. In this standard case, conditions are easily found such that
2n[1(Q,, Q)] —, x? for some integer v > 0. This standard result is gener-
ally of limited importance in applications to panel data due to the very large
samples involved. Few situations arise with such data in which probability
models with limited numbers of parameters are exactly true [Gilula and
Haberman (1994)], although it may well be true that I(Q ,, @) may be small.
Thus traditional likelihood-ratio chi-squared statistics provide little help in
the prediction problems that concern this paper. Especially in large samples, a
large value of 2nl (@, Q) does not imply that I (@, Q) is large.
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