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EFFICIENT LOCATION AND REGRESSION ESTIMATION FOR
LONG RANGE DEPENDENT REGRESSION MODELS

By RAINER DAHLHAUS

Universitat Heidelberg

In this paper we construct an efficient weighted least squares estima-
tor for the mean and more generally for the regression parameters in
certain Gaussian long range dependent regression models, including poly-
nomial regression. The form of the estimator does not depend on the whole
dependence structure of the residuals, but only on the local behaviour of
the spectral density at zero. By using an estimator of the self-similarity
parameter, we give a fully efficient estimator. Furthermore, we construct
efficient weighted M-estimators.

1. Introduction. Statistical models with long range dependent process-
es involved have recently been used in various fields, for example, in hydrol-
ogy, economics or geophysics. Furthermore, they have turned out to be quite
useful for modelling certain measurements that were originally supposed to
be iid [cf. Hampel (1987)].

In this paper we consider the estimation of the mean of a long range
dependent sequence and more generally of the coefficients in a regression
model with long range dependent errors. Let ¢;,, i € Z, be a stationary
Gaussian process with mean zero, covariance function c(u) and spectral
density £.(A) = [M?*f,()) with a € (—1/2,»), where f, is continuous in a
neighborhood of 0 with f,(0) # 0. If @ € (—1/2,0), the covariances of the
process are not summable and the process is called long range dependent. We
assume that we observe

Y,=X,B+¢, i=1,...,N,

and we want to estimate the parameter 8. Let 3 = 3y = {cov(e;, &)}, ;=1 n»
Y=(Y,,...,Yy) and X =(Xj,...,X}). If X, =1, this is the problem of
location estimation.

The problem of location and regression estimation has been studied by
several authors before. Least squares estimators for linear regression models
have been investigated by Yajima (1988, 1991), M-estimators by Koul (1992)
and rank estimators and least absolute derivation estimators by Koul and
Mukherjee (1993). Adenstedt (1974), Samarov and Taqqu (1988) and Beran
and Kiinsch (1985) have pointed out that the arithmetic mean is no longer an
efficient estimator for the location of a long range dependent process (which it
is for a short range dependent process). As was pointed out by Yajima (1988),

Received January 1992; revised October 1994.

AMS 1991 subject classifications. Primary 62F12; secondary 60F99, 62M10

Key words and phrases. Long range dependence, weighted least squares estimates, M-esti-
mates, efficiency.

1029

[ ,4’2

ok

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Statistics. MIKOIRE ®

WWWw.jstor.org



1030 R. DAHLHAUS

the same holds for the case of polynomial regression with long range depen-
dent errors: Again, the least square estimator is no longer efficient, while it is
with short range dependent errors. While the efficiency loss for the arithmetic
mean is minor, it is more dramatic for least squares polynomial regression.

The behaviour of least squares estimators for regression with stationary
errors can best be seen from the following heuristics. The maximum likeli-
hood estimator of B is

By = (X'371X) ' X'S"1Y with variance (X'SX) ',
while the least squares estimator is
LS — (X'X)"'X'Y with variance (X'X) '(X'3X)(X'X) "

Suppose now that X is one dimensional and either stationary or asymptoti-
cally stationary with spectral measure Fyx(A). (This assumption is only used
in this heuristic.) Then [cf. Grenander (1954) and Yajima (1991)]

1 1 2 T 2
x) xE0Ex) "~ ([T AW dE)
and
-1 2 T 1 -1
)~ [T )

Due to the Cauchy—Schwarz inequality, the former expression is larger or
equal to the second and we can only achieve efficiency if £,(A) = const £,(A)~*
a.s. with respect to the measure Fy(A), which includes two important special
cases:

1. f.(A) = constant, that is, the &,’s are uncorrelated.

2. Fx(}) is a dirac measure at some frequency which includes the trigono-
metric design. Fx(A) = cx(o, ,,(A) holds, for example, if X; = ¢(i/N) with
a smooth function ¢ which includes the location case ¢ = 1.

In the case where ¢, is long range dependent, £.(0) no longer exists. Efficiency
in the trigonometric case for frequencies different from zero still holds, which
was proved by Yajima [(1991), Example 2.1]. However, in the case Fy()) =
¢Xpo,»/(A) we have to replace the “~ ” signs in the above heuristics by more
refined asymptotics. As mentioned above, it is no longer true in this situation
that the least squares estimator is efficient.

Adenstedt (1974) has shown that ©¥ ,c,Y; with

c,.=(N)B(a+i+1,a+N—i+1)/B(a+1,a+1)

i
is an efficient estimator of the mean for any spectral density of the form
£.(N) = [A**f,. (D). Since
IN(x+ a)/I'(x) ~x* as x > x,
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we obtain for N —» o, { - o, i /N — x € (0, 1),
c; ~ const w,(x),

where w,(x) = x“(1 — x)* This suggests to use

i i
(Zw(N+1) Z“’(N+1)Y
as a simplified estimate of the mean (Theorem 2.3 shows that it is efficient,

too).
This estimator is a weighted least squares estimator, since it minimizes

N .
2 —
‘i‘, (N+1)(Y,-—XiB) for X, = 1.

Therefore, the question arises for what other regressors X; this weighted
least squares estimator is still efficient. In this paper we show that this holds
if the design matrix spans the same subspace as spanned by certain Jacobi
polynomials. This includes the case of polynomial regressors.

In Section 2 we study the asymptotic behaviour of weighted least squares
estimators. In particular, we prove efficiency in the situation mentioned
above. It turns out that efficiency does not hold in all situations where
Fy(X) = cx,»1(A). We give an example for this. Furthermore, we construct
efficient weighted M-estimators.

If we estimate « from the data and replace « in w, by the estimate a, we
obtain a fully efficient estimator. This is proved in Section 3.

Large parts of the very technical proofs are put into the Appendix.

2. Efficiency of weighted least squares estimators. Let
w, ¢] [0’1] - R’J= 1,---,17’ Xi =XiN = (¢l(l/N)”¢p(l/N))’

1 N
Iw=d1ag{w(N+1),...,w(N+1)}, Y, =X, B, + &,

By = argmin(Y — XB) (Y — XB)
=(XI,X)'X'IY.

Then
Cov( B§”) = (X', X) (X'1,31,X) (X', X) "
= Sy'Ry Syt
Furthermore, for the MLE By = (X' 'X) " 1X'3"'Y, we set
Cov( By) = (X'S1X) =Tyl

‘We call an estimate efficient if it has asymptotically the same covariance
matrix as the MLE. More sophisticated, it may be shown that the sequence of
the local experiments is asymptotically normal (LAN) and that all estimators
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called efficient in this paper are locally asymptotically minimax [LAM; cf.

Millar (1983)]. The same holds if « is no longer a fixed nuisance parameter,

but estimated at the same time. This has been proved in Dahlhaus (1992).
In the following we therefore study the behaviour of Cov( B). To derive

the asymptotic distribution of B{*’, we need the following definition. Let
ac(—-1/2,o) and

b=k ={[Ol]+1, a &N,
@ a, a € Ny.

A function A: R - R with h(x) = 0 for x & [0, 1] is called of smoothness « if
it fulfills the following conditions:

1. h is (k — 1)-times continuously differentiable (in the case k£ = 1, we as-
sume continuity, and in the case £ = 0, we make no assumption) with
|n*~D(x)| < K max{|x|, 1 — |x[}***1.

2. There exists a finite set P such that & is (k + 1)-times differentiable in all
x & P with |h**V(x)| < K max{|x|, 1 — |xf}* *~ 1,

Conditions 1 and 2 are, for example, fulfilled for A(x) = x?(1 — x)? (B > a;
P ={0,1}). Let A, ; be the kth order difference operator applied to the
argument i of a function, that is, A, (f(0) = A,_, ,(f(@) — A,_, ,(fG — 1)),
A, (f(@)) = f(@). A Taylor expansion leads, for a function A of smoothness «

and £ =k, to
t
Ak,t(h( ) = O((N + 1)_1e sup Ih(k)(x)l)
N+1 [(t—k)/(N+1),t/(N+1)]nPC€

and, in the case [(t — k)/(N + 1), t/(N + DI NP = &,

¢
A’“(h(N+ 1)

1 t
(N+1)* (N+1

+ O((N +1) ! sup |h<k+1>(x)|).
[(t—k)/(N+1),t/(N+1)]

THEOREM 2.1. Let f.(A) ~[A** (A = 0) with a € (—1/2,). Suppose
hi(x) = ¢(x)w(x) is of smoothness a. Then

BG ~ o B, Sy*SnSy")

with
1
Sy, ~ Nfo e (x)i(x)w(x) dx
and
aw

Ry, ~N72°*12f,(0)I(2a — 2k + 1) cos{(Za — 2k + 1)5}

(2.1) x [ RO () REP(y)lx =y 2 N dxdy, if a & N
070

~ N2 f, (0) [ () HP(x) dx, ifa € N,
where k = k.
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ProoF. A few of the following steps need very detailed calculations, which
we omit. Let di’, == A, ,(h;(t/(N + 1))). Summation by parts gives

. N t o
H; () = tglhi(N+ 1)exp(—z)tt)

[exp(—ir) — 1]~ g‘, d{, exp (—iAt).

t=—k+1
We obtain for any § > 0,
N s ¢
s,tzﬂhl(N+ 1)h2(N+ 1)C(s — 9
(2.2) =f_ f()‘)Hl,N()‘)Hz,N(“/\) dA

~ 2£,(0) [[IN*Hy () Ho,  (— ) A

If k = a € N, this is proportional to

2k
H, (M) Hy n(—2) dA

rOf"

2sin —
sin 5

N
=2af,(0) X df)dP)
t=—-k+1

~ 20 f, (N4 [*hP(2)h(x) .
0

If0 <k — a<1/2,(2.2)is proportional to

—2a-— * a2k s—t

=2£,(0)T(2a — 2k + 1) cos{(2a - 2k + 1);}N2""“2“‘1

2k-2a-1

X X dg)di,

s*t

' T
~2f (0)T(20 — 2k + 1) cos{(Za — 2k + 1)-2-}N‘2““

s —
N+1

Xflflh(lk’(x)h‘z’”(y)ix -yl 72 L dxdy.
070
If1/2 <k — a < 1, (2.2) is proportional to

47,.(0) ngjzl,sdle,tfaml“‘““ cos{(s — t)A} sin A/2 dA.
s, t 0
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Since 2cos{(s — t)A}sin A/2 = sin{(s — ¢ + 1/2)A} — sin{(s — ¢ — 1/2)A},
summation by parts yields

(2.3) = —2f,(0) ng)sd;fzl,tf5|)\|2“‘2k“ sin{(s — ¢ + 1/2)A} dA
s,t Y
In the case £ — a > 1/2 this is proportional to

—2f*(0)2d(1) (2)l’thk—za—z/‘”leu—ZkHSin(
0

s-1+1/2
—Tl-—l—_x) *

— —2f,(0)N2?+~22-21'(20 — 2k + 2) sin{(2a — 2k + 2)-721}

s—t+ 12k 22

N+1

Xngn(s—t+ )d(l)dﬁe2 18
s,t
In the case # — a = 1/2, we get the same result by a slightly different
calculation. The last expression is proportional to

o
92, (OT(2a - 2k + 2) sin{(Za — 9k + 2)§}N-za+1
x [ [sen (x — y) B () AV (x)lx =y 2" dxdy
0“0
v
=2f,.(0)(2a — 2k + 1) cos{(2a -2k + 1)-2-}N-2a+1
X/lflh(lk)(y)h(zk—l)(x)lx _y|2k—2a—1 dxdy O
070

REMARK 2.2. If the ¢; are (k + 1)-times differentiable with bounded
derivative and w(x) =x#(1 —x)? with B> «, the above conditions are
fulfilled and, in particuldr, we get N~ *~1/2 as the rate of convergence for By.
If B < «, this will in general no longer be true. An example is the estimation
of the mean by the ordinary average of the data ( 8 = 0) which is known to
not have the optimal rate of convergence for « > 1/2. We conjecture that the
rate is still N-*"/2 for B>a—1/2 and N 7! for B<a—1/2. By
choosing a large B, one may therefore guard against a possible loss in the
rate of convergence. If, for example, ¢(x) = x7, the above remarks apply with
B + vy instead of B.

By choosing the particular weight function w,(x) :=x%(1 —x)* we now
prove that we achieve efficiency in polynomial regression. We put BN .= (’”&)
for short.

THEOREM 2.3. Suppose ¢(x) = x/71, j=1,...,p, and w = w,. Then we
have:
) Sy'RySy' ~ Ty’
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as N tends to infinity;

(i) VN1+2a([§N,a - Bo) =5 #(0,771)
with
IF(a+i)T'(a+)) 1

U7 T(2a+i)l(Za+)) 2a+itj—1
and éN’a is efficient.

Proor. (i) The proof of (i) is extremely technical. We have put several
technical lemmata into the Appendix. Let A, M(a), T(a) and P(f(-)) be
p X p matrices defined by

A= {(_l)m(; - })}w‘:l ~~~~~ 3

1
M S
(@) {2a+i+j—1}~~l .

i,j=1,...,
- MMl (a+i—-1+72)
(@) =\ T, Zati=1+7) i

p—1
P(f(")) = diag{l, F@,- I1 f(j)}-

In particular, for a constant c,
P(c) = diag{c®,...,cP"1}.

From Theorem A.3, Lemma A.1(vii), Lemma A.4 and Theorem 2.3 of Yajima
(1988), we get with the beta function B:

Ry ~N2"127f (0)B(a+ 1, a+ DI(2a + 1)(2a + 1)
X P(a+ ~)P(i)P(—l) AM(a) A’P(—l)P(i)P(a+ Y,
T2 a4/

/§1 20+ 1+/

Sy~NB(a+1,a+1)(2a+1)

ij
and

T, ~N2et{2xf,(0)} 'TB(a+ 1, a + 1) P(a + )

o
'2a+1)

e[ e e
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which means that we have to verify
1 1
Q=P(a+ -)P(j)P(—l) AM(a) A’P(—l)P(-.—)P(a + )

=T(a)M(a) 'T(a).

Since AT(a) = P(a + - )P(1/:) AM(a) and A7l = P(-1)AP(-1) [Lemma
A.1(iv)], we obtain

T(aYM(a) 'T(a) =P(—1) AQAP(—1).

Since
(a+k) a+j—1)
i—1 k J—1
(P(=1) AQ);; = 2a+1k20( 1)( ) 2a+j+k
j—1+k%k

is symmetric in i and j by Lemma A.5, we obtain
T(aYM(a) 'T(a) = P(-1) AQAP(-1) = QAP(-1) AP(-1) = Q

(i) B is already Gaussian with mean B and asymptotic variance '™ 1.
O

REMARK 2.4. From the above result one can easily deduce efﬁciency for
polynomial regression when the regressors are of the form X, = (:°,...,i""1).
This was the situation considered by Yajima (1988). In this case one has to
multiply the matrices 3y, Sy and Iy from the left and the right by the
matrix P(N) = diag{N?,..., NP1}, which leads to the central limit theorem

VN 2¢P(N)( By, o — Bo) = o#(0,T71).

We now extend the above result to more general regressors. Let g,(x),
g5(x),... be the orthonormal polynomials with respect to the inner product
(g,h) = fog(x)h(x)w (x) dx obtained from 1, x, x2,... by the Gram—Schmidt
procedure. We mention that

gm+1(x) = COIlSta,m Z (m; a)(nlet;)(_l)m_/(l _x)m—/x/’

/=0
m=20,...,

which are (up to a substitution) the Jacobi polynomials.
THEOREM 2.5. Suppose the ¢(x), j = 1,..., p, span the same linear space
as p Jacobi polynomials g, , ..., 8i, Let w = w,.
(i) Then we obtain, for the corresponding matrices,
SyiSySyt ~ Tyt

(1) éN’ . then is asymptotically normal with rate N~*~1/2 and efficient.
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Proor. We start with a preliminary consideration. Let /€ N and A, be
an / X/ matrix with

(&1,-.-,8,) =A,(1,...,x7 1.
Furthermore, let U, and V, be the design matrices corresponding to the

regressors (gq,...,8,) and (1,...,x“"1), respectively. Then we have U, =
V,A, and from Theorem 2.3,

(VALV,) (VALSLV)(VALV,) ™~ (ViEY,)
which implies

(U:L,U,) (UL, SLU)(ULU,) " ~ (UE71T,)
Since U,I,,U, is approximately the identity matrix, we get

UL 3ILU, ~ (US'U,)
Since this holds for all # we can conclude from Theorem 8.2.1.1(f) of Graybill
(1983) that U;1,%1,U, ~ D with some diagonal matrix D.
Suppose now that X and Z are the design matrices corresponding to the

regressors ¢; and g;;, j = 1,..., p, respectively, that is, X = ZB with some

regular matrix p X p matrix B. From the above consideration we obtain (for
the diagonal matrices)

Z1,51,7Z ~(23°'2)""
and with Z'I, Z ~ I,

(X'I,X) (XT3, X)(XI,X) ' ~(X3'X)",

which implies (i). As in the proof of Theorem 2.3, part (ii) follows immediately.
O

It seems to be more natural to prove Theorem 2.5 first and then get the
polynomial regression as a special case. However, the effort would be even
larger, since in our proof we could make use of Theorem 2.3 of Yajima (1988)
for the polynomial case.

REMARK 2.6. (i) We conjecture that the above weighted least squares
estimator By , is not efficient for trigonometric design. It seems that in this
case arguments similar to the ones given in the Introduction can be made
rigorous, which lead to a relative efficiency of

folw(x)2 dx/(folw(x) dx)2> 1 ifw=+#1.

(i) One might conjecture that efficiency for [’%\N, . holds whenever F,(A) =
¢ Xp0, (A (cf. Section 1). We give a counterexample for this: Suppose that we
have only one regressor ¢,(x) =x™ with m # 0. Then the linear space
spanned by ¢, does not coincide with the space spanned by any of the g;. In
fact, the corresponding weighted least squares estimator By , is no longer
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efficient. This follows since the corresponding values of Ry, Sy and I are
the (m + 1, m + 1) entries of the matrices listed in the proof of Theorem 2.3.
For m = 1 we get, for example,

4(a+1)°
(a+2)°(2a+1)"
which is not equal to 1 in general. This is a bit surprising because we know
from Theorem 2.3 that the regression with (1, x) is efficient.
(iii) We now try to make the above results more transparent with the

following heuristics: Suppose w = w, and X is a n X p design matrix with
S5'X ~I,X. One easily checks that this implies

(2.4) Sy'RySyt ~ TRt

that is, we have efficiency of ﬁN,a for this design. More generally, we can
derive (2.4) if 33'X ~ I, XA with a p X p matrix A of full rank. This means
that we obtain efficiency if 335'X and I, X span (approximately) the same
space. The above example now can be explained as follows: 35'(1, X,),_, .y
and [,(1,X)); n (X;=1i/N) span approximately the same space, while
35'(X); and I,(X;); do not. Although we could check this for a specific case
(a=1), it is in general not clear how to make this heuristic rigorous (in
particular, the correct definition of the “~ ” sign is not clear).

Sy'RySy'Ty ~

We now construct fully efficient weighted M-estimates. It was observed by
Taqqu-(1975) that the asymptotic behaviour of the partial sums of long range
dependent random variables depends only on the behaviour of the first
nonzero term in a Hermite expansion. Beran and Kiinsch (1985) and Beran
(1991) used this result to prove that the ordinary mean and M-estimators for
location have the same relative efficiency. It is not difficult to generalize these
results to our situation.

Let

x2 n __x2
H,(x) = (—1)"exp| — N
() = ('en| | orem -] nen,
be the Hermite polynomials. They form a complete orthogonal system in
ZR, @) with o(x) = (1/V27)exp(—x%/2) with EH(X)H,(X) = §,,n!,
where X ~.2(0, 1).
The series X}, _ ((J(n)/n))H,(x) with J(n) = [G(x)H, (x)¢(x) dx converg-
es in Z(R, ¢) to G(x). In particular, Hy(x) = 1 and H,(x) = x. Furthermore,
i E; C i_ )"
[EH,,(i)HU(—’) o, m )
g g g
where 02 = E&? [cf. Feller (1971)]. 3
Consider now the weighted M-estimate By ,, defined as the solution of the
equation
¥ N ;
2. Xy(Y, - X;B) =0.
(25) L w| g X - %)

13
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THEOREM 2.7. Suppose i is a nondecreasing, differentiable function with
Ey(e) =0, E4'(e) # 0 and |¢'(s; + 8,) — ¢'(&)|l > ,0 for 8, > ,0. Let fur-
ther ¢,...,¢, be a set of continuous functions such that the matrix
Joe(2)o(x)w,(x) dx is regular. Then:

(1) There exists a sequence EN’a that solves (2.5) with [;N’a - B, a.s.
(ii) \/N1+2a(l§N,a - éN,a) -0

and B'N’a is asymptotically normal.
(iii) If in addition the ¢,,..., p, span the same linear space as p Jacobi
polynomials g; , ..., &, then By , is also efficient.

Proor. The proof is given in Dahlhaus (1992).

REMARK 2.8. The condition E¢/'(e;) # 0 implies that ¢ is of Hermite rank
1. We do not consider M-functions of arbitrary rank since the typical M-func-
tion for the location estimation is symmetric around zero, which implies
Ey'(e;) # 0. Furthermore, this condition is also necessary to obtain the
efficiency result.

3. Adaptive weighted least squares estimators. In this section we
prove that the weighted least squares estimator remains efficient when the
weighting function w, is replaced by w; , where &y is an N*-consistent
estimator of o with some (arbitrarily small) p > 0.

THEOREM 3.1. Let ¢4, ..., ¢, be a set of continuous functions such that the
matrix { [go(x) o (x)w,(x) dx};; is regular and let & = &y be an N*-consistent
estimator of a for some p > 0. Then VN“Z"‘([’%\N,& - éN,a) - ,0 and [?N’& is
asymptotically normal. If the ®, J=1,...,p, span the same space as p
Jacobi polynomials g, , ..., &§;,, then By ; is also efficient.

ProOF. We use a chaining argument. Let a« > —1/2 and ¢ > 0 with
a—&>1/2. Let 8> 0 and {5} be a positive sequence with § = L7_,§;. For
each y €[a, @ + ¢] there exists a sequence y; > y of the form y; = a +
e(n;/27), n; <27, with y; = ;. or ly; — ¥4l < g/2/"1 (dyadic representa-
tion). This implies, with v,; = a + &(i/27), §;; = v;; + &/27",

{P’( sup VN2 By — By ol > 6)

vela, a+el
o 2/-1 R .
(3.1) <)X X P(VNHZ“'BN,«,U = B, 5”| = 31')
Jj=0 i=0
271

SV ol [ YT W (1 S W

Jj=0 i=0
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The expectation is equal to (put y = v, s 0=28; I, = Iwy)

-1 -1 -1 -1
tr{[(X’IYX) XL, - (X'LX) 'X'L|s[1,X(X1,X)"" - LX(X',X) ]}

which can be estimated with a mean value n € [y, 8] and J, = I, 54,
by

alg=1q

2 ! -1 ! ! -1 2

(v~ 8)°2tr((X'L,X) (X', 3, X)(X'T,X) " }(v - 5)
x 26r{(X'L,X) (X', X)(X'L,X) "
X(X'L3LX)(X'LX) (XJ,X)(X'1,X) "},
which is less than
2(y - 8)*pl(X'L,X) 12X T, S J, X]|

+2(y - 8)*pI(X'I,X) "IN X', XI*1 X1, 31, X,
where || Al is the spectral norm of A which, in the case of a symmetric
matrix, is equal to the largest absolute root of A or equal to 1/C (smallest
absolute root of A~!). Straightforward calculations show that

I(X'L,X)'l<KN"' and [X'J,X| <KN

uniformly for n € [a, a + ¢]. Furthermore,

Il

I N s t

lyl=12,m=1 s,t=1
s t
% w"(N+ 1)w’7(N+ 1)c(s 1)
N s
B ||j:|1=plff(7) El[zz:ym(NJf 1)

2

dy.

s
Xw,,(N " 1)exp(z'ys)

Since h(x) = ¥,y,¢,(x)w,(x) is of smoothness a, it follows from Theorem
2.1 that

I1X'1,5L X < KN~-2et1
and similarly

I1X'J, 3, Xl < K, N-2a+ 1+
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with some arbitrarily small v > 0. Choose v = p. This gives as an upper
bound of (3.1),

; (v = 85)°

< KN*s? i (87271) ' < KNve2,

j=0

if one chooses, for example, §;, ~ constant/, j2. The analogous expression for
SUD, cla—s,a] IS estimated similarly with one exception, namely, for 7 < «
with hy as above,

2

dy,

IX'L,31,X| = sup [£(¥)
llyll=1

since f(y) < K|y|*® < K|y|®" this is, with Theorem 2.1, bounded by

Z h ( )exp(iys)

KN-2n+1 < RN-2a+1+2¢ (KpN‘z‘”“Z”P for J, instead of In)'

Choose now ¢ = &'/N?, which gives the result. O

REMARK 3.2. One easily checks that the above proof holds for polynomial
regression with X, = (i°,...,i7~ 1). One then obtains

VNHZ“P(N)(éN,& - :éN,a) - p0.

The above result can be used in an iteration. One starts with the least
squares estimator for B (with the ordinary mean in the location problem)

which is VN1*2¢ consistent, estimates a from the residuals which is VN
consistent [cf. Yajima (1988), Theorem 3.2] and then reestimates B with a
weighted regression (or with a weighted mean) with weight function w,. If «
is possibly larger than 1/2 one may start with a weighted regression with a
sufficiently smooth weight function (cf. Remark 2.2).

APPENDIX

This Appendix provides the technical details for the proof of Theorem 2.3.

LEMMA A.1.
k .
(1) A,:(fQ) = g ( ~)(—1)Jf(i—j),

(i) A (L)oo = (D By W f (=R 2= 1)no,
(lll) A(al’ ’ap) = (Al 1, l(a ))l 1,..., p? a; € R’
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. _ i—1
(iv) A 1={(j—1)}. N =P(—-1)AP(-1),
i,j=1,..., N
A ( . (- 1)'#! L x with k#0
(v) E.n x+n)n=o—m forall x withx,...,x — k # 0,
_ /  a+n+j
) (I:I a+v+1+J)

=(-1) (ﬁa+n+J)(ﬁa+v—n+j)

4 1
(l‘[lm) forallk </ and 2a +v + 2> 0,

(-7 +j - 2)!
M 2(2a+147)

(vii) AM(a)A =

(viii) AT(a) =P(a+ -)P(%) AM.

Proor. The proofs of (i)-(iii) are straightforward. To prove (iv), note that
- k 1
-1 l+k( i 1 ) ) _ 6

Identities (v) and (vi) are proved by induction over k; (vii) follows from (iii)
and (v) since

(AM(a)A);; = (A(AM(a)))i=A;_1 (AM(@));;

1
=A A —_—
LIS L9+ i+ — 1
A 1
TR oa it j+n—1],_,

(-7 +j - 2)!
M 2(2a+i+j—-1-7)°

To prove (viii) we note that
4 AT 1 il tj—1+/
(AT(a))i; = T"‘j i-1,i—-1 /=1m .
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Therefore, by using (vi), (v) and (iii) we get

(-1 - 1)!}

[M_i2a+j+7/

AT(a) = P(a + .)P(%){

1
=P(a+')P(T)AM(a). O
LEmMMA A.2.
W ¥ - ) am) forall a2
i E\7—a  7iita = —7wcot(am) forall a ,
© 1 1

G Y

/=0/+a+1—u/—a+_v

u—1 1
Y , u>v
1 , a—/
20-u-—-v+1 m cot{em) (3’_1 1 “ev
_____’ <
%"a—/ u<v
L .

forall @, u and v with2a—u—-v+1+#0and a+u, a+v & Z.

Proor. (i) For —1 < a < 0 we obtain

-1 a

* 1 1 1x ¢ —x
— =/ — = — t .
/§0(/—a /+1+a) v/;) 1—x dx m cot( am)

For all other a the result is obtained by shifting the sum.
(ii) We obtain, for example, for u > v,

* 1 1
o/ tat+l-—u/l—a+v

1 i( 1 1
C2a-u-v+1,5\/-at+v F+a+l-u

1 * 1 1 u-1 1
X mers e L
2a-u—-v+1|,5)\/—a+v SH+a+l-v sy =7

The result now follows from (i). O

We now calculate the coefficients of %y = X'I, %I, X for polynomial re-
gression [¢;(x) = x/71] and the particular weight function w,(x) = x*(1 —
x)“ This means that we have to calculate the expressions from Theorem 2.1
for hj(x) = pi(x)w,(x) = x**/~1(1 — x)* All h; are of smoothness a.
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THEOREM A.3. Let a € (=1/2,), ¢i(x) = x/! and w(x) = w,(x) = x*(1
— x)% Then

I(a+ 1) (a:r—lil)(a;ill)

2+1 2+1+j—-1
i+j—2

Ry ~2mf,(0)N 21

PrROOF. We calculate the expressions of Theorem 2.1. We consider only the
more difficult case a & N;. The case a € N, is treated similarly. We split the
integral in (2.1) into the domains {x > y} and {x < y}. Since

k
®) _ _4\Ek-m o a+i—1) a+ti-1-myq _ Ne—k-m
ERORLPWES (k_m)( R B S R

we obtain with the substitution z = (1 = x)/(1 — y):

[ RO (= )™
y

= k! f (_1)k—'n( a )(a+nil—1)(1_y)k-a+m

0 k—m

Xflz‘”’"_k(l _ z)Zk—2a—l{1 -1 _y)z}a+i—l—m dz

E Z( 1)F (1 y)k—a+/+m(kixm)(a+"il— 1)

m=0 /=0

X(a+i_/1_m)B(a+/+m—k+1,2k—2a).

After a change of summation (/+ m — /) this is equal to [note that

S R (5

Y (- —y)’”/‘“("‘ +;‘ 1)(/*,; a)k!B(a +/—k+ 1,2k — 2a).
=0

In order to obtain the integral in (2.1) we calculate

n=0

[ B =) dy = ke 5 (—1)k‘”(k @ n)(n’j/)B(a +,/+1)

- (- 1)("‘ —4= 1)k!B(a+j,/+1)
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and therefore

1,1 e
fofyh5~k>(y)hs-k>(x>rx—yl” 2e” dady

Z( 1) ("‘“ )(/'};a)k!(a_i_1)k!B(a+j,/+1)

><B(a+/—k+1 2k — 2a)

T'(a+ 1)T(2k — 2a)

Jj—-1
_ ikl
- M D20 M (e TL e+ 0 -0

1
% Z (7 + at)— o) h(/—a-v))
By Lemma A.l we get
1 (-’
M-/ +a+j—u) G- 1)!Af‘1’“

1
l+a+j—u

u=0

1 A 1 )
S (j- 1! j_l’"(/+a+1—u =0

and therefore the sum in the above expression is equal to

i 1 (-1 1 A 1 )
/=0 (J_]')' (l_l)' J 1u(/'i_a'i_]-_u)u=0 i—l,v(/_a+v v=0
1 (-7t A i 1 1
O I ) T e e e R ) u’v=0'

Together with the corresponding integral over {x < y} (exchange ¢ and j!) and
Lemma A.2(ii) the whole expression in (2.1) now becomes equal to

IF'(a+ 1DI'(2k — 2a)
I'(-a)

2, (0)N2°"T(2a — 2k + 1) cos{(2a — 2k +1)— }
x(—l)k“l(“;*_i N 1)(“;: 1)

1
X2 cot(am)A; u[Aj—l,v(z )

a—u—-v+1

[the remainder terms from Lemma A.2(ii) cancel for the two integrals]. By
using Lemma A.1(v) and the relations

F(a)I1-a)I'(-a)I(1 + )
r2a)lr(1-2a) ’

—2mr cot(am) =

1 T
;COS{(za -2k + 1)5} = (—l)k_l W——O{)’
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we obtain the result for the case a & N,. The proof for @ € N,, which uses
similar considerations, is omitted. O

LEMMA A4. Let a€(-1/2,2), ¢(x) =x'"! and w(x) = w,(x) =
x%(1 — x)* Then

Sy,~NB(i+j-1+a,a+1)

Hit2 g4/
=NB(a+1,a+1 _—
NB(a o )/=Hl 2+ 1+/

The proof is trivial.
LEMMA A5. For a> —1/2 and i,j € N, we have
(a + k) a+j—1

) k j—1
2+j+k
J-1+k

o kfi-1
Lol

(A.1)

min(i—1,;-1)

- (Y

v=0 v

/=1

v i+j—2-v
x{ﬂ(a+/)}{ Il (a+/)}.
Proor. (A.1) is equal to

ii(a+/)§;(_ly(i;I)W__z+k)

[t (e +72)
M-it*Q2a+1+7)"

Since

v

iy 7Rl G [ (i

. min(j—1,k) , .
SR L
v=0

this is equal to
[Zi(a+7) v(i—1 j—l) i-1-v
[-l(2a+1+7) g(_l) ( v )( v )7

i-1 g4/
XAi 1y —_—,
“1‘”"‘1(,2[1 2a +j +/)

from which we obtain the result by using Lemma A.1(vi). O
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