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ON ESTIMATING MIXING DENSITIES IN DISCRETE
EXPONENTIAL FAMILY MODELS!

By CunN-Hul ZHANG

Rutgers University

This paper concerns estimating a mixing density function g and its
derivatives based on iid observations from f(x) = [f(x | 8)g(8) d6, where
f(x | 0) is a known exponential family of density functions with respect to
the counting measure on the set of nonnegative integers. Fourier methods
are used to derive kernel estimators, upper bounds for their rate of
convergence and lower bounds for the optimal rate of convergence. If
f(x18y) = e**1 V x, for some positive numbers 6, and &, then our esti-
mators achieve the optimal rate of convergence (log n)"**™ for estimat-
ing the mth derivative of g under a Lipschitz condition of order o > m.
The optimal rate of convergence is almost achieved when (x!)?f(x | 6,) >
£** 1, Estimation of the mixing distribution function is also considered.

1. Introduction. Let f(x | ) be a known parametric family of probabil-
ity density functions with respect to a o-finite measure w. The density
function f(x) of a random variable X belongs to a mixture model if

(1) f(x)=f(x;g)=ff(xl0)g(0)d0.

We are interested in estimating the mixing density function g and its
derivatives based on independent identically distributed observations
X,,..., X, from f(x). When f(x|6) is a location family and u is the
Lebesgue measure, this is also called the deconvolution problem, which was
investigated recently by Carroll and Hall (1988), Devroye (1989), Edelman
(1988), Fan (19914, b), Stefanski (1990) and Zhang (1990) among others. The
purpose of this paper is to study the case where

(2) f(x16)=C(6)g(x)6%*, x=0,1,2,...,0<6< (or <)6* <,

and u is the counting measure on the set of nonnegative integers. This model
includes the Poisson, binomial and negative binomial distributions.

In Section 2 we use Fourier methods to construct kernel estimators for the
mixing density g and its derivatives, and to obtain upper bounds for their
mean squared error at a fixed point under the condition that the value of 6*
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930 C.-H. ZHANG

is finite and known. Let g™ be the mth derivative of g, g = g. For
positive numbers «, ¢ < 6*, §, M and M,, define

Gy =%, 0(a,8,M, M,)

) ={g:1g°(0) — g (a)l < M|0—al* ,V]a - 6] <6,

Y 1g9(a)l < My, ["g(6)do=1}.
Jj=0 0

Here and in the sequel, a’ is always the largest integer less than « and
a" = a — a' €(0,1]. If there exist nonnegative numbers B, B, and B such
that q(x)ByB*(x!)? > 1, Vx, then the mean squared error of our kernel
estimator for g™, 0 < m < a, is bounded by O((log n)~**™) uniformly over
the class &, ;. when B = 0 and by O((log n/loglog n)"**™) when B> 0. In
Section 3 we obtain (log n) **™ as a lower bound for the minimax mean
squared error for estimating g™ over &, ;.. Consequently, our kernel esti-
mators achieve the optimal rate of convergence when 8 = 0 (e.g., the negative
binomial family) and almost achieve the optimal rate of convergence when
0 < B < », (e.g., the Poisson family). In Section 4 we derive kernel estimators
for the case 6* = » under the condition B < 2, which achieve the rate of
(log n)~@~A/2Xe=m) for the mean squared error. Section 5 concerns estimat-
ing the mixing distribution function.

Nonparametric maximum likelihood estimation of mixing densities for
families satisfying (2) has been studied by Kiefer and Wolfowitz (1956), Laird
(1978), Lambert and Tierney (1984), Lindsay (1983a, b) and Simar (1976)
among others. Deely and Kruse (1968) considered minimum distance estima-
tors; Rolph (1968) and Walter and Hamedani (1991) considered Bayes estima-
tors, whereas Tucker (1963) used the method of moments. Although the
nonparametric maximum likelihood and other estimators are consistent un-
der quite general conditions (e.g., 8* < «), their rate of convergence is still
unknown. Mixture models and their applications were proposed by Robbins
(1951, 1956), Kiefer and Wolfowitz (1956) and many others in various con-
texts. The identifiability of mixing distributions was studied by Teicher
(1961).

Throughout this paper we shall use the following: P =P, and E =E,
denote the probability and expectation corresponding to g, respectively; |- ||,
denotes the LP-norm, p = 1, «; A denotes the jth derivative (if it exists) of
any function z (A® = h); and A* denotes the Fourier transformation of any
integrable function %, so that A*(¢) = [ exp(itx)h(x) dx.

2. Kernel estimators. In this section, we shall give kernel estimators
for g™ and upper bounds for their rate of convergence under the assumption
that the value of 0* in (2) is finite and known. The case of 0* = « is
considered in Section 4.
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Define an even function
(4) h(6) = C(lol)g(lol), —0 < 6 < oo,
It follows from (1) and (2) that, for q(x) > 0,

P{X=x} f(x;8) 0* . 0 .
(5) 20D o(s) [0 0=C(0)g(0) do [0 0*h(0) do,
so that f(x)/q(x) is the xth moment of A. Since g(-) and C(-) are known
functions, our problem is essentially to estimate A(-) based on the observed
frequency distribution from f. This is related to the moment problem [Feller
(1971), pages 227-228 and 514-515].

We shall first construct kernels for 2(a) by finding functions K{(x, a)
such that EKV(X, a) = [ ,hY(a — 0/c,)k(8) dO + o(1) for some suitable
¢, — < and k(). Let k(x) be a function satisfying

(6) [xR(x)dx =I{j =0}, lx*" kP (x)lo <@, 0<j<ay,
ek (x)ll < oo,

for a positive number «,, and

(7 k(x)=k(-x) Vx, E*(¢) =0 V[t > 1.

Note that [x**1kU(x)ll. < » for all integers j> 0 if (7) holds and
lx %t Ek(x)|l; < . Since A(-) and k(-) are both even functions, for ¢ > 0,

© [V} £
f_mh(a - ;—)k(e) dé =f0 {ck(c(a — 0)) + ck(c(a + 0))}h(0) d6.

By (7), k*(¢) is a real even function with a compact support, so that, by the
Fourier inversion formula,

ck(c(a — 0)) +ck(c(a + 0))

- (%)[{exp[—itc(a — 0)] + exp[—itc(a + 6)]}e*(¢) dt
_ Jcos(6)cos(ta)k*(t/c) dt

w

Taking the infinite series expansion cos(¢6) = X% _(¢6)* cos(xm/2)/x!, we
find by (5) that

® 4 5 f(x;8) .
f_wh(a - Z)k(()) d0‘= xgo q(x)x‘ﬂ'ft cos( 2 )cos(ta)k ( ) dt.
Differentiating with respect to a under the integrations, we obtain, for
integers j > 0,

[:W(a - ﬂ)k(e)do
= - flxi8) f ( )t"“cos( x;)k*(i) dt.

- 0 mq(x)x! c
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This motivates the kernel for 2¢(a),
) 1 Jjm . xar
) = L] gxt -
K (x,a) mq ()= fcos(ta 3 )t Jcos( 3 )

t
——) dtl{0 <x <m,},

n

(8)

Xk*

provided that g(x) > 0 for all nonnegative even integers x < m,. Since
cos(xm/2) = 0 when x is odd, KYX(x, a) is defined to be O unless x is a
nonnegative even integer. For m, = ©, E,K9(X, a) = [*,hY(a —
6/c,)k(6) d6 - hY(a) as ¢, = « when AY)(:) is continuous at a. In general,
we can reduce the variance of KX, a) by choosing suitable finite m,,
which may depend on the unknown g. For 6* < o, Theorem 1 gives proper
choices of m, and c,, which depend on g only through 6*.
The bias of our kernel (8) is

(9) EK(X,a) — hYV(a) = bY)(a) + bY)(a),

where b{X(a) = {(hRYNa — 8/c,) — hY(a)}k(6) d9 and

D(q) = Nt (e LA (ﬂ)*i
b$)(a) .x;mn{m.} ]0 0 h(e)de]cos(ta o3 i ol L e dt.

The first term b{)(a) in (9) is well understood by the standard theory of
kernel density estimation [cf. Prakasa Rao (1983)]. Theorem 1 provides upper
bounds for the second term bY)(a) and the variance which do not depend
on g.

THEOREM 1. Let the kernel K\ (x, a) be given by (8). Suppose the value of
6* in (2) is finite. Let a > 0 and 0 < B, < 3, and choose m, and c, such that

1 m,

(10) max{log(m),x=0,l,...,[ 3 ]}+cns[30 log n,

(11) (0*e)c, + alogec, <m, +1,

where [c] is the integer part of c¢. Then,

(12) VEIKY(X, a)l® < sup|KYXx,a)l < Bicinfo,  [b§)Na)l < Bye, * Y,
.X,a

where B, = 2||k|l; /7 and B, = 2C(0)||k|l;/(76%).

REMARK. It is worthwhile noting that the above derivation of the kernel
and the results in Theorem 1 are valid as long as f(x | 8) = C(6)q(x)6* > 0
on the set of even integers 0 < x < m, (possibly after reparametrization and
data transformation), even when P{X = integers | 0} < 1. If g(x) > 0 for all
nonnegative integers x, we may consider the family f(y | n) = C(n*)q(y/2)n’
with Y = 2X and n = V6, so that the kernel will utilize the observed fre-
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quencies at all nonnegative integers. This reparametrization technique im-
proves the rate of mean squared error when 6* = », considered in Section 4.
Define c,(y) = By log n + min,_,_, , log q(2x). Then 6%ec,(y) +
a log c,(y) is decreasing in y and crosses the straight line y at a unique
point y,. Clearly, both (10) and (11) hold for

(13) c, =c,(¥,), m,<y,<m,+ 1.

Proor oF THEOREM 1. By (8), for even x <m,,
x+j+1
n

) n-t -
|[KP(x,a)l < {mq(x)x!} 2||k||1x 1

k
< (2” ﬂl_‘l )C{L exp[ —log q(x) + ¢c,]

< B;cinPo,
For the bias b%)(a) in (9) we have
2|l

) N le%)* hj+l
b@) s T (rx) (07 0O

x>m,
(O*Cn)x+ 1

< C(0)2lkl(m6*) " 'ei ¥ GEDl

x>m,
The proof is complete, since

0*c x+1 0%c m,+1
> (6%c,) S{ n }

o (x+1)! m, +1

(mn + 1)x+1
—(x_|_—]_)!

)»

x>m,

ef*c m,+1
< - <c,“ O
m, +1

Consider the estimation of g™)(a). By (4) and (2), g(6) = h(8)X%_,q(x)6*%,
so that

- j (m) & a(m)stesm
(1) 7@ = £ 0@, 60 =(7) T T

x=m-—j
Since C;,,(a) are known constants, we can estimate g")(a) by

(15) £M(a) = ¥ C;n(@)hP(a), hP(a) =n ' ¥ KY(X,,a).
Jj=0 i=0

THEOREM 2. Let %, ,. be given by (3), and g{™(a) by (15) with the kernel
K{(x, a) in (8) satisfying (6) and (7), ay > a. Choose m, and c, by (13).
Then, for 0 <m < a and 0 <a < 0* < oo,

suP{Eg|gA§Jn) a) — g(m)(a)|2;g e ?a’a*} = O(cgz(a—m)).
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REMARK. By (13), the rate of convergence O(c, **™) is determined by the
rate at which g(x) — 0. The faster g(x)— 0, the slower E,|§{")(a) -
g™(a)|”> - 0. This is expected, as g(x) is the denominator of [0*A(8)d6 =
f(x; g)/q(x) through which g(-) is estimated. The estimator (™ depends on
a only through c, in (13). Since 8 > 0 can be arbitrarily small with Z, ,.(a,
8, M, M,), the rate of convergence is characterized by local properties of g
near a. If § > @ and g(0) = 0 for 0 < j < «, then the Lipschitz condition in
(8) implies £ |gV(a)l < My, = 2Ma* e”.

PRrOOF OF THEOREM 2. Due to the smoothness of C(), g —» h maps £, ,.(a,
8, M, M) into &, ,.(a, 6, M', M) for some (large) M’ and M|. Since the
kernel is bounded for each n by Theorem 1, Eg{g‘fl'”)(a)}j , J=1, 2, are
continuous under the convergence in distribution as functionals of G(8) =
/3&(y) dy, so that the supremum can be taken over all g € &, ,. such that (4)
is a' times continuously differentiable on (—, »). The bias term b{)(a) =
fAr9(a — 6/c,) — RV (a)}k(6) d6 in (9) can be split into two integrals: [, 5,
and [ . 5. . Integration by parts is used toward A®(a — 6/c) for the first one
with the boundary values of O(c, **’) due to (6) and the uniform bounded-
ness of A(a + §) and AYa), 0 <j < a’. It follows from (6) and standard
methods in density estimation that

b(a) = O(e,“) + (=1 [

lo]> éc,, 0l<dc,

0 .
h(a - Z)km(e) do + fl
= 0(c;,*"),
0 <j < a. Since ¢, = O(log n), equation (15) and Theorem 1 imply
E g{™(a) - g™(a)l® < O(Bicimn*P~1) + O(c, ™)
— O(c; 2™, o
COROLLARY 1. Suppose there exist nonnegative constants B,, B and B
such that, for all even x > 0,
(16) q(x)ByB*(x!))? > 1
and the conditions of Theorem 2 hold. Then, for 0 < a < 6%,

sup{E,18("(a) — g™ (a)I*: g € Z, .}

O(1)(log n) %= ™, ifB=0,
“oa _logn e if0<B<
0.0}
(1) loglog n i B '

The value of B is 0 for the negative binomial family and 1 for the Poisson
family.
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ProOF OF COROLLARY 1. By (16) and the Stirling formula, —log q(x) <
x log B + B{(x + Dlog x — x} + O(1), so that the order of c, and m, is
(loglog n) 1#>%1og n by (13). O

3. Lower bounds for the optimal rate of convergence. Let us char-
acterize the degree of difficulty for estimating g™ (a) by the minimax mean
squared error

(17)  ree = inf sup{E,lgi(a) ~ g™ (a)*: g €7, ),
gy

where £, ,. is given by (3), and the infimum runs over all statistics &{™
based on Xj,..., X,. In this section we derive lower bounds for the rate at
which r, , ,+ tends to 0, which is called the optimal rate of convergence over
the class &, 4.. The basic idea is to find pairs of densities g, and g,, in &, 4.
such that g{"(a) — g{™(a) tends to 0 at a much slower rate than f(:; g,,) —
f(; g5,) does.

THEOREM 3. Let £,,. and r, , o« be given by (3) and (17), respectively,
0 < a < 6*. Then there exists £, > 0 such that

-—a+m}

liminf inf sup P{I{(a) — g™ (a)l > &,(log n) > 0.

n—o gslmgeg o
Consequently, liminf, , (log n)**~™r, .. > 0.

It follows from this theorem and Corollary 1 that the optimal rate of
convergence is achieved by our kernel estimators for the negative binomial
family and is almost achieved for the Poisson family.

The densities g, and g,, are constructed in the following manner. Let a,
6, and 6; be fixed constants satisfying 0 < a < 6, < 6; < 6*. Set

1 ko= D L,
h, (6 ®
(19 = g(0) = S - T (20 (0),
0o u(0—a) mmw
(20) w=w(u,v) = j(.) cos(—o— - T)gu’v(o) dé.

Let £, > 0, and let g, be a density in &, ,.(a, 8, M — &y, M, — &) such that

(21) go(0) = min(0V/ %, £))I{0 < 0 < §,}.
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Choose constants u, and v, = u,/a such that

0o/(8; — 65)
log(8,/6,)

Uy

log n

= 0y = max{
(22)

1 2
0o/a — 1 —log(6,/a) ’ log(1 + a®/6§) }

Define g, = g, and

B wy [0\ 0—a mr
(23) g2n(9) _go(e) + \/Z (u_n) cos(une—o - _2-) - w(un’vn)
Xgun,vn(G)I{O <6< 90}.

We shall show in the proof of Theorem 3 that g,, and g,, are members of
%, ¢+ for small w,, and

p, = inf max{ {180 (a) — g™ (a)l > e,(logn) “""}:
(24) gn ™
g =81, 00 &5,) = Do,

for some &, = ¢ > 0 and p, > 0. This will prove the theorem since r, , 4« >
(8 (log n)—a+m)2pn

LEMMA 1. Let & be a class of probability measures, and let T(P) be a
mapping from P to a metric space with distance function d(-, ). Let f; be the
Joint densities of observations X,,..., X, under P; €2, j =1,2. If p < P{{f;
< Af,), then, for any estimator T, based on X,,...,X,,

d(T(P).T(P)\ _ _p
2 T 14 A7

JmsiuéP{ (7,.7(P)) =

LEMMA 2. Let h,, be given by (18). Then, forj = 0, a > 0 and x > 0, the
following hold:

hy,,(0)=6" ‘/_gexp[—u(g -1- log(g)) - au],
1

—_— < g, < —;

12u + 1 = 12u’
VT T((J+ 1) /2)T((u —j - D/2) _
27 I'(u/2)

(25)

(26) 1A,(0)] < O(u*1/%);
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R)(0) = ) ()
v 1 T((a+1)/2)T((u — a—1)/2)

I'(u/2)

(27) <16 —al”
— O(IO _ ala"u(a+1)/2);

oo u(0—a) mw
f cos| ———— — — |0%h, (0) dO
0 00 2 ’

2\ ~u/2 x
<1+a_ {0(1+£)}'
- 02 0 u ’
and

(29) f:oxhu,,,(e) dé < exp[—u{% -1- log(%)}]{@o(l + 2)}"

Lemma 1 follows directly from the argument in Zhang [(1990), top of page
827]. Lemma 2 is proved at the end of the section.

(28)

ProoF OoF THEOREM 3. We shall drop the subscript n in u, and v,
throughout the proof.

Step 1. Verify g,, € Z, o« (g1, = 8¢ € Z, o). It follows from (21), (25) and
(20) that

o = “AG O () e - 7
wo(1 + lwl)
= TCo)ya (u)

for large u uniformly on 0 < 6 < 6, so that g,, is a density on [0, 6*] by
(23). It follows from (23) and (14) that, for 0 < 6 < 6,,,

g5(6) — 8§(6)
=g{(0) —gi(6)

-2 (=) [ w(u,0)8U(6)

+ Z( )(:O)W“fcos(uoe—oa il ) <J>(0)]

and g{m(0) = L7 ,C, (0)h{),(6). Since C,;,(-) and cos(-) are continuously
differentiable functlons by (26), (27) and the fact that |cos(uy) — 1| < 2|uy|”
we have

lg$22(0) — g2’ (a)l <10 — al® (M — &y + w,0(1)), 10 —al<35,

Y lg¥(a)l < My — & + w,0(1),
j=0
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where the O(1) is uniform in 6 and does not depend on w,. Therefore,
8on €Z, g(a, 8, M, M,) for small w,. Also, since u/log n = 8, by (22), it
follows from (23), (25) and (26) that

am 1857(a) — g{7(a)l
-

&, = (log n) 2 £
(30) i w, 61"
Rzt D

Step 2. Verify (24) for the ¢, in (30). We shall first find a good bound for

x=0

(31) ) %(ﬁ)aéoq(x)

u

0, "f—a m
f [cos(u - —) - w]@xhu ,(0) dO,.
0 00 2 ’

Set x* =log n/log(6,/6,). Then, by (22), 6,(1 + x/u) < 0, Vx<x* and
(8,/6)" < 1/n. Also, (22) implies exp[ — u{6,/a — 1 — log(6y/a)}] < 1/n and
(1 +a®/62)*/? < 1/n. By (28) and (29),

é:oq(x) [09°cos(u(00—;a) - %f)oxhu,v(e)de
s L a6+ T a(x)[ 0%h,,(6)do
+x§c*q(x) fowcos(u(oT;@ - %z)exhu,vw)do,
< *(02{23 + Z*Q(x)exp[—u{% -1- 1og(%)}}{90(1 + %)}
2\ "u/2 RN
+x£*q(x)(1+ :_3) {00(1+ ;)}
3

which implies by (20) that

(32) lwl =

u(f—a) mqr) > -

/(— - — | L q(x)6°h, ,(6) do
0 00 2 x=0 '

nC(6,) "



MIXING DENSITIES 939

Since X5_,q(x)lf°wo*h, (0) dOl = lwl[s°h, (6)/C(6)d6 < |wl/C(8,), we
have, by (31),

. PRI (% PR T L B
L1 (x381) ~ (53 820)] < 5( u) (” C(GO))nC(Gl) “’(n)'

Now, for Z = (X;,..., X,) and A > 1, we have

A
g;,,{f(Z gln) > Af(Z g2n)} —__—Tglf(z7g1n) _f(Z’g2n)|

IA

A
_)t—n__]_.glf(x’gln) _f(x;g2n)| -0,

which implies by Lemma 1 that (24) holds with p, - p, = 3 and &, - ¢ in
(80). O

ProoF oF LEMMA 2. Equation (25) follows from the Stirling formula.
Inequalities (26) and (27) are based on the fact that

w2 g _ I((a+1)/2)I((u —a - 1)/2)
ft(1+t) / 2T /3)

for all u>a+1>0. Since h,, is a gamma density, A} (¢) =
Jo exp(it0)h, (6) d6 = (1 — it/v)~*. By the Fourier inversion formula

RO (6) = (2m) " f°° (—it)jexp(—ite)(l - lv—t) dt.
It follows that
¢ o\ —u/2
()
v
v+ 1)/2)T (v —j - 1)/2)
2m T(u/2)

1K, (0)] < _f iy

and

9y —u/2
2]
v ! T((a+1)/2)T((u — a — 1)/2)
2 I'(u/2)

le® — 1\ 16 — al® =
- } J e
t 277 ©

Ih(“ 2(0) = A (a)l < max{

<26 —al™
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To prove (28) we have

% u(6—a) mm
[ cos| ———— — ——|0%h,,(0) do
0 00 2 ’

~ exp(iuf/0,)v 0 * ! exp(—v0)
<
N j;) I'(uw)

v I'(u +x)
S T(w) lv—iu/6,"""

"

o2

9\ ~u/2

1+ —
05

<

To prove (29) we have

o % exp( —vf)
0%h, (0)do= wgutz-l = dg
'[00 u,v( ) '/-BOU r(u)

() ) L)

0

exp(—(u/a —u/6, +u/6,)0) d

w gutE-1 i ;
< (%)(010)- exp(—(u/a —lft(/uio)eo)r(u + x)
onl uf el )+ i) o

4. The case of infinite 0*. The natural value of 6* in (2) is 6 = sup{6:
Y,.q(x)0* < «}, which is always known. If 6% is finite [e.g., (16) with B = 0],
then we can set 0* = 6 and use the results in Section 2. If 6§ = «, then the
condition * < » becomes an assumption in addition to the knowledge of g(-).
In this section we study the case §* = «, where Theorem 1 does not apply.
The kernel in (8) is used with m, = . An alternative bound for the variance
of (8) is provided with a square-root reparametrization. If (16) holds for
0 < B < 2 and all nonnegative integers x, then our kernel estimators for g™
have the rate (log n)~@ ~#/2Xe=™) of convergence over the class &, .. in (3).

Let Y = 2X and 5 = V6. The conditional density f(y | n) = C(n*)q(y/2)n*
is of the form (2). If g(y/2) > 0 for all nonnegative even integers y, then we
can estimate the density g, of n via the kernel in (8). The effect of this
reparametrization is essentially halving the value of 8 under (16), which
dictates the rate of our alternative bound of variance in Theorem 4 below. For
example, the upper bounds are not useful for the Poisson family without this
reparametrization. Since gn(\/g ) = 2Va g(a), (8) provides a kernel (with j = 0
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and m, = ) for g,,(\/E)C(a) = 2Va C(a)g(a),
KO(y,Va) = K,(x,a)

= {Wq(x)(zx)!}_l(—l)xf cos(t\/a_)t“k*(ci) dt
with expectation EK(x,a) = [Z.ck(c(/a — 0/ VI61)A(6) d6 and estimators
(34) 9 (a) = n—l e Z?ﬁgéglle A(m)(a) =:(:z_)nlA (0)

& 5 2ac@ o as) &

Since K,(x,a) utilizes all observed frequencies at nonnegative integers, a
truncated version (up to x < m,) should probably be used even when 6* <
[provided g(x) > 0, x = 0,1,2,...], although this does not improve the rate
in Section 2.

(33)

6=a

THEOREM 4. Let the kernel K, (x, a) be given by (33). Suppose

(35) 1 <q(x)B,B2*((2x))??, x=0,1,...,
for some 0 < B < 2. Choose 0 < B, < 3 and
Bo log n 1mpe
=B Y—— 1.
Then

‘/Egll?n(x,a)l2 < sup|K,(x,a)l < BgnPo,
x,a
cn

J
\/EgII?,(,j)(x,a)F < sxl?ll?,(lj)(x,a)l <(1+ 0(1))( e ) BynPo,

where By = 2B ||kl /(7B).

REMARK. The value of B in (35) is the same as in (16), although B, and B
could be different.

Proor oF THEOREM 4. By (33), (85) and (36),

2x+1
n

2x + 1

20|k (y)ll1Bo/B (Bc,)™*""
T wq(x)ByB¥((22))P* ((2x + 1))
< BynPo,

since c*/(xD7F/2 < expl(1 — B/2)c/17A/D]. The rest follows from
|K(x,a)l < c, ;BznPo with

(%)j cos(tVa )

1K, (x,a)l < {mq(x)(22)1} "2lk(y)ll:

¢, ;= max
ltl<e,

J
) asc¢, — ®. ad

s(1+o(1))(2i/':7
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COROLLARY 2. Let 8("(a) be given by (34) and let a > 0. Under the
conditions of Theorem 4,

suP{Eg|§f{n) a) —g™(a)l’: g€ :’fa’w} = 0(1)(log n)—(z—;;)(a_m)'

5. Estimating a mixing distribution. A function G(-) is the mixing
distribution for the population X if

(37) f(x) = f(x;G) = [f(x106)dG(9),

where f(x | 8) is given by (2). If dG/d6 = g exists, then (87) is the same as
(1). Since

]_°° G(a — 6/c)k(8) d8 - {G(a +) + G(a —)} /2

for k() satisfying (6) and (7), we shall take the version G(8) = {G(0 + ) +
G(6—)}/2 of G.
We shall assume 6* < « and consider the kernel estimator

(38) Gi(a) = [ "8,(0) do,

where g, = 8© is given by (15). The performance of estimators will be
measured over the class

gl =% (a, 8, M, My, M,)
— {G:1G="*D(0) — G *V(a)l < M| — al* V0 <16 — al < 5,

(39) ailngj)(a)I <M,,Gy([a — 8,a) U (a,a+8]) =0,
j=0

G(0) <M,6°,V0 <0 <8,G(6%) =1},

where G, and G, are the continuous and discrete components of G; a’ is the
greatest integer less than «a; and a” = a — o’ € (0, 1]. Note that, for a given
discrete distribution function G with finite number of atoms in (0, 6*), there
exists a 8 > 0 such that G e?j)%’f(a, 8, M, M,, M,) for all « > —1 and

positive numbers M, M, and M,.

THEOREM 5. Let én(a) be given by (38) and let 0 < a < 0*. Suppose the
conditions of Theorem 2 hold and (6) is satisfied with ay > a + 1. Then, for
a> —1,

suP{EG|én(a) - G(a)|2: G e ?ac"é/i} = 0(0;2(a+ 1))‘
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COROLLARY 3. Suppose (16) and the conditions of Theorem 5 hold. Then,
for 0 <a < 6%

O(1)(log n) " ***P,  if =0,

log n
o) loglogn

sup{EglG,(a) — G(a)|*:G € 24} =

-2(a+1)
) , If0< B <o,

ProOOF OF THEOREM 5. The argument is the same as the proof of Theorem
1 for the variance and the “second” term of the bias except for the use of
upper bound

—1)re -1, . 20¢7!
fa cos(te) l - 14 o (C(9)) dsm(t@)' < W’ x>0,
C(96) a %
C(a)’ x =0

Define H(0) = [{C(y) dG(y). Then, the “first” term of the bias can be written
as

2o~ f|[ o 7l
‘f C(y) {

fC(y + 0/ cn)
Since C(y) is an analytic function and C(y + 6/c,) is bounded away from
zero for 0 <y + 6/c, < a, we can take the Taylor expansion

- G(a)]k(o) do

O<y+ ci < a} dG(y) — G(a)]k(e) do.

n

Cly) _=&? Y 0
Co+o/en df(y)(Z +Ry(2 ’

where d;(y), dy(y) =1, are analytic functions on [0, a + &]; IR (8/c) <
"‘|49/c|"+1 for 0 <y + 6/c, <a and |6/c,| < 8,; and 8, and M* are posi-
tive numbers. Hence, by (6),

1
Bo(a) <O(c;* ) + [* " ay) d6(s) - ['a (y)dG(y)]

|0/cn|580 j=0 [ -
0
x| —
Cn

=0(c,* ™),

where the O(1) is uniform in the class G € £°4L. O

J

k(9) do

Lower bounds for the optimal rate of convergence are given below.
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THEOREM 6. For 0 <a < 6%,

lim inf (log n)*** Vinf sup{E;|G,(a) — G(a)*: G € £} > o.
n— o Gn

Again, the optimal rate of convergence is achieved for the negative bino-
mial family and is almost achieved for the Poisson family.

Proor oF THEOREM 6. We shall use the same pairs (23) as in Section 3
with m = —1 and u,/log n = §, in (22) replaced by u, /log(x,n) = §,. Our
statement holds, since by (32), (25) and (26) we have, via integration by parts,

GZn(a) - G2n(a)
60—a T
= wo%xu_"‘_lﬂf:[cos(u

00 + E) —w]gu’v(o) do

60—a T

+—)+0

Y w172
=w00§+1u““‘1/2_1f0gu’v(0)dsin(u ———)

n

2

0—a

a
= —woog‘”u“““l/z_l{gu’v(a) +/;) cos(u

u—a—l/2
+ o[ “——]

) dgu,v(e)}

n
(w005”1 + o(l))u“"‘_1

aC(a)V2nw

REFERENCES

CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. oJ.
Amer. Statist. Assoc. 83 1184-1186.

DEELY, J. J. and KRUSE, R. L. (1968). Construction of sequences estimating the mixing distribu-
tion. Ann. Math. Statist. 39 286-288.

DEVROYE, L. P. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17
235-239.

EDELMAN, D. (1988). Estimation of the mixing distribution for a normal mean with applications
to the compound decision problem. Ann. Statist. 16 1609-1622.

FaN, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problems.
Ann. Math. Statist. 19 1257-1272.

FaN, J. (1991b). Global behavior of deconvolution kernel estimates. Statist. Sinica 1 541-551.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, II. Wiley, New
York.

KiErFER, J and WOLFOWITZ, J. (1956). Consistency of the maximum likelihood estimator in the
presence of infinitely many nuisance parameters. Ann. Math. Statist. 27 887-906.

Larp, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. JJ.
Amer. Statist. Assoc. 713 805-811.

LAMBERT, D. and TIERNEY, L. (1984). Asymptotic properties of maximum likelihood estimates in
the mixed Poisson model. Ann. Statist. 12 1388-1399.

LiNDsAY, B. G. (1983a). The geometry of mixture likelihoods: a general theory. Ann. Statist. 11
86-94.



MIXING DENSITIES 945

LINDSAY, B. G. (1983b). The geometry of mixture likelihoods, part II: the exponential family.
Ann. Statist. 11 783-792.

PrakAsA Rao, B. L. S. (1983). Nonparametric Functional Estimation. Academic Press, New York.

RoBBINS, H. (1951). Asymptotically subminimax solutions of compound statistical decision prob-
lems. Proc. Second Berkeley Symp. Math. Statist. Probab. 1 131-148. Univ. California
Press, Berkeley.

RoBBINS, H. (1956). An empirical Bayes approach to statistics. Proc. Third Berkeley Symp. Math.
Statist. Probab. 1 157-163. Univ. California Press, Berkeley.

RorpH, J. E. (1968). Bayesian estimation of mixing distributions. Ann. Math. Statist. 39
1289-1302.

SIMAR, L. (1976). Maximum likelihood estimation of a compound Poisson process. Ann. Statist. 4
1200-1209.

STEFANSKI, L. A. (1990). Rates of convergence of some estimators in a class of deconvolution
problems. Statist. Probab. Lett. 9 229-235.

TEICHER, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32 244-248.

TUcKER, H. G. (1963). An estimate of the compounding distribution of a compound Poisson
distribution. Theory Probab. Appl. 8 195-200.

WaLTER, G. G. and HaMmEDANI, G. G. (1991). Bayes empirical Bayes estimation for natural
exponential families with quadratic variance functions. Ann. Statist. 19 1191-1224.

ZHANG, C.-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann.
Statist. 18 806-831.

DEPARTMENT OF STATISTICS

HiLL CENTER, BuscH CAMPUS
RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903



