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NONPARAMETRIC DENSITY ESTIMATION
WITH A PARAMETRIC START

By Nius Lip HjorT AND INGRID K. GLAD

University of Oslo and Norwegian Institute of Technology

The traditional kernel density estimator of an unknown density is by
construction completely nonparametric in the sense that it has no prefer-
ences and will work reasonably well for all shapes. The present paper
develops a class of semiparametric methods that are designed to work
better than the kernel estimator in a broad nonparametric neighbourhood
of a given parametric class of densities, for example, the normal, while not
losing much in precision when the true density is far from the parametric
class. The idea is to multiply an initial parametric density estimate with a
kernel-type estimate of the necessary correction factor. This works well in
cases where the correction factor function is less rough than the original
density itself. Extensive comparisons with the kernel estimator are car-
ried out, including exact analysis for the class of all normal mixtures. The
new method, with a normal start, wins quite often, even in many cases
where the true density is far from normal. Procedures for choosing the
smoothing parameter of the estimator are also discussed. The new estima-
tor should be particularly useful in higher dimensions, where the usual
nonparametric methods have problems. The idea is also spelled out for
nonparametric regression.

1. Introduction and summary. Let X,,..., X, be independent obser-
vations from an unknown density f on the real line. The traditional nonpara-
metric density estimator is

- 1z 1
(L) flw) =5 BAVE(R K - ) = o X KX ),

where K,(z) = h 'K(h™'z) and K(2) is a kernel function, which is taken
here to be a symmetric probability density with finite values of o2 =
[22K(z) dz and R(K) = [K(z)? dz. The basic statistical properties are that

EF(x) = f(x) + fo2h’f"(x) and

(1.2) ) . )2
Var f(x) = R(K)(nrh) f(x) — f(n) .

The integrated mean squared error (MISE) is of order n~*/® when h is
proportional to n~1/%, which is the optimal size. See Scott [(1992), Chapter 6]
and Wand and Jones [(1995), Chapter 2] for recent accounts of the theory.
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Method (1.1) is totally nonparametric and admirably impartial to special
types of shapes of the underlying density. The intention of the present paper
is to construct competitors to (1.1) with properties that are generally similar
but indeed better in the broad vicinity of given parametric families. The basic
idea is to start out with a parametric density estimate f(x, ), say, the
normal, and then multiply with a nonparametric kernel-type estimate of the
correction function r(x) = f(x)/f(x, §). Our proposal is 7(x) =
n 1Yt K,(X, — x)/f(X;, 6), producing

f(x,6)
(X, 6)

We emphasise that the initial parametric estimate is not (necessarily) in-
tended to provide a serious approximation to the true density; our method
will often work well even if the parametric description is quite crude. The
case of a constant starting value for f(x, 6), corresponding to choosing a
uniform distribution as the initial description, gives back the classic kernel
estimator (1.1).

The basic bias and variance properties of the new estimator (1.3) are
investigated in Section 2, treating the simplest case of a nonrandom starting
function fy(x), and in Section 3, covering a broad class of parametric-start
estimators. It turns out that the variance of the (1.3) estimator is simply the
same as the variance of the traditional (1.1) estimator, to the order of
approximation used, while the bias is quite similar in structure to (1.2), and
often smaller. Comparisons with the traditional estimator (1.1) are made in
Sections 4 and 5. It is seen that the new method generally is the better one in
cases where the correction function is less “rough” than the original density,
in a sense made precise in Section 4 and illustrated there in the realm of
Hermite expansions around the normal.

Further analysis is provided in Section 5, for the version of (1.3) that starts
with the normal, comparing behaviour with the kernel method when the true
density belongs to the large class of all normal mixtures. We have developed
comparative formulae for exact analysis of asymptotic mean integrated
squared error as well as for exact finite-sample mean integrated squared
error. The results are illuminated by working through a list of 15 “test
densities” proposed by Marron and Wand (1992), chosen to exhibit a broad
range of distributional shapes. Because of space considerations the rather
long technical calculations as well as several comparative tables are not
included here; these are available in the technical report by Hjort and Glad
(1994). The results are, however, briefly reported on in Section 5. The new
“nonparametrically corrected normal estimator” outperforms the usual ker-
nel method in 12 of these 15 test cases, and in all the “not drastically
unreasonable” cases, in terms of approximate in 12 of these 15 test cases, and
in all the “not drastically unreasonable” cases, in terms of approximate mean
integrated squared error (AMISE). The same pattern is observed for finite
sample sizes.

A A 12
A8)  fx) = e 0)P(x) = - B KX, =)
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The bottom line is that (1.3) will be more precise than (1.1) in a broad
nonparametric neighbourhood around the parametric family while losing
surprisingly little, or not at all, when the true density is far from the
parametric family. One explanation is that the uniform prior description,
which in the light of (1.3) is the implicit start estimator for the kernel
estimator (1.1), is overly conservative and less advantageous than say the
normal, even in quite nonnormal cases.

The problem of selecting a good smoothing parameter is discussed in
Section 6, and some solutions are outlined, including versions of plug-in and
cross-validation. Our method also works well in the multidimensional case,
beginning, for example, with a multinormal-start estimate, as demonstrated
in Section 7. The method should be particularly useful in the higher-dimen-
sional case since the ordinary nonparametric methods, including the kernel
method, are quite imprecise then. Our paper ends with some supplementary
comments in Section 8. In particular, Section 8.4 spells out the correspond-
ing estimation idea for nonparametric regression, giving (for example) a
generalised Nadaraya—-Watson estimator.

Our estimators can be viewed as semiparametric in that they combine
parametric and nonparametric methods. As such, they are in the same realm
as recent methods of Hjort (1995a) and Hjort and Jones (1995a). These latter
methods are quite different but also have the property that the variance is
approximately the same as in (1.2), while the bias is similar but sometimes
smaller. The (1.3) method is also similar in spirit to the projection pursuit
density estimation methods [see, e.g., Friedman, Stuetzle and Schroeder
(1984)] and also to the normal times Hermite expansion method [see, e.g.,
Hjort (1986), Buckland (1992) and Fenstad and Hjort (1995)]. A somewhat
less attractive semiparametric method is that of Schuster and Yakowitz
(1985) and Olkin and Spiegelman (1987) [see the discussion in Jones (1993)].
Various semiparametric Bayesian density estimators are proposed in Hjort
(1995b).

Another semiparametric technique, perhaps mildly related to our new
method, is the transformation idea of Wand, Marron and Ruppert (1991),
where data are semiparametrically transformed so as to work well with a
nonadaptive constant smoothing parameter, and then ending in a back-trans-
formed density estimator. This is a promising way of using an adaptive
smoothing parameter, and our estimator can be seen as having similar
intentions. In other words, (1.3) can be seen as being similar in spirit to a
suitable semiparametrically adaptive n 'L’ ;K nex,$)(X; — x). Finally, we
mention a recent bias-reduction method due to Jones, Linton and Nielsen
(1995). Our (1.3) idea is to start with any parametric estimator and then
multiply with a nonparametric correction function, and in essence this does
not affect the variance but changes the bias. Serendipitously and indepen-
dently of the present authors, Jones, Linton and Nielsen (1995) use essen-
tially the same idea but in a totally nonparametric mode, correcting the
initial kernel estimator with a nonparametric correction factor in the (3.1)
manner. This typically gives a smaller bias but a somewhat larger variance.
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Finally we mention the recent work of Efron and Tibshirani (1995), who
exploit Poisson regression techniques to put specially designed parametric
families “through” the kernel estimator. Efron and Tibshirani also discuss
the relations between their methods and those presented here.

2. Nonparametric correction on a fixed start. Suppose f is a fixed
density, perhaps a crude guess of f. Write f = f,r. The idea is to estimate the
nonparametric correction factor r via kernel smoothing. One version of this is
Ax) =n 1T, K (X; — x)/fo(X;), with ensuing estimator

fo(x)
fo( X))

Note that a constant f,(x) gives back the ordinary kernel estimator (1.1). We
have

N 122
(2.1) f(x) =fo(x)F(x) = — glKh(Xi — %)

EF(x) = [Ku(y —2)fo(¥) " F() dy

= [K(2)r(x + h2) dz = (=) + 30h’r"(x) + O(h*)
and
K (y _x)z
fo(¥)*

_R(K) f(x) (2 +O(g),
n

1 2
Var #(x) = — [ f(y)dy — {EF(x)} ]

nh fo(x)z_ n

by a variation of the arguments traditionally used to establish (1.2). This
shows that the (2.1) estimator has

bias = 02k’ fo(x)r"(x) and
variance = R(K)(nk) ' f(x) — f(x)*/n.

In other words, the variance is of the very same size as that of the traditional
estimator, to the order of approximation used, and the bias is of the same
order h2, but proportional to f,r” rather than to f”. The new estimator is
better than the traditional one in all cases where f,r” is smaller in size than
f" =fir + 2fir' + for". In cases where f, is already a good guess one expects
r near constant and r” small, so this describes a certain neighbourhood of
densities around f, where the new method is better than the traditional one.
This is further discussed and exemplified in Section 4.

(2.2)

3. Nonparametric correction on a parametric start. Let f(x, 6) be
a given parametric family of densities, where the possibly multidimensional
parameter = (6y,...,6,) belongs to some open and connected region in
p-space. The parametrlc start estimate is f(x, 0) where for concreteness we
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let 6 be the maximum likelihood estimator (quite general estimators for 6 are
allowed later). Thus f(x, 6) could be the estimated normal density, for
example, or an estimated mixture of two normals. This initial data summary
is not necessarily meant to be a serious description of the true density; the
method we will develop is intended to work well even if f cannot be well
approximated by any f(-, 6).

The task is to estimate the necessary correction function f(x)/f(x, 0) by
kernel smoothing. In view of Section 2, #(x) = n 'Y K, (X, — x)/f(X,, 6) is
a natural choice. In other words,

1 1 Ky (X, —x)
(3.1) f(x) =f(x,0) ) EW

In order to understand to what extent the parametric estimation makes
this estimator quantitatively different from the cleaner version (2.1), we
bring in facts about the behaviour of the maximum likelihood estimator
outside model conditions. It aims at a certain 6,, the least false value
according to the Kullback-Leibler distance measure [f(x)log{f(x)/f(x, )} dx
from true f to approximant f(-,8). Write f,(x) = f(x,6,) for this best
parametric approximant, and let uy(x) = Jd log f(x, 6,)/30 be the score func-
tion evaluated at this parameter value. A Taylor expansion gives

ff((;—’; exp{log f(x, 6) — log f(X;,6)}
(3.2) »9)
= 20((;?) + 20((;?) {uo(x) — uo( X)) (6 - 6,),
leading to
. 12 o A
. flx) = — ¥ Ku(Xi - ,f ((;?) [1 = {uo( X)) — uo(2)) (8 - 6,)]
3.3 ,

i=1
f*(x) + Vo (%),

say. Here f* is as in (2.1), except for the fact that the f, function appearing
here is not directly visible, and the V,(x) term stems from the parametric
estimation variability. ‘

Representation (3.3), in concert with expressing 6 — 0, as an average of
iid. zero-mean variables plus remainder term, can now be used to establish
approximate bias and variance results for f(x) We shall be somewhat more
general and allow arbitrary regular estimators having an influence with
finite covariance matrix. To define this properly, let F be the true distribu-
tion, the cumulative of f, and let F, be the empirical distribution function.
We consider functional estimators of 0 of the form 6 = T(F,) with influence
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function I(x) = lim, , (T((Q1 — &)F + &8,) — T(F)}/ ¢, writing 8, for unit
point mass at x, and we assume that 2 = EI(X)I(X,) is ﬁmte The best
approximant fo(x) f(x, 8,) to f(x) that f(x,6) aims for is determined by

= T(F). Under mild regularity conditions [see, e.g., Huber (1981) or Shao
(1991)], one has

n 12 d
n i=1 n

where £, = 0,(n"!) with mean O(n"?), that is, d/n is essentially the bias of
0. It is generally possible to debias the estimator, for example, by jackknifing
or bootstrapping, making the d/n term disappear. The maximum likelihood
case corresponds to I(x) = J 'uy(x), where J = —E, 3* log f(X;, 6,)/36 56'.

PROPOSITION 1. Let f(x) = f(x, 6,), with 6, = T(F), be the best paramet-
ric approximant to f, and letr = f/f,. Asn — ©and h — 0, the semiparamet-
ric estimator (3.1) has

2
Ef(x) = f(x) + —oKhZfO(x)r”(x) +0 %— + h* + n‘2),

N x)? h
Var f(x) = R(K)(nh) ' f(x) — f(n) + O(Z + n_z).

ProOF. The detailed proof we present needs a second-order Taylor ap-
proximation version of the simpler first-order Taylor versions (3.2) and (3.3).
This more complete approximation becomes f(x) = f*(x) + V(%) +
3W,(x), where we write f*(x) =A4,, V,(x) = B.(6 — 6,) and W,(x) = (6 —
0,YC,(6 — 6,). The representations are in terms of averages of i.. d. variables

A, = Ky(X; %) }fo°((;?),
B, = -Ky(X; —x) ;;O((;)) {uO(Xi) - uo(x)},
C, = Ky(X; —x) ]20((;)) w(x, X;),

. where in fact w(x, X,) = vy(x) — vo(X;) + {w(x) — wo(XDHuo(x) — uy( XY
and vy(x) = 3% log f(x, 6,)/36 36.

Starting with the expected value, we already know that f* has mean
f(x) + 2a2h2f(x)r"(x) + O(h*). Through (3.4) and the averages-representa-
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tions above, one finds EV,(x) = n 'EB/I, + n"Y(EB;)d + O(n"?) and
EW,(x) = n~! THEC,ELI}) + O(n~?), using the fact that I, = I(X,) has mean
zero. However, it is not difficult to see that each of EB;, EB;I; and EC; is of
size O(h?); for example,

fo(x)
fo(y)

— [K(2) fo(2){uo(x + hz) — uo(x)} (Ir)(x + hz) dz

EB!I,

~ [En(y =) 2 (o(3) — uo()V 1(3) f(3) dy

fo(x){uo(x)(lr) (x) + gu (x)(Ir)(x)} + O(h%).

One can also see that the remainder of the second-order Taylor approxima-
tion used, involving (6; — 6, ;) terms, is of size O0,(n~°/?), with expected
value O(n~2). Thus the bias of f(x) is 202h%f()r"(x) + (h%/n)b(x) +
O(h* + n~2), for a certain b(x) function.

Next we turn to the variance. The variance of f*(x) is known from Section
2. From (3.4) and the representation above, one finds Var V,(x) = Var(B,I,)
+0(n~%) =n Y EB,YS(EB,) — {O(h%*/n))? + O(n"%) = O(h*/n + n"?), and
similarly W, (x) can be seen to have uninfluential variance O(h*/n?). Finally,
cov{f*(x), V(x)} = n " EB,YEA,I, + O(n"2) = O(h%/n). This combines to
give the necessary variance expression. O

The result is remarkable in its simplicity; the sizes of bias and variance
are only affected by parametric estimation noise to the quite small o(n%/ n+

n~%)-order. The reason lies with (3.2); not only is 6 close to 6,, but the f(x)
estlmator uses only X’s that are close to x, making u,(X,) close to uy(x).
The story is somewhat different for the correction term 7(x) alone (see
Section 8.2).

Consistency of the density estimator requires both 2 — 0 (forcing the bias
toward zero) and nh — « (making the variance go to zero). The optimal size
of h will later be seen to be proportional to n /5. These observations match
the traditional facts for the classic (1.1) estimator. Note also that if the
parametric model happens to be accurate, then the r function is equal to 1,
and the bias is only O(h%/n + 1/n?).

ExamMPLE 1 (Normal-start estimate). The normal-start estimate is
6 (67 (x — 1)), where one can use maximum likelihood estimates f =
n 'Y X, and 62 =n 'Y’ (X, — )% (or the debiased version with denom-
inator n — 1). In view of the generality of Proposition 1, quite general
estimators are allowed, without changing the basic structure of bias and
variance of f(x). One might, for example, wish to use robust estimates of
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mean and standard deviation. In any case the density estimator is

i - 5o 5 )n L Ki(X —x)/

g

(35) exp{~ (1/2)(x — f)’/6 }

" exp{~(1/2)(X, - 2)°/6%)

Note that its implementation is straightforward.

1
= — L KX, -
ni=1

ExAMPLE 2 (Log-normal-start estimate). One option for positive data is to
start with a log-normal approximation and then multiply with a correction
factor. The result is

. 1 exp{—(1/2)(logx—,0.)2/6'2} X,
== Y K,(X, - —.
(=) n,g W exp{—(1/2)(1ogx,.—,1)2/a-2} x

ExAMPLE 3 (Gamma-start estimate). A version of the general method
which should work well for positive data from perhaps unimodal and right-
skewed distributions is to start with a gamma distribution approximation.
The final estimator is then of the form

n

X 1 x |41 A
f0) =+ LR 0|5 | expl-Alx - X)),

for example with moment estimates for the gamma parameters.

ExamPLE 4 (Normal-mixture-start estimate). We believe proper use of the
three special cases mentioned now would work satisfactorily in many applica-
tions. Most unimodal densities would be approximable with either a normal,
a log-normal or a gamma, perhaps after a transformation. Cases where still
other tactics might prove superior include densities exhibiting two or more
bumps. One method in such cases would be to fit a normal mixture first and
use that as the f(x, §), correcting afterward with a #(x).

REMARK 1. The correction factor f(x, 6)/f(X;, ) can occasionally be too
influential, in cases where the denominator is too small. This is not a problem
for small % since then only X,’s quite close to x contribute to the estimate at
that point. The problem might appear in cases where 4 is of a size that allows
X;’s some distance from x to have significant weights, and such an X, is in
the very tail of f(x,6) while x is not. In our experience such situations
hardly ever occur for sizes of & corresponding to the selection procedures
outlined in Section 6. One might for safety apply a “clipping” procedure
similar in spirit to precautions recommended for variable kernel density
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estimators [see Abramson (1982) and Terrell and Scott (1992)]. Our sugges-
tion is to truncate suitably, using, for example,

R 1 f(x,0) [1
(36) f(x) = ;i;Kh(Xi_x)tmnc{m’[ﬁ’lo]}’

clipping below ;5 and above 10; this effectively alleviates the problem. Some
analysis shows that in the case of (3.5), truncation is almost never necessary
when K has bounded support.

REMARK 2. We have developed a method that can be used for any given
parametric model. It is intuitively clear that the method works best in cases
where the model employed is not too far from covering the truth (and this is
borne out by precise analysis in the following sections). One could think of
ways of automatising the choice of the parametric vehicle model, through
suitable goodness-of-fit measures, thereby obtaining an overall adaptive den-
sity estimator, but this is not pursued here.

REMARK 3. Our estimator does not integrate to precisely 1, but postnor-
malisation may of course be carried out. For the case of (3.5) the integral can
be shown to be of order 1 + 39,h*/6*, where %, is the empirical kurtosis [see
Hjort and Glad (1994), Remark 8C, for further comments].

4. Comparison with the traditional kernel density estimator. In
this and the following section the performance of the new estimator is
compared to that of the usual (1.1) estimator. We look into a couple of “test
areas,” that is, classes of densities for which comparison of behaviour can be
carried out. In Section 4.2 we study Hermite expansions around the normal
density. The calculations we give for these turn out to be useful also in
connection with the problem of choosing the bandwidth parameter % (see
Section 6). The second test area is that of finite normal mixtures, studied in
Section 5 [and in fuller detail in Hjort and Glad (1994)] with attention given
to the list of 15 test densities chosen by Marron and Wand (1992).

4.1. General MSE and MISE comparison. Expressions can be found for
the leading terms of the integrated mean squared errors of the usual kernel
estimator (1.1) and the new estimator (8.1), using, respectively, (1.2) and
Proposition 1 (Section 3). We find the following:

(41) (AMISE for ) = {0¢h*R0a( ) + R(K)(nk) ™},
(AMISE for ) = 20¢h*R,(f) + R(K)(nh) ",

featuring “roughness” functionals

(42) Rywa(f) = [{f"(0)) dz and Roo(f) = [(fo(x)r"(2))* da.
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The new estimator is better, in the sense of approximate (leading terms)
integrated mean squared error, whenever R . (f) is smaller than R, (/).
This defines a nonparametric neighbourhood of densities around the para-
metric class. When f belongs to this neighbourhood, f is better than f when
the same K and the same & are used in the two estimators. In such a case
the new estimator can be made even better by choosing an appropriate % (see
Section 6).

It is also of interest to see in which x-regions the new estimator is better
than the traditional one. Write f = exp(g) and f,, = exp(g,). Then

(43) ' =flg"+(&)?} while for' =flg" — g + (&' —£0)")-

This is useful for actual inspection of the bias terms for different f’s and is
attractive in that it clearly exhibits the roles of the first and second log-
derivatives. Note in particular that if the parametric model used is good
enough to secure |g’' — gyl < |g'l and |g” — g§l < |g”|, for a region of relevant
x’s, then that clearly suffices for the new method to be better than the
traditional one. These requirements can also be written 0 < g;/g' < 2 and
0<gyp/8" <2

4.2. Hermite expansions. A test area where these matters can be explored
is in the context of the Hermite expansions considered (for other purposes) in
Hjort and Jones (1995b) and in Fenstad and Hjort (1995). Let H,(x) be the
Jjth Hermite polynomial, given by ¢“X(x) = (—1)/¢(x)H/(x). We shall in fact
consider two different expansions. The first uses the representatlon

(4.4) f(x)=¢(x;”)%{1+ 5 ”H( _“)}.

j=3J o

Its mean is u and its standard deviation is o, and vy, = EH,(X — p)/0).
Note that y, = 1 and that y, = y, = 0, while

E(X - p)° E(X — p)*
Y3 = o3 s Y = pur -3,
E(X — p)°
Y= ——5— — 10K(X — ),

and so on, featuring skewness, kurtosis, pentakosis and so on, all of which
are zero for the normal density. Any density with finite moments can be
approximated with one of the form (4.4), through inclusion of enough terms.
See Hjort and Jones (1995b) for details pertaining to this and some of the
following calculations.

The Hermite expansion (4.4) is of the type encountered in
Edgeworth—Cramér expansions. It is pleasing from a theoretical point of view
in that it incorporates skewness, kurtosis and so on to refine the normal
approximation, but it has shortcomings as well. The coefficients are not
always finite and empirical estimates are quite variable and nonrobust. Hjort
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and Jones (1995b) and Fenstad and Hjort (1995) give further reasons favour-
ing a second and more robust Hermite expansion, in terms of the polynomials
Hf(y) = H; (\/—y) instead. In this case,

P E e

et

X
(4.5) (=) = o

where the coefficients are determined from &, = =V2 2EH; V2(X — w/
a)exp{— 3(X — w)?/02}). If f is taken as an approx1mat10n to a given density
g with mean u and standard deviation o, then the L,-distance [(f — ¢)? dx
is minimised for exactly these §; [see Hjort and Jones (1995b)].

One may now compare the large-sample behaviour of the traditional and
the new normal-corrected estimator (3.5), in situations where the true f is as
in (4.4) or (4.5). Here f = f,r, in the first case and f = f,r, in the second
case, with f;, being the simple normal approximation, and

m

=1+ ¥ LH(y) and ryx) - ¥ 2H(Ey),
j=3J: j=0J

writing y = (x — u)/o. Neighbourhoods around the normal density are de-
scribed by looking at variations of the y’s and 8’s around 0 (for j > 1).
Expressions for /" and f,r” can now be obtained and compared, for each of
the two expansions. Experience from this exercise shows, broadly speaking,
that the leading bias term for the new estimator is indeed smaller than the
leading bias term for the kernel estimator, for a broad range of central
x-values, provided the true f is in a reasonably sized neighbourhood around
the normal. More information is in Hjort and Glad [(1994), Section 4].

It is also fruitful to derive expressions for the roughness quantities (4.2).
Because of space considerations we merely give the formulae for the direct
Hermite expansion (4.4); a fuller account is in Hjort and Glad [(1994), Section
4]. One finds

(=) = 07 8() T 3Ha()
and
F(#)ri(2) = 7 %8() T i = DI (),

again with y = (x — u)/o. Some calculations give that A; , = [H;H, ¢%dy
is zero when j + % is odd and equal to (—1)/*?(2V/7 )"~ 1(2p)'/(p' 22") when
J + k = 2p [see Hjort and Jones (1995b)]. This makes it possible to evaluate

Yi Ve
_]_'F j+2,k+2

1
Rtrad(f) = 75 Z

Jk<m
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and

1 Y; Vi
Rnew(f) - ?25]',stm (_] — 2)' (k — 2)!Aj—2,k—2

for given values of m. As an example, suppose terms corresponding to
skewness, kurtosis and pentakosis are included. Then, per similar calcula-
tions of Hjort and Jones (1995b),

1001

Riaa = 5(3/8‘/_)(1 + 43')'4 32')’3 + f(?zi% + 1024075 - %7375)’
Roew = 07 %(3/8Vm) (575 + 4v8 + =YE — 5737s)-

This indicates that the new estimator is better than the traditional one in a
large neighbourhood around the normal distribution.

(4.6)

5. Exact analysis for normal mixtures. Consider a normal mixture

k

(5.1) f(x) = L pifi(x) where fi(x) = ¢,(x - ),
i=1

writing ¢,(u) = 0~ '¢(o"*u). The family of such mixtures forms a very wide
and flexible class of densities. Marron and Wand (1992) studied such mix-
tures and, in particular, singled out 15 different “test densities,” covering a
broad spectrum of not-so-difficult to extremely difficult cases. We have used
these as well as further mixtures to compare the new normal-start times
correction method with the traditional kernel method. In Section 5.1 the
asymptotic mean squared errors of the two methods are compared, involving
the leading terms of the Taylor-based approximations to bias and variance. In
Section 5.2 we go further and analyse exact finite-sample mean squared
errors for the two methods.

5.1. Exact AMISE analysis. To monitor the two bias terms, we should
compare " to f,r", where f, is the best approximating normal, with
po =Xl 1p;p and of = Xi_ plo? + (p; — po)*). Write f; = exp(g;) and
fo = exp(g,). Then

k

r=f/fo= Zpi exp(g; — &)

i=1

and

o

= Y piexp(g: — g0){8i — &5 + (8~ £0)"}.

This leads to

i=1 g;

1 1
5.2) fo(x)r'"(x) = Zp,f(x){“f - — Tt
()
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while

g;

k k x — )’ (x
(5.3) '(x) = Zpi‘bg,(x_/-"i): Zpi{( 2,%) _1}ﬁ(2)-
i=1 i=1 g;

We used these formulae for visually inspecting f” versus f,r" in a number of
cases, including the 15 test cases of Marron and Wand (1992); see Hjort and
Glad [(1994), Figure 1]. There are two immediate points to note. The first is
that in most cases where the initial normal approximation is not very
unreasonable, the new estimator manages to be better than the usual one, in
significant x-areas. The second observation is that in cases where the initial
description is clearly a bad start, the new semiparametric method turns
almost nonparametric and behaves almost like the kernel method.

With some effort (5.2) and (5.3) also lead to formulae for the roughness
values R,.,4(f) and R, (f) [cf. (4.2)]. Exact expressions are given in Hjort
and Glad [(1994), Proposition A.1]. These global criteria have been compared
for a collection of normal mixtures. The overall comparison in terms of
approximate MISE is in clear favour of the new method. Hjort and Glad
[(1994) Table A.1] present appropriately transformed versions of these, for
the 15 test cases. The new method has R ., < R,,,q in 12 of the 15 cases and
loses to the kernel method, and then only very slightly, in the quite extreme
cases #12 (the asymmetric claw), #14 (the smooth comb) and #15 (the
discrete comb). It is fair to add that only about half of these victories are
clear-cut and that the remaining cases are almost draws, with surprisingly
similar values for R, and R,,4. The same picture emerges also when one
computes values for the L;-based criteria [|f"| versus [|f,r"|, also given
(appropriately transformed to ease interpretation) in Hjort and Glad [(1994),
Table A.1]. According to this measure the (3.5) estimator wins in 14 out of 15
cases.

We also inspected separately the case of two components in the normal
mixture. Only in quite extreme cases does the kernel method win in approxi-
mate MISE, and then only slightly. The new method always wins when the
two standard deviation parameters in question are equal. It is mildly surpris-
ing that a nonparametric correction on a normal start performs better than
the kernel method even in such highly nonnormal situations.

5.2. Exact finite-sample comparison. The comparison analysis above was
in terms of the Taylor-based approximations to bias and variance. We have
also ventured further and analysed exact finite-sample MISE for the two
methods. Such analysis was carried out in Marron and Wand (1992) for the
kernel method (1.1). Their Theorem 2.1 gives a formula for MISE(%) = E/(f
— )2 dx for f of the form (5.1). Reaching a similar result for the MISE of the
normal-start estimator (3.5) is much more demanding. Proposition A.2 in
Hjort and Glad (1994) delivers such a formula. It simplifies the comparison
quest to care only about “best case versus best case,” which means comparing
the two best achievable MISE values, say, MISE},,; and MISE*. We pro-
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grammed the two MISE formulae and went through a collection of normal
mixtures, including once more the list of 15 test densities, and found for each
the minimising value of 4 and the resulting minimum MISE values, for each
of the five sample sizes 25, 50, 100,200, 1000. The findings were summarised
in Hjort and Glad [(1994), Table A.2] featuring also the ratio MISE* /MISEZ, ;.
These numbers supported the previous positive conclusions for the new
estimator, in its particular form (3.5). The MISE-ratio is quite often below 1,
and for the quite difficult test densities, where the analysis summarised in
Section 5.1 gave very similar values for R, ., and R, the table gave
MISE-ratios mostly between 0.99 and 1.01. Even in these highly nonnormal
situations the new method has, overall, a slight edge. The findings also
indicated that choosing the same bandwidth for the new method as for the
kernel method will be quite acceptable in most of the definitely nonnormal
situations. In a broad vicinity of the normal it should pay to use a little larger
bandwidth than what is optimal for the kernel method, however.

It should be kept in mind that the list of 15 test densities is not at all
constructed to be favourable to using the normal model as starting descrip-
tion. Statistically speaking, we believe that a high proportion of densities
actually encountered in real life are closer to the normal than each of cases
#3-15. In other words, the new method will win quite often.

6. Choosing smoothing parameter. Our method is defined in terms of
a kernel function K and a bandwidth or smoothing parameter h. Choosing 2
is the more crucial problem, and methods for doing this parallel but by
necessity become harder than the well-developed ones for the traditional (1.1)
estimator (which is the special case of a constant initial estimator).

6.1. Minimising AMISE. From (4.1) it is seen that the h-parameter
minimising approximate integrated mean squared error for fis

(6.1) h=h* = {R(K) /o) Roe, () /°n" 15,
The resulting minimal AMISE is 2{oxR(K)}*5R.5n"%/5 The same

new
{ox R(K)}*/® factor appears also in a similar expression for the theoretically
best pointwise mean squared error, so the efficiency of the kernel choice lies
entirely with this number. This is very similar to what happens with the
traditional estimator (1.1) [see, e.g., Scott (1992), Chapter 6]. The best possi-
ble kernel in thls sense is the Yepanechnikov kernel K(z) = 2(1 — 42z?%)
supported on [ — %, 1] (or any other scaled version).

A “plug-in rule” for A is to estimate the roughness R, of (4.2) and insert
this into (6.1). We outline three methods for doing this. The first method is in
the parametric “rule-of-thumb” tradition and fits the data initially to a
normal mixture, say, of two or three components, using likelihood-based
methods. The idea is then to use the formula for R, available in Hjort and
Glad [(1994), Appendix] to estimate A* of (6.1). This would work well in many

cases.
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The second method is to exploit the Hermite expansions of Section 4 as
approximations to the true f. An approximation to f that takes the first five
moments into account is (4.4), with empirical estimates inserted for vy, v,
and ;. This leads to an estimate of R, via formula (4.6), and in the case of
the normal kernel K = ¢ to a practical formula of the form

(62)  hy=(3)35F + 19+ B - i9ads) CenTVn

Details are furnished in Hjort and Glad [(1994), Sections 4 and 6]. One should
preferably use robust estimates for the parameters, and one should ideally
also deduct for bias when plugging in squared estimates, as explained in
Hjort and Jones (1995b). In any case (6.2) may be somewhat unstable,
particularly for small to moderate sample sizes, since the ¥, statistics are
unstable. The alternative robust Hermite expansion described in Section 4.2
should be safer, using (4.5) as the point of departure rather than (4.4). Hjort
and Glad (1994) show that R, = 0~ *(2/ V7))L %0% ,/j!, a formula simpler
than the analogous (4.6). When the standard normal kernel is used this leads
to using

-1/5

R 1/5 52 82
(6.3) hy = (Z) (62 + 62 + -t ?) on- V3,

for example, featuring the automatically robust estimates

5 1 i X,. —_) 1(X, - p\°
T n s )P\ "2\ 74
(the summands are bounded in X;). Again bias should ideally be deducted
when plugging in squared estimates. See analogous comments in Hjort and
Jones (1995b).
While this second method can be seen as a semiparametric way of getting

hold of R_,,,, the third plug-in method is nonparametric on this account and
takes the natural statistic

new f{f(x’ é\)f”(x)}z dz

11 f(x,0) f(x,8)
n? e gj/f(x,.,é) f(X;,6)

as its starting point. Explicit expressions for the integral here can be worked
out for most choices of K [see again the Appendix of Hjort and Glad (1994)].
Somewhat lengthy calculations, involving Taylor series expansions and other
techniques, can be furnished to reach

R

K'(h"Y(x~ X))K"(h™'(x — X;)) dx

A

[ERnew

1
) de + —{R(K") + O(h)),
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where R(K") = [(K")?dz. See Hjort and Glad [(1994), Section 6] for the
details. Since nh® is stable this shows that there is a fixed amount of
overshooting. This is similar to but more involved than the corresponding
result for the traditional kernel estimator (1.1) [which is the special case
where f,(x) is constant] [see Scott and Terrell (1987)]. This invites

n R R(K")
{R new 5 }
n—1 nh
to be used as a corrected estimate. One version of the plug-in method is
therefore as follows: select a starting value for 2 in a reasonable way,
perhaps using (6.3). Then compute R, ., and its debiased version, and insert
in (6.1). One might also iterate this scheme further.

It is required that K here is smooth with vanishing derivatives at the
endpoints of its support; in particular the Yepanechnikov kernel is not
allowed in this operation.

6.2. Minimising estimated AMISE. A useful idea related to the previous
calculations is to estimate the approximate MISE of (4.1) directly, that is,
producing the curve

(6.4) AMISE(%) = bev(h) = %"I?h“{énew(h) _ R(K”)} N R(K)

nh® nh ’

including, for emphasis, A in the notation for the roughness estimate. This
function must now be computed for a range of h-values, up to some upper
limit A, the “oversmoothing” bandwidth. Scott and Terrell (1987) and Scott
(1992) call this strategy (for the traditional estimator) biased cross-valida-
tion, although nothing seems to be cross-validated per se. The BCV name
derives rather from formulawise similarity to unbiased cross-validation (see
below) and the desire to estimate the biased approximation AMISE to the
true MISE.

6.3. Nearly unbiased cross-validation. A popular technique for the tradi-
tional kernel estimator is that of unbiased least squares cross-validation,
minimising an unbiased estimate of the exact MISE as a function of band-
width. A version of this idea can be carried through for our new estimator as
well. The crux is to estimate MISE(k) — R(f) = E{[f? dx — 2ffdx} with

A 2
(6.5) vev(h) = [£u(x)" dx = 2 T o X0).

Here 2 is included in the notation, for clarity, and f;,(i) is the estimator
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constructed from the diminished data set that excludes X;. The function to
compute is

[£(,6) K\(x = X)K,(x - X;) da

(X, 0)F(X;, )

2 , (X, 0
- K (X, - X))
— 1) LZ,3 h( i J)f(X 0(]))

where 0(,) is computed without X;. In the case of the normal-start method
(3.5) with normal kernel K = ¢, a formula for the first term here is given in
Hjort and Glad [(1994), Appendix].

It turns out that ucv(%) is nearly but not exactly unbiased for MISE(k) —
R(f), as discussed in suitable detail in Hjort and Glad [(1994), Section 6]. The
difference is minuscule, however, and choosing A to minimise the UCV(hA)
function, among & < h, for a suitable oversmoothing upper limit, remains a
useful and honestly nonparametric option.

6.4. Other techniques. Other techniques can also be proposed, for exam-
ple, trying to adapt recent methods of Sheather and Jones (1991) and of Hall,
Sheather, Jones and Marron (1991) to the present situation. One could also
look into possible advantages of using a variable h. These matters are not
pursued here. In our somewhat limited experience the (6.3) method has been
satisfactory.

7. The multidimensional case. Standard nonparametric methods like
the kernel method have severe difficulties in the vector case, due to the curse
of dimensionality. Our multiplicative correction factor method is easy to
implement also in the vector case, as is now briefly indicated. We speculate
that its potential for improving on standard nonparametric methods is larger
in higher dimensions, through the use of a reasonable parametric-start
description.

The setting is that d-dimensional i.i.d. vectors X;,...,X, are observed
from a density f. The traditional kernel estimator uses a kernel density
function K(z4,..., z,), usually symmetric about zero in each direction and
often of product form K (2, K (z,). Its value at the point x = (xy,..., x5)
is f(x) n Y’ K,X;, — x), where K (z,,...,24) = (hy =+ hy)™?
XK(hilz,,...,h;'2,) [see, e.g., Scott (1992), Chapter 6, or Wand and Jones
(1995), Chapter 4]. Our parametric start with a multiplicative correction
method is now

1 2 Ky(X; —x)
(7.1) | f(x) = f(x,0) )~ ;W

This is the appropriate vector version of (1.3), employing any parametric
family f(x,0) and any reasonable parameter estimation method to produce
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the initial f(x, ). Clipping of the (3.6) type should again be applied to
safeguard in general. The most important case is that of a multinormal-start
density [see (7.3)].

One may now go through the theory developed in Sections 2 and 3 and
generalise results there to the present d-dimensional state of affairs. We omit
details and merely present the result. First, the variance of the (7.1) estima-
tor is found to be R(K,)-- R(K,Xnh, -+ hy) 1f(x) — n”!f(x)?, which is
exactly equal to the variance for the traditional (7.1) estimator, to the order of
approximation used. Second, the bias is of the form

14 9 d h2
(72 3 .§10(KJ-) R fo(x) r;(%) + 0( Y (hj + —n’—

+n2

’

Jj=1

involving the best parametric approximant f,(x) = f(x, 6,) and the ensuing
correction factor r(x) = f(x) /f,(x). Again the result is remarkably resistant to
the actual parameter estimation used to obtain 6, for example (cf. the
discussion of Section 3). The corresponding bias formula for the kernel
estimator is of the form $X7_,0(K)*h?f};(x). Method (7.1) can therefore be
expected to perform well in all situations where the f,r]; functions are
smaller in size than the f; functions. This essentially says that the correc-
tion factor r should have smaller-sized curvature than f itself, which again
means that the initial parametric description should capture the main fea-
tures of the density. Special cases can be inspected as explained in Sections 4
and 5. We expect the multinormal-start method, for example, to work better
than the traditional estimator for densities in a broad nonparametric vicinity
of the multinormal.

A particular scheme, starting out with a multinormal estimate and a
Gaussian kernel function, is further discussed in Hjort and Glad [(1994),
Section 7]. It takes the form

exp{—(1/2)(x -X,)S (x - Xi)/hz}
(2m)?* he

exp{—(1/2)(x - )57 '(x — 4)}
exp{ -(1/2)(X; — )27 1(X; - IA/«)}
An initial sphering transformation has been used to create an estimator with
only one smoothing parameter (as opposed to one for each of the d directions),

and a recipe for setting this smoothing parameter is also proposed in Hjort
and Glad (1994), generalising the (6.3) rule.

foo =3 %
(7.3) e

8. Supplementary remarks.

_ 8.1. How close is the new estimator to the old? In the sum that defines
f(x) of (3.1), the ratios f(x, 6)/f(X;, 6) are close to 1 for small values of A
since then the X,’s quite close to x are those given significant weights. In
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other words, f(x) cannot be very different from the traditional kernel estima-
tor f(x) of (1.1) when 4 is small. A Taylor analysis is informative:

f(x,0)
f(X;,6)

where a(x, ) and b(x, 6) are the two first x-derivatives of log f(x, 6). Hence,

(81) f(x) = f(x) —a(x, )ex(%) + H{a(x,8)" = b(x, 8) )es(x),

where e (x) =n 'L’ K,(X; — xXX, — x)% One can now show that e,(x)
has mean oZh*f'(x) + O(h*) and small variance O(hn~'f(x)), while e,(x)
has mean oZh?f(x) + O(h*) with even smaller variance O(h3n~1f(x)). The
new method attempts to make a bias correction of size O(A?) for densities in
the vicinity of the parametric model, by taking information about first and
second derivatives into account.

A 1 A2 A 9
=1 -a(x, 0)(X,—x) + §{a;(x,()) - b(x,0) }(X; - x)?,

8.2. Accuracy of the estimated correction factor. Our machinery can also
be used for model exploration purposes, by inspecting the correction factor
against x for various potential models. A model’s adequacy could be inspected
by looking at a plot of #(x), perhaps with a pointwise confidence band, to see
if r(x) =1 is reasonable. In the notation of Sections 2 and 3, and using
techniques from these sections, one can establish that

1
EA(x) =r(x) + Eolghzr”(x) —n7tr(x)uo(x){I(x) + d},

Var A(x) = (nh)_lR(K)%

—n 7l (2)H1 + 2ug(x) I(x) — ug(x) SUy(x)},

with some simplification in the maximum likelihood case, for which I(x) =
J 'ug(x) and 3 = J L. It is also informative to plot the log-correction factor
log 7(x), to see how far from zero it is. Bias and variance results for this
curve are also developed in Hjort and Glad (1994). A simple graphical
goodness-of-fit method emerges from these results: plot

_ log A(x) + 3R(K)(nh) 'f(x,0)
{RE)Y () (2, 8) 1)

against x, or perhaps with a more accurate denominator. Under model
conditions this should be approximately distributed as a standard normal for
each x, that is, the Z(x) curve should stay within +1.96 about 95% of the

time.

(8.2) Z(x)

8.3. Parametric home-turf conditions. If model conditions f(x) = f(x, 0)
can be trusted, the natural estimator is simply f(x, ), for example, with the
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maximum likelihood estimator, Well-known regularity conditions on the
parametric model secure Vn (6 — 0) >, Z ~,{0, J(0)71'}, where J(0) =
Jf(x, Ou(x, O)u(x, 0) dx is the information matrix, writing u(x, 0) =
d log f(x, 0)/00 for the score function. This fact, combined with the delta
method and some extra arguments, yield

nISE, = n [{f(x,0) — f(x,0)) dx -, [f(x,0) u(x, 0) ZZ'u(x, 0) dx,

a variable with expected value [f(x, 8)%u(x, 0YJ(6) 'u(x, 6) dx. It turns out
that the MISE of the new nonparametric (3.1) estimator, computed when
f(x) = f(x, 6) really belongs to the parametric family in question, typically is
only slightly larger than this. Using the f(x) = f*(x)+ B, (x)(6— 0) +
16 — 6YC,(x)6 — 6) representation used to prove Proposition 1 (Section 3),
one may show that vn {f(x) — f(x, 6)} tends to a certain zero-mean Gaussian
process, when h stays fixed, and that nISE, has a well-defined limit
distribution. Its expected value, after somewhat arduous calculations, is
shown to be

h‘I/K(z)z{ng%)—,b—) dx} dz — [f(x,0)" dx

—ff(x, 0)*gn(x,0) J(0) 'gx(x,0) dx

—2[f(x,0)"g4(x,0) J(0) 'u(x,0) dx,

where g,(x,0) = [K(z){u(x + hz,0) — u(x, 0)} dz. First of all this shows
that the nonparametric estimator can share with the parametric methods the
favourable O(n~!) MISE rate, under the home-turf conditions of the para-
metric vehicle model, by letting A stay away from zero. Algebraic calculations
for the two-parameter normal model lead to a parametric MISE of size
L(2Vm )~ /n (which is the large-sample approximation to the exact MISE,
for which an exact formula also can be found). The (3.5) estimator with
K = ¢, on the other hand, has n times MISE tending to

{a_l(l - a2)_1/2 —1-za*+ %az}(Z\/?o)_l where a = h /o € (0,1).

This is minimized for A* = o/ V2 (the best bandwidth under normality,
regardless of sample size), with minimum value %(2\/; o)7L, only 2 times the
optimal parametric achievement.

8.4. Nonparametric regression with a parametric start. The basic estima-
tion idea of our paper works well also in other areas of curve smoothing. An
important such area is that of nonparametric regression. Assume that ii.d.
pairs (x;,y;) are observed from a smooth bivariate density f(x,y) =
f(x)g(ylx) and that interest focuses on the conditional mean function m(x)
= E(Y|x). A standard method is m(x) = X' 5, K,(x — x,)/Z! 1 K, (x — x;),
the Nadaraya—Watson estimator [see, e.g., Scott (1992), Chapter 8, and Wand
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and Jones (1995), Chapter 5]. Taylor-expansion analysis and somewhat stren-
uous calculations lead to

f'(x)
(%)

Em(x) =m(x) + % ,§h2{m”(x) + 2m/'(x)

(83) 2
o ()
7(x)

This a somewhat more complete version of calculations in Scott [(1992), page
223-224]. Our calculations are also mildly more general, in that we took care
here not to assume merely a constant value for o(x)? = Var(Y|x), for rea-
sons appearing below.

A semiparametric estimator can now be constructed as follows. Start out
with a parametric initial description, say, m(x, ,B) perhaps the simple linear
B1 + B2x This start estimator aims really at m(x, B,), say, the best para-
metric approximant. A multiplicative correction factor, aiming at r(x) =
m(x)/m(x, B,), can be given as a Nadaraya-Watson estimator using
y;/m(x;, ,B) This leads to a generalised Nadaraya—Watson estimator

v {yi/m(xi, B) ) En(x — %))

Var i(x) = R(K)(nh) + O(h/n).

m(x) = m(x, B)— T ACETD)
(84) X = i i
_ Z?=1yi<m(x7 B)/m(xi, B)}Kh(x - x;)
Lo Kp(x — ;) '

Calculations involving the above result, using ¥i /m(x;, By) with conditional
variance o(x;)%/m(x;, By)?> and Taylor expansions of B around B,, as in
Section 3, lead in the end to

1
Em(x) =m(x) + —aKhz{m(x Bo)r'"(x)
(8.5)

+2m(x, Boyr(x) LD }

f(x)

with approximation error of size at most O(h* + h/n +n" %), and to a
variance being of the very same size as that in (8.3), to the order of
approximation used. In many cases this will mean a genuine reduction of
MISE, and hence that the generalised Nadaraya—Watson estimator (8.4) is
better than the usual estimator. This idea could be particularly useful in
situations with several covariates. See Glad (1995) for further discussion,
including semiparametric extensions of local linear regression methods.
Hjort [(1995a), final section] gives yet another example of the type (3.1)
construction, in the realm of nonparametric hazard rate estimation. The
result is once again that a bias reduction vis-a-vis the traditional estimator is
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possible in a broad neighbourhood of the parametric model used, without
sacrificing variance.
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