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DEFICIENCY OF THE SAMPLE QUANTILE ESTIMATOR
WITH RESPECT TO KERNEL QUANTILE
ESTIMATORS FOR CENSORED DATA

By X1a0JING XIANG
University of Oregon

Consider a statistical procedure (Method A) which is based on n
observations and a less effective procedure (Method B) which requires a
larger number %, of observations to give equal performance under a
certain criterion. To compare two different procedures, Hodges and
Lehmann suggested that the difference %, — n, called the deficiency of
Method B with respect to Method A, is the most natural quantity to
examine. In this article, the performance of two kernel quantile estimators
is examined versus the sample quantile estimator under the criterion of
equal covering probability for randomly right-censored data. We shall
show that the deficiency of the sample quantile estimator with respect to
the kernel quantile estimators is convergent to infinity with the maximum
rate when the bandwidth is chosen to be optimal. A Monte Carlo study is
performed, along with an illustration on a real data set.

1. Introduction. Comparison of different statistical procedures is an
important issue in both practical and theoretical statistics. Consider a statis-
tical procedure (Method A) which is based on n observations and a less
effective procedure (Method B) which requires a large number %, of observa-
tions to give equal performance under a certain criterion. To compare two
different procedures, Hodges and Lehmann (1970) suggested that the differ-
ence k, — n, called the deficiency of Method B with respect to Method A, is
the most natural quantity to examine. Let X, X,,... be a sequence of
independent random variables with common distribution function F(x). For
0 <p <1, the pth quantile of F(x), which is defined by Q(p) = inf{x:
F(x) > p}, is an important characteristics of F(x) and plays an important
role in both statistics and probability. One popular estimator Of Q(p), called
the sample quantile estimator, denoted by &,,, is the pth quantile of the
empirical distribution function F,(x) = (1/n)C?_,I(X; < x). As an alterna-
tive, the kernel quantile estimator introduced by Parzen (1979) is of the form

(L aF) = o [ B k(5 s

n

for an appropriate kernel function K(x) and a bandwidth %, | 0. Define for
any t > 0 the interval

IL(n) =[Q(p) —ton™%,Q(p) + ton1/?],
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where o2 = (p(1 — p))/(f2Q(p))). Then P(q,F,) €I(n) and P( &n €
I,(n)) are the covering probabilities of ¢,(F,) and &,, with respect to 1,(n),
respectively. Let i,(n) be defined by

i,(n) = min{m > 1: P(¢,, € I,(n)) = P(q,(F,) € I(n))}.

Then i,(n) is the minimum number of observations required by the sample
quantile estimator to give a covering probability equal to that of the kernel
quantile estimator and the difference i,(n) — n is the deficiency of ¢,, with
respect to q,(F,) in the Hodges and Lehmann sense.

Falk (1985) compared the performance of the sample quantile estimator
and the kernel quantile estimator under the criterion of equal covering
probability. Falk showed that under certain conditions,

V(K
(12) lim b (P(au(B) € L) ~ P( € L)) = 200,
where
o(t) = 7=e/2, W(K) =2 <K(x)[ K(u)duds
and
(1.3) liming M 7", ¥

> .
n—w nh,  p(1-p)

If ¥(K) > 0, it follows that the sample quantile estimator requires more
observations to perform as well as the kernel quantile estimator ¢,(F,). More
precisely, the approximate number of the additional observations required by
the sample quantile is at least equal to r, = nh,(¥(K))/(p(1 — p)). Since
nh, > ®as n — o, r, - ©as n — o In view of (1.3), a lower rate of &, and
a larger value of W(K) will lead to a higher rate of r,. Hence, one would like
to choose a kernel function K and bandwidth %, to make the deficiency
i,(n) — n tend to infinity as quickly as possible. This leads to considerations
of the optimal selection of the kernel function and the corresponding band-
width. The optimal kernel selection has been studied by Falk (1983) and
Mammitzsch (1984). However, the optimal bandwidth, based on my knowl-
edge, has not been obtained. The goal of this article is to compare the
performance of the sample quantile estimator and two kernel quantile esti-
mators under the criterion of equal covering probability for censored data.
The asymptotically optimal bandwidth is obtained.

Let Xi,..., X,, be ii.d. nonnegative random variables with common distri-
bution function F(x), called the survival time distribution. Our model is that
of right random censoring, that is, associated with each X, there is an
independent nonnegative censoring time Y; and Y;,...,Y, are assumed to be
iid. random variables with common distribution function G(x). We as-
sume throughout this paper that G(x) is continuous. The observations in this
model are the pairs (T}, 8;), where T; = min(X;,Y;) and §; =Ix .y, i =
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1,2,..., n. Clearly, T, are i.i.d. with common distribution function H(x) =1
— (1 — F(x))X1 — G(x)). In the censored model, the sample quantile estima-
tor and the kernel estimator are defined in terms of the product-limit
estimator, proposed by Kaplan and Meier (1958). The product-limit estimator

is of the form

n—i \%
o[ D] e
Fn(t) = Tyy<t n—1i+1
L t2 T(n)’
where Tj;, < T3y < - <T,, are the order statistics of T},T,,...,T, and
81y, ---» &n) are the corresponding §;. The sample quantile estlmator §pn of

Q(p) is the pth quantile of F (2 and the kernel quantile estimator first
studied by Padgett (1986) is of the form

(1.4) 4.(F,) oy fFl( )K( . )dx

Besides qn(F ), Padgett (1986) also proposed the following kernel quantile
estimator as an approximation of qn(F ). Let s; denote the jump of F (t) at
T, that is,

ﬁn(ﬂl))’ J=1
S; = A A .
DRI - F(Ten), = 20n
The approximation of §,(F,), denoted by §*(F.), is defined by

n( (i)) —p)'

h

(1.5) d:(ﬁn) =h,! i Tiys, K
i=1 "

n

In the absence of censoring, é:(f‘n) reduces to the kernel estimator proposed
by Yang (1985). ~
Define, for any ¢ > 0, I(n) = [Q(p) — tan"1/%, Q(p) + tan~1/2], where

(1.6) =2 _ (1-p) fQ(p)(l_ dF(y)

*(Q(p)) 1o G(1))(1-F(9)"
Let
iy(n) = min{m = 1: P(£,, € I(n)) = P(4.(F,) € L(n))}
and
iz (1) —m1n<m> 1: P( eI(n)) > P(§¥(F,) ef(n))}.
We shall compare P(§pn e I(n)) with P(§,(F) €I,(n) and P(§*(F,) e
I,(n)), respectively, and examine the rates of i,,(n) — n and i,,(n) — n. We

shall show that i,,(n) — n and i,,(n) — n attain the maximum rates with
respect to the asymptotically optimal bandwidth.
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This article is organized as follows. The main results are given in Section
2. Section 3 contains the simulation results, along with an illustration on a
real data set. The proofs of the theorems are provided in Section 4.

2. Main results. Let Ty = inf{¢: H(¢) = 1}. Throughout this paper, we
assume that the kernel function K(x) has compact support on [—1,1]. We
use the notation a, ~ b, if and only if a,/b, = 1, as n —» ©. We say the
function f(x) is Lipschitz of order 1 if for a universal constant C, |f(x) —
f(y)l < Clx — y|for all x, y € (—o,x),

THEOREM 2.1. Assume that Q(t) has a bounded (m + 1)th derivative in a
neighborhood of p with 0 <p < F(Ty), m > 2, and that f(Q(p)) > 0. Let
K(x) be Lipschitz of order 1 and let K(x) satisfy 1 K(x) dx = 1,
L2 K(x)dx =0, i=1,...,m, a,=[Q™ " Yp)/(m+ DL u™"K(u)
du # 0. Then if nh4 /log* n — ,

P(én(ﬁn) € Tt(n)) - P(épn < it(n))
) 19 (1)¥(K) .
(2.1) FA(Q(p)(1 - G(Q(p))T* "

to(t)an
e

nh2m*D 4 o(h, + nhZm* D)
and
P(g:(F,) € I(n)) - P(£,, € I(n))
_ to(t)¥(K) b
(2.2) A(Q(p))(1 - G(R(p)))a> ™"
_tp(t) ey,

nh2m+D 4 o(hn + nhi(’”“)).
The asymptotically optimal bandwidth is
1/2m+1)
. V(K)
2(m + 1) ey f2(Q(P))(1 — G(Q(P)))

(23) R n-

opt = ’

and with h g,
P(q,(F,) € I(n)) - P(£,, € I,(n))
(2.4) td(t)V(K) .
(1-G(Q(p))FX(Q(p))T> ™

and
P(g:(F,) e L(n)) - P(£,, e L(n))
(2.5) td(£)¥(K) .
" (1-G(Q(p))) 3 (Q(p))a> ™

The following result is about the maximum rate of the deficiency.
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THEOREM 2.2. Under the assumptions of Theorem 2.1, if the bandwidth
and the kernel function are chosen such that P(4,(F,) € I(n)) — P(§,, €
I,(n)) = 0 and P(§}(F,) € I,(n)) — P(§,, € I(n)) 2 0 for large n, then
 (n) V(K) b
i,(n)—n= —nh,

" (1-G(Q(p)))f*(Q(p))7*
ol
— 2 p2h2m+D 4 o(nh, + nZh2mD)
5_2 n n n

(2.6)

for j = 1,2. The asymptotically optimal bandwidth is given by (2.3), and with
h
opt?

o 2m¥(K)
@n T e DI - 6(R(2) Q)

52 nhopt,

Jj=1,2.

the deficien-

REMARK 1. For each fixed p, 0 <p < F(Ty), using h,,,
2 =

cies are of O(n?™/@m*D) In the absence of censoring, G(x) =0, &

(p(1 = p))/(fA(Q(p)) = % and the results in the above theorems can be

simplified. For example, (2.7) reduces to
2m¥(K)

T (@m+1)p(1-p)

i, (n)—n nh,, = O(n?m/@Gm+hy,
Jt opt

(2.8)
ji=1,2.

In contrast, Falk’s result gives i,,(n) — n = o(n?™/@m+D),

REMARK 2. Estimating h,,, may be done by the so-called plug-in method.
That is, we substitute the estimators for the unknown quantities involved in
h ¢ in (2.3). Distribution functions G(x) and F(x) can be estimated directly
by using the product-limit estimator. For I > 1, @ ¥(p) can be estimated by

AO(BY — (1N p-1-1 [L1p-1 | * P
(2.9) GO(F) = (=)' [ B () K ( £ a
or
] A - FAn(Ti)_p
(210)  GO(F) = (-)'A X T<i>siK(”(—Z)”“).
i=1 n

The asymptotic properties of the estimators in (2.9) and (2.10) are discussed
in Xiang (1992, 1994). A Monte Carlo study based on the plug-in method is
performed in the following Section 3.

REMARK 3. Lio and Padgett (1992) studied the Nadaraya-type smooth
quantile estimator and obtained the asymptotically optimal bandwidth.
Though their asymptotically optimal bandwidth is defined by a different
criterion, the order of their bandwidth is the same as that of 4, in (2.3).
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REMARK 4. Finally, the type of estimators used in practice will depend on
one’s particular interests. For instance, the sample quantile estimator for
censored data allows one to easily construct bootstrap confidence bands [see
Doss and Gill (1992)]. Also the sample quantile estimator performs better
than the kernel quantile estimators as p is close to 0 and 1 (see Figure 1 in
Section 3).

3. Monte Carlo study and an example. In this section, a Monte Carlo
study was performed in order to provide some small-sample comparisons of
qn(F ) and q*(F ) with F and with each other, in the sense of covering
probabilities. Consider the interval I, =[Q(p) —an %, Q(p) + on /2],
where G? is calculated from (1.6). The true covering probablhtles of qn(F ),

(F ) and F L are P(qn(F ) e I ), P((j*(F ) e I ) and P(F le I ), respec-
t1vely The estlmator with hlgher covering probablhty performs better than
that with a lower one. In the following Monte Carlo study, the covering
probabilities were calculated by finding the proportion of values of the
estimators that fall within the interval I The larger proportion corresponds
to higher covering probability. To calculate qn(F ) and q,’f(F ), we proposed a
data-based procedure of the optimal bandwidth selection. Besides the Monte
Carlo study, a real data set is illustrated in this section. For this data set, we
compared the optimal bandwidths calculated from our data-based procedure
with those in Padgett (1986) computed based on the bootstrap mean squared
errors.

To make things simple, we choose m = 1 in the following Monte Carlo
study. Notice that the case m = 1 is not included in the theorems presented
in Section 2, but we suspect that their conclusions hold more generally; the
simulation results support these suspicions. For the same reason, we use the
triangular kernel function K(x) = (1 — |x)I(|x| < 1) for both kernel quantile
estimators in (1.4) and (1.5).

Perhaps the most important issue for the kernel quantile estimators is the
selection of bandwidth. From the theorems in Section 2, the asymptotically

V(K)

optimal bandwidth is
Q'(p) ) }
J1ix%K (%) dx) (1 - G(Q(p))) | Q(P)

depending on Q(p), Q'(p), " (p) and the unknown distribution function
G(x). Thus estimators of Q(p), Q'(p), @"(p) and G(x) are necessary for a
data-based choice of & ,,. The quantile Q(p) can be estimated by the sample
quantile estimator. From (2.9), the estimators of Q'(p) and Q" (p) are

alF) - oz [FoEy | 2 o

(31) hy=({n!
s

n

1 n—-1

-— X [K*(a;l(ﬁn(:r(i+1)) _P)) - K*(a;l(ﬁn(T(i)) _p))]T(i)

ntl
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and

AN A 1 A— 4 x—p
qn<Fn)=b—3/1Fn (k52 e

= bz E [K' (B Tieny) = p)) = Kl b (BulTir) _P))]Ta)’

where a, and bn are bandwidths and K ,(x) is a kernel function which will
be given later. The distribution function G(x) can be estimated by the
product-limit estimator. However, when the estimator of G(x) is equal to 1,
the denominator of the right-hand side of (3.1) is equal to zero. To avoid this
problem, we choose the estimator of G(x) of the form

1 ( n—1i
éﬂ(t) - Typ<t \ N — i1+1
Go(Tin-1y)> t> Ty

As suggested by Sheather and Marron (1990), K, is chosen to be a
higher-order kernel to minimize the problems associated with ratio estima-
tion. We use the following fourth-order kernel, given by Miiller (1984),

K,(x) = (315/512)(3 — 20x® + 42x* — 36x° + 11x®)I(|x| < 1)

to estimate Q'(p) and @"(p). In the absence of censoring, the asymptotically
optimal bandwidths based on the mean squared errors for qn(F ) and q”(F )
are given in Sheather and Marron (1990). However, similar results in the
censoring case have not been seen in the literature. Here, we choose a,,, and
b,y based on a LIL for estimator q(”(F ) [see Xiang (1992) for details]. This
LIL gives, corresponding to the fourth-order kernel function, a,, =
(loglog n/n)'/® and b,,, = (loglog n/n)'/ .

Let F(x) be exponential and let G(x) be exponential with parameter «
chosen to give 50% censoring (a = 1) or 30% censoring (a = 3/7). The
covering probabilities of qn(F ), é*(F ) and F 1 were computed for various
0 < p <1 and sample sizes n = 50 and n = 100 For each case, 1000 cen-
sored samples were generated in the statistical package S on a Sun 2 work
station. Tables 1-4 show the covering probabilities for these models. Compar-
ing the covering probabilities, qn(F ) is uniformly better than F ! for both
models and both sample sizes. The estimator qn(Fn) also performs equally

1-6,
) ’ t < T‘(n—l)a

TABLE 1
Covering probabilities: 50% censoring. Based on 1000 samples of size n = 50

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 0494 0.488 0.529 0.557 0.518 0.515 0.532 0.552 0709

§.(F) 0567 0566 0568 0573 0546 0538 0571 0.659 0.742
G*(F) 0580 0566 0599 0.621 0597 0546 0416 0242 0.186




QUANTILE ESTIMATORS FOR CENSORED DATA 843

TABLE 2
Covering probabilities: 30% censoring. Based on 1000 samples of size n = 50

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 0.508 0.473 0.513 0.520 0.546 0.534 0.513 0.535 0.532
§,(F) 0573 0585 0577 0575 0558 0.567 0.559 0.545 0.602
G*(F) 0570 0574 0572 0596 0.604 0588 0.580 0507 0.337

TABLE 3
Covering probabilities: 50% censoring. Based on 1000 samples of size n = 100

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A

F1 0.650 0.658 0.706 0.687 0.672 0.683 0.678 0.697 0.810

¢, (F) 0723 0730 0716 0.708 0.712 0.705 0.713 0.751 0.859
G*(F) 0755 0.757 0.754 0.754 0.761 0.763 0.717 0.466 0.361

TABLE 4
Covering probabilities: 30% censoring. Based on 1000 samples of size n = 100

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A

Ft 0.660 0.701 0.693 0.709 0.667 0.680 0.691 0.702 0.686

cf,,(ﬁ',,) 0.728 0.755 0.758 0.729 0.714 0.726 0.719 0.703 0.746
Ggx(F) 0753 0.764 0.772 0.747 0.716 0.730 0.761 0.774 0.609

well for dlfferent values of p; § (F ) is better than F 1 except for large
values of p; § (F ) performs better for larger sample size and lower censor-
ing percentage For small sample size n and heavy censoring model, F (8)
tends to have big jumps at large 7};,. Hence, if %, is sufficiently small, it may
be the case that |F 2(Ti;)) — pl > h, for any T(,) From (1.5), this results in
A*(F ) = 0. Moreover, suppose %, 1(F (T,;)) — p) = 0 for some i. From (1.5),
;':(F ) = (s, K(0)/h )T, If B,y is sufﬁmently small and F.(¢) has a big jump
at T, 4» (F ) may be very large Hence, §*(F,) may perform poorly for large
p values. In contrast, from (1.4),
values. In contrast, from (1.4),

()= ¥ (h‘lfﬁ(T‘”) K(x_p)d )T
qn n) = N i - X 1)
i FAT,_ 1) hn (@)
where we set ¥ 2(Tigy) = 0. The sum of the weights in the above L-estimator is
always equal to 1. This characteristics of qn(F ) overcomes the drawbacks
associated with ¢*(F,). For the simulations we did not use the hopt given in
(3.1), but an asymptotically equivalent version h0 ¢ =min{0.2, p,1 — p, 2,
where h,,, is calculated from (3.1) based on the above plug-in method. This
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TABLE 5
The values of h,,, calculated based on the life test data

p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Ropt 0.229 0.232 0250 0.250 0.255  0.261 0.276 0.276 0.276
p 0.55 0.60 0.65 0.70 0.76 0.80 0.85 0.90

h 0289  0.289 0.331 0.331 0.331 0331 0331 0.331

restriction usually alters h,, only when the sample size is small; this
protects against the bias for small sample size associated with the edge
effects.

As an example of the quantile estimators, we use the life test data for
n = 40 mechanical switches reported by Nair (1984) (see Table 5). Two failure
modes, A and B, were reported assuming the randomly right-censored
model. There are 17 uncensored observations, which is 57.5% censoring in
this particular sample. The values of %, are calculated from (3.1) based on
the above plug-in method. It is interesting to note that these values of A,
are close to those selected in Padgett (1986) based on the bootstrap mean
squared errors. Figure 1 shows the estimators qn(F ) and g *(F) along with
F1. As Figure 1 indicates, as p is close to 1, both qn(F ) and g} (F ) are not
monotone in p due to the edge effects which result in the bias for the kernel
estimators.

4. Proofs. Let

3.0

Q(p)
24

1.8

R U ER W TR Ay SODr SO TRy S WY PP

1.2

-

Y T T T T T T T

01 02 03 04 05 06 07 08 09

p
Fic. 1. Quantlle estimators for switch life data. The solid, short dashed and long dashed curves
correspond to F; ', §,(F,) and §*(F,), respectively.
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The basic idea for the proofs of the theorems is to express qn(F ) —§,(F)asa
functional of F (¢) — F(¢t) and then use a strong embedding result due to
Major and Reto (1988) Major and Rejt6 (1988) have shown that there exists a
Gaussian process W(u), 0 < u < «, such that

(4.1) p u:;?T] |n(ﬁn(u) - F(u)) - \/;W(u)l > %logn +x

< K exp(—A8%x)
for all x > 0, where T < Ty,0 < 8 <1 — H(T), C, K and A are some positive

universal constants. The process W(u) has mean zero and the covariance
function

(4.2) EW(s)W(t) = (1 - F(s))(1 - F(t))y(min(s,t)),
where
dF(y)
4.3 =
“3 O = et -F

Based on Major and Rejtd’s result, cjn(ﬁn) — §,(F) can be strongly approxi-
mated by a Gaussian random variable [see Xiang (1992)]. The variance of this
Gaussian random variable is given in the following lemma.

LEMMA 3.1. Let W(¢) be a Gaussian process with mean zero and a

covariance function given by (4.2) and (4.3). Let Q"(t) be continuous in a
neighborhood of p and let

Y, = f_llQ’(p + uh,) K(u)W(Q(p + uh,)) du.

Assume that [1 K(x)dx =1 and [!,xK(x)dx = 0. Then Y, is a Gaussian
random variable with mean zero and variance
1,1
= [ [ @+ )@ P +ht)(1=p = hys)(1=p = hyt)
dF(y)
(1-Gy)(1 - F(y)’

% K(S)K(t)LQ(p+hns)AQ(p+hnt)

(44) _ (1 _p)2 /‘Q(p) dF(y)
fA(Q(p)) Yo (1-G(y))(1-F(y))
Y(K)h,

IR CONEC ) R
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Proor. Obviously, Y, is a Gaussian random variable with mean zero. To
show (4.4), from the covariance structure of W(¢), we have

(%) = [1 [ Qp+ m®)@ (P + hut)(1 = p ~ )L~ p = hyt)

dF(y)
(1= G(y))(1 - F(y))*

= f_llf_llQ,(p + hns)Ql(p + hnt)(]_ e hns)(]_ -p— hnt)

dF(y)
(1-G(y))(1 - F(y))*

+f1 fl Q(p+h,s)Q(p+h,t)(1—p—h,s)(1—p—h,t)
—-17-1

h h
XK(s)K(t)f()Q(p+ 2SIAQ(p+h,t)

xK(s)K(t) dsdt [0 P

Qp+h,)AQ(p+h,t) dF(y) ds
Q) (1-G(9)(1 - F(y))

X K(s)K(t)
= Il + Iz.
It is easy to check that

dF(y)
1-G(y))(1 - F(y))*

(45 L=Q*p)-p) [ o(hy).

For I,, we have
I, = ff tQ’(p +h,8)Q (p+h,t)(1—p—h,s)(1—p—nh,t)

Q(p+h,s) aF(y)
XK(S)K(t)L(p) (l_G(y))(l—F(y))2

+f/;<sQl(p + hnS)Q,(p + hnt)(l -—P - hns)(l -p - hnt)

Q(p+h,t) dF(y)
«p  (1-G(y)(1-F(y))’

sdt

XK (s)K(t) dsdt = S, + S,.

It is easy to verify that

Q)
1-G(Q(p))

The lemma follows from combining (4.5) and (4.6). O

(46) S, =S, = f_llxK(x)f_le(y) dydx + o(h,).

To prove the theorems, the following lemma is essential to our approach.
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LEMMA 3.2. let K(x) be Lipschitz of order 1 and let Q'(t) be continuous in
a neighborhood of p with 0 < p < F(Ty). Assume that f(Q(p)) > 0. Then

4.7 _wsllp<w|P( (ﬁ‘n) - (jn(F)) < xa-n) - <I>(x)|= o _(_l}(l)g—‘/r_:;))
and
(4.8) _:3p<w|P(\/Z(q:(ﬁn) ~ §,(F)) <x0,) — ®(x)|= 0 (1}%_,%)

where o, is given by (4.4).
The proof of Lemma 3.2 is provided in the Appendix.

PROOF OF THEOREM 2.1. We prove (2.1) only. Let d, = Vn /0,(Q(p) —
4,(F)). The smoothness condition on Q(t) implies d2 ~ & %2 nhi™* . Write
t, = too, 1. Using Lemma 3.2, we have

P(4.(F,) € I(n))

_ o (log n)”
—®(¢t, +d,) - D(~t, +d,) + O T )
=®(t,) — ®(—t,) + ¢'(t,)d2 +o(d2) + O (i:)—g‘/’;_)—),

On the other hand, Theorem 2 in Janssen and Veraverbeke (1992) implies
P(£,, €L(n)) = ®(t) - ®(~t) + O
Hence, using Taylor’s theorem,
P(4.(F) e L(n)) - P(§, € I(n))
=2¢(t)(t, —t) — td(t)T *ainhi™*D

(log n)
hon |

1
3

(4.9)
+o(d2+ (t,—t)") + O

It is easy to check that by Lemma 3.1,

f i~ tVY(K)

§ 202(1—G(Q(p)))l°2(Q(p))
This and (4.9) yield (2.1). O

PROOF OF THEOREM 2.2. We only show (2.6) and (2.7) for j = 1. If band-
widths and kernel functions are chosen such that P(qn(F ) e I(n) — P( §pn
€ I(n)) = 0, then from the definition of i;,(n), it is easy to prove that
lim 1nfn_,w(zlt(n))/n > 1. For these bandwidths and kernel functions, we
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have from (2.1) and again the definition of i;,(n),
P(épiu(n) € it(n)) - P(épn € I-t(n))

o - A _ 1
= P(4,(F,) e I(n)) - P(§,, e I(n)) + 0( %0 )
(4.10) ) th(£) ¥ (K)
"~ fAQ(p))(1 - G(Q(p)))5*

to(t)an,
AL A

P

A2 4 o(h, + nh%m+ D),

This and Theorem 2 in Janssen and Veraverbeke (1992) yield
:1/2
n nl/2
) 9(6) ¥(K) .
fA(Q(p))(1-G(Q(p)))a* "

to(t)ay
R

(4.11)

nhZmD 4 o(h, + nh%m D),

where t* € (t, t(i}{%(n))/n'/?) or t* € (¢(i}/%(n))/n'/%,t) and the right-hand
side of (4.11) must tend to 0. Hence, we have (i14%(n))/n'/? - 1 and t} — ¢
as n — o, Therefore,

il/2(n) —n¥2 V(K) .
W7 22(Q(p)(1- GR(p))FE "

2
a

- 2;2 nh2m* D + o(h, + nhi™* D)

and (2.6) follows for j = 1. By ignoring the higher-order terms, it is easy to

check that i,,(n) — n attains the maximum rate for 2 = A, in (2.3). Equa-

tion (2.7) is a consequence of (2.3) and (2.6). O

(4.12)

APPENDIX

ProoF OF LEMMA 3.2. We prove (4.7) first. Write G,(x, o) =
tK((s — p)/h,) ds. Then for large n, using the change of variable theorem
[Billingsley (1986), page 219],

A 1 = A
Go(F,) = 4u(F) = 5= [ 2d(G,(F,(x), p) = G.(F(x), p))

1

= —— " (G(Fi(%), p) - G(F(), p)) dx

= —f ( (Fn(x)_p)/h"K(u) duldx =1, +1,,
- \Y(F(x)-p)/h,
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where
w [F(x)—p\[F(x)— F(x)

(A1) I, =- f_wK( W ( . dx

and
© A F _

(A.2) I2n _ __f ( (Fn(x)_P)/hn(K(u) _ K(__._(u du) dx.
—o\ A F)-p)/hy h,

From Major and Rejto’s result, write I,, = Z, + r, with

1 = [F(x)-p
zZ, - - e f_wK(T)W(x)dx
and
1 o [(F(x)-p
r, = —-7{; _OOK(T)T"(JC) dx,

where W(x) is a Gaussian process with mean zero and satisfies (4.2) and 4.3)
and 7,(x) is the difference between F,(x) — F(x) and (1/ Vn)W(x). After a
simple transformation, it is easy to see that, using Lemma 3.1, VnZ, is a
Gaussian random variable with mean zero and variance o,> given by (4.4). It
follows that, with probability 1,

o G
(a3) = (4,(F) = 4u(F)) = N(0,1) + —(r, + ),

where N(0, 1) stands for a standard normal random variable. Hence, using a
well known lemma [cf. Serfling (1980), page 228], to prove (4.7), we only need
to show

(log n)z)

log n)?
(A4) p(\/r7|rn+12n|2_hn_ﬁ_ ((og ) )

Thodn

Let 8, = (log n)?/h,n. First of all, for n sufficiently large, there is a constant
T with T < Ty and 0 < § <1 — H(T) such that @(p + h,y) <T < Ty for
all |y| < 1. Hence for large n, from (4.1),

P(Ir,| > 8,) = P(‘f_llQ’(p +h,y)K(9)7(Q(P + hyy)) dy‘ = Bn)

(A.5) SP( sup |n7,(u)] _>_Con8n)

O<u<T

logn)®> C 1
sKexp{—)uV(CO-(%)— - Elogn)} = 0(—),

n
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where C, is a constant. On the other hand, for an &> 0 with 1+ &<
(1 — p)/h, (this holds if n is large), we write

Ly = ho [ Q0 + hy) [HCOTIT (K () — K () dud
J x
b [CIQ () [FHAPTAD TP K () — K(x)) duds
1+e x
whof QD ) [T D(R () = K(x) duds
-p n x

=8, + 8y, +853,.

By

- F +xh,)) —
S, Shnfl(l P/ Q' (p + hnx)|I( (Q(p - n) ~ P <1
+& "

X dx

(F(Q(p+xh,)D—p)/h
" " "(K(u) — K(x))du
// (K(u) = K(x)

<h f““’”"”]Q'(erh x)|
" 1+¢ "

1 F(Q(p+ (1+e&)h,))—(p+(1+e)h,) . _8)

h

n

X dx,

(F(Q(p+xh,)—p)/h
" " "(K(u) — K(x)) du
/! (K(u) - K(x))

Theorem 2 in Foldes and Rejto (1981) implies

P(ISy,l = 8,) < P(IE,(Q(p + (1 + &)h,))

(A.6) 1
_(p + (1 + 8)hn)| = Shn) = O(;)
Similarly,
1
(A7) P(I83,l = 8,) = O(;)

Since K(x) is Lipschitz of order 1, for a constant C,,

A 2
181, < Cih; Y sup |F(Q(p + uh,)) — (p + uh,)| .

lul<1+e
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Again, using Theorem 2 in Féldes and Rejto (1981),

P(IS,l = 6,) < P(Clh;l sup |F‘n(Q(p +uh,)) —(p+ uhn)l2 > Bn)

lul<1+ e

(A8) <p( sup |R(QUp +uhy) - (b +uby)| > CT 2012

lul<l+e
1
< dgexp{—d,C;'n8s,h,} = O(;)

Combining (A.5)—(A.8), (A.4) follows.
Now we prove (4.8). Write

N 1 . x—p
§1(8) = o [ BR[| s

n

and introduce
; 1 x—p
0P - 1 [le K5
where K, is defined by

K( p)=K( - p)’ <x<—, i=0,£1,%2,...
n

).

n

h h
It is easy to check that

n n

K, (u)=0 iflul=1+

nh,

and

1
_mslllf)<w|Kn(u) - K(u)| = O( . )
The difference between ¢*(F,) and §,(F) is

é:(ﬁn) - én(F) = q\n(ﬁn) - én(F) + q—n(F) - é\n(F)

—fm f((ﬁ"(x)_p)/h"(Kn(u) — K(u)) dudx.

F(x)-p)/h,
Hence, to complete the proof, we need to show
_ ] (log n)”
. n n
and

- 3,

P(' / T [EDh g (1) — K(u)) duda
—w’(F(x)=p)/h,

(A.10) ,
' _o (log n)
= —_—hn\/; ,



852 X. XIANG

where 8, = (log n)?/h,n. Equation (A.9) follows easily from

14.(F) = 4u(F)| < [ |Q(z + uh,)|| K, (u) — K(u)|du

lul<1+1/nh,
1 (log n)2
_O(nhn) _"( nh, |

To prove (A.10), we write, for a given £ > 0 with ¢ > 1/(nh,),

(A.11)

[oc (F‘,,(x)—p)/hn(Kn( u) — K(u)) du dx
—x F(x)—P)/hn

o

- FlD=P (g (4) — K(u)) duda
Q(p+h,+2h,e) (F(x)-p)/h,
+ Q(p+hn+2hn€) (Fn(x)—p)/hn(Kn(u) _ K(u)) dudx
Q(p—h,—2h,&) "(F(x)-p)/h,

[P RIS [(BD=D/ M g () — K(u)) dudx = Ty + Ty + Ty,
— o (F(x)-p)/h,

From

7, < S AP
1
Q(p+h,+2h,€) h,

BODIn(K(u) - K () du
(F(x)-p)/h,

X dx

o

F(Q(p +h,+2h,8))— (p+h, +2h,¢) .

< I —¢
/G?(p+h,,+2hns) h,
x| [P (g (4) — K(u)) du|dx
(F(x)-p)/h,

and an argument similar to that in the proof of (A.6),

(log n)® )

(A.12) P(ITy25,)=0 T

Similarly,

(A13) P(ITy| = 8,) = O

(log n)®
Thn |
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Finally, there exists a constant C,, such that

P(|T2| = Bn)
C, X
<P A sup |Fn(x)—F(x)|26n
(A.14) Ny Qt—h,—2h,e)<x<Qt+h,+2h,¢)
log n)?
_ofUeen)

Thdn

Combining (A.11)-(A.14), (A.10) follows. O
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