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In this paper optimal rates of convergence are derived for estimates of
sets in N-dimensional “black and white” pictures under smoothness con-
ditions. It is assumed that the boundaries of the “black” regions have a
smooth parameterisation, that is, that the boundaries are given by smooth
functions from the sphere S¥~! into RY. Furthermore, classes of convex
regions are considered. Two models are studied: edge estimation models
motivated by image segmentation problems and density support estima-
tion.

1. Introduction. Optimal rates of convergence in nonparametric esti-
mation have been studied by Bretagnolle and Huber (1979), Ibragimov and
Khasminskii (1980, 1981), Stone (1980, 1982), Birgé (1983) and others. These
results are mainly related to nonparametric regression and density estima-
tion. Recently some work has been done on the nonparametric estimation of
sets in images, in particular, optimal rates of convergence were studied by
Korostelev (1991), Tsybakov (1989, 1991) and Korostelev and Tsybakov (1992,
1993a, b).

In this paper we derive optimal convergence rates for estimates of sets in
N-dimensional “black-and-white” pictures. We consider estimation of “black”
regions under smoothness conditions. It is assumed that the boundaries of
these regions have a smooth parametrisation, so that the regions belong to
the Dudley classes of sets [Dudley (1974)]. (As a special case, this includes the
model of “boundary fragments” studied in the above-mentioned papers of
Korostelev and Tsybakov.) The variety of possible sets covered by our as-
sumptions is rather large since smooth parameterisation of the boundary
does not imply that the boundary itself is smooth (see Figure 1). Also for
convex sets our approach gives the correct rate of convergence.

We study the problem of estimation of sets for two different setups: edge
estimation and density support estimation. The study of edge estimation is
motivated by applications in image analysis. Often as a first step in image
processing the original picture is transformed to a binary black-and-white
picture which is then used to recover edges, that is, boundaries of black
regions [see, e.g., Pratt (1978)]. Density support estimation is related to
cluster analysis and quality control. The aim of this paper is not to add some
new practical recipe to the variety of existing ones, but to propose, under
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504 E. MAMMEN AND A. B. TSYBAKOV

certain idealisations, a tool for comparing the statistical properties of differ-
ent estimation methods. Such a tool, in our opinion, is provided by the
knowledge of the optimal convergence rates.

2. Smoothness classes of regions. Let us recall the definition of
smoothness classes of sets introduced by Dudley (1974). These classes are
uniquely determined by constants y> 1, L > 0, integers N > 2, J > 1 and
by {(F;, V), j = ,J}, where V,,...,V, are open sets on the sphere

SNt ={x=(xq,...,2y) ERN|x} + - +x} =1},

such that UV, = S¥-1 and F; are infinitely many times differentiable
isomorphisms

F:{xlaf + - +a}_, <1} >V,

The functions F; establish a relation between the surface SV~ ! and the
covering system {IV} In the following we assume that these functions and the
system {V}} are ﬁxed so that our definition of classes of sets will have only vy,
L and N as free parameters.

Denote

'Z:,L =8 (gl’---’gN)lgi:SN_l - [0’1]

. le®(x) — ® ()]
with sup poy
x,y Ix - y|

< L for ¢(x) = g;(Fy(x)),

Here % is max{m € N: m < v}, | -| denotes the Euclidean norm and ¢*)(x) is
the vector of all partial derivatives of order & of a function ¢(x).

A function g = (gy,..., gy) €, ;, defines a surface in RV with “smooth-
ness parameter” y. As in Dudley (1974) for each g € %, ; we introduce the
set G(g) which has this surface as boundary in a certain sense. The set G(g)
consists of all points x € RY such that either:

1. x € range(g)
or

2. x ¢ range(g) and in RY \ {x} the function g is not homotopic to any
constant map of SV~ ! into a point # € R¥ \ {«}.

Here range(g) denotes {g(s)|s € S¥~1}. Three examples for N = 2 are
given in Figure 1. The last two examples show that the boundary dG(g) C
range(g) is not necessarily smooth if the curve range(g) is smooth. Finally,
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the smoothness class of sets is defined as

.= {6(g) n[0,1]"lg e, 1}

3. Statistical models. We consider the problem of estimating a set
G € Z, ;, for the following two models.

MopkL 1 (Edge estimation). One observes X; € [0,1]" and Y; € {-1,1}
(i =1,..., n). (Interpretation: X; is a point and Y] is the image level at this
point; Y; = —1 for white, Y; = 1 for black). We assume that the observations
Y, reproduce a black region G correctly with probability 1/2 + a,:

(3.1) Y, = (2I(X; € G) — 1)¢, i=1,...,n,
where £,,..., ¢, are ii.d. random variables with
_ B 1, with probability1/2 + a,,
§=&in= —1, with probability 1/2 — a,,

for a sequence a, with 0 < a, < 1/2. Here I(*) is the indicator function. It is
assumed that ¢;,..., &, are independent of X|,..., X.

Assumptions on the distribution of (Xj, ..., X,,) will be given below. The
model (3.1) can be written as

(3.2) .Yl=2anfG(Xl) +{in’ i= 1,...,n,
where f;; is a function taking the values +1,
fo(X;) =21{X, € G} - 1,
and ¢;, are some independent bounded zero mean random variables.

In view of (3.2), a, may be interpreted as the edge step size of a binary
picture. The interesting cases are (i) a, = a with 0 < a < 1/2 and (i) @, — 0.
The case (i) has been considered in Korostelev and Tsybakov (1992, 1993b) for
smoothness classes of boundary fragments (sets G with boundaries defined
by smooth functions of the first N — 1 coordinates). The case (ii) models

pictures with high noise. Note that for Model 1 the estimates of G considered
below do not depend on a,.

MODEL 2. One observes i.i.d. random variables X; € [0, 1]V with Lebesgue
density

(1/2 +a,)I(x €G) + (1/2 —a,)I(x € G)
fa(x) = 2a,MG) + 1/2 — a, ’
where a, is a sequence with 0 <a, <1/2, G=[0,11Y\ G and A is the
Lebesgue measure. It is assumed that MG) > 0.
If a, =1/2, then G is the support of the density f; and we get the

support estimation problem as first considered in the papers of Geffroy (1964)
and Rényi and Sulanke (1963, 1964). Geffroy (1964) studied a piecewise-con-
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stant support estimator for two-dimensional boundary fragments. Rényi and
Sulanke (1963, 1964) investigated the case of a convex two-dimensional
support G, and they proposed to use the convex hull of sample points as
estimator. Their results were generalized to the multidimensional case and
extended in several ways by Efron (1965), Bosq (1971) and Chevalier (1976).

Support estimation is useful for several applications. We mention here two
of them. First, as proposed by Devroye and Wise (1980), one can apply
support estimation for detecting abnormal behaviour of a system, plant or
machine. If G the estimator of the support G, is given, then one can check
whether a new observation X is driven from a rather different distribution as
Xi,..., X,. The system is decided to behave abnormally if X ¢ G,.

Another application of support estimation is cluster analysis. One can
define clusters as level sets of densities, that is, the sets, where the density
f(x) of X;’s is larger than some constant k > 0 [see Hartigan (1975) and
Miiller and Sawitzki (1991a, b)]. In the case of a uniform density f, all level
sets V. = {f(x) > «k} coincide with the support G for « small enough. In
general, the accuracy of level set estimation is influenced by the smoothness
properties of f. The interesting problem of optimal rates in level sets estima-
tion is not yet solved for general smoothness classes. Some upper bounds on
the risks are given by Hartigan (1987) and Polonik (1991).

Several statistical problems are related to support estimation. First, we
mention the estimation of the silhouette and of the excess mass [Hartigan
(1987), Miiller and Sawitzki (1991a, b) and Polonik (1991)]. For « > 0O the
excess mass is defined as [ max{f(x) — «, 0} dx. The silhouette is the relation
k — {x: f(x) > k}. For the uniform density on G one gets max{1 — «A(G), 0};
thus excess mass estimation reduces to the estimation of the area of the
support G. Another related problem is finding the edge of a Poisson forest.
This problem posed by D. G. Kendall is the following: given the realization of
a planar Poisson point process with unknown positive intensity within a
compact set G and zero intensity outside G, estimate G. For convex G this
problem was studied by Ripley and Rasson (1977) and Moore (1984). Other
types of domains were considered by Jacob (1984), Jacob and Abbar (1989)
and Abbar (1990). '

4, Upper risk bounds. For two closed sets G; and G, define the
distance d,(G;,G,) as the Lebesgue measure of their symmetric difference:

di(Gy,Gy) = MG, AG,).

Let E; denote the expectation with respect to the distribution of the sample
when the underlying set is G.

The next theorem gives upper bounds for the risks of estimators in the
smoothness class &, |

THEOREM 4.1. Let &, C &, ;. Suppose that either:
(1) Model 1 holds and X are independent and unzformly distributed on
[0, 11%;
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or

(ii) Model 2 holds and either a, =1/2 and MG) = A, for some fixed
Ay > 0 for all sets G € &,, or lim,_,,a, =0 and all sets G € Z, are con-
tained in a set & < [0,11Y with

(4.1) N2) < 1.

Then there exists an estimate G;; such that for every q > 0,

(4.2) sup EG(di’(G;",G)) < Cl(nafl)"’“’/(“N‘l),
Geg,

Here C, > 0 is a constant which depends only on q, N, y and L.

It will be shown in Section 5 that the rates of G} given in Theorem 4.1 are
optimal if na? — . Theorem 4.1 generalizes a result in Korostelev and
Tsybakov (1992, 1993b), where for Model 1 some special subclasses of &, |
(boundary fragments) were considered, with a, = const.

Let us now define the estimator G that we use in the proof of Theorem
4.1. For doing this we need some notation. Let & be a compact set of domains
G endowed with a metric d. Denote by A&, d, ¢) C & a minimal s-net on &
in d-metric. The estimator G; of Theorem 4.1 is the maximum likelihood
estimator (MLE) on the e-net .7, =/, d,, €). The value of ¢ depends on n,
v and L (see the proof of Theorem 4.1). For Models 1 and 2 the maximum
likelihood estimators on &-nets .7, are of the form

n
G =argmin Y, [I{X, € G}I{Y, = -1} + I{X, € G{{Y, = 1}]

n

(4.3) Ged, 11

(for Model 1)
and
G} = arg min [2a,MG) + 1/2 — a,]
(4.4) Gt
><[1/2 + an]—An(G)[l/z _ an]_IH"(G)»
where

M(G) =n '#{i: X, € G} (for Model 2).

We do not know if for Model 2 there exists also an estimate which does not
require knowledge of a, and achieves the optimal rates of Theorem 4.1.
In particular, for the case a, = 1/2 the minimisation in (4.4) reduces to

G* = in (MG): G2{X,,..., X,}).
* argéngg{() 2(Xy,...,X,})

. REMARK 1. In part (i) of Theorem 4.1 one can consider also other assump-
tions on the distribution of the X,’s. In particular, one can assume that the
X/’s are independent and uniformly distributed on pairwise disjoint cubes I;.
More explicitly, for a subsequence of n such that » = n}/¥ € N, construct a
grid on [0, 1]V of n cubes with side length r~1. Denote the cubes by I,,..., I,.
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Now assume that the X)’s are independent and that X; has a uniform
distribution on I;. Then one can show as in the proof of Theorem 4.1 that
there exists an estimate G* with rate (na2)~?/*¥=D This rate can in
general not be achieved if the X’s are nonrandom and equal to the midpoints
of the I’s. This can be shown as in Section 3.1 of Korostelev and Tsybakov
(1992).

REMARK 2. For Model 1, Theorem 4.1 remains valid for a more general
class of error distributions. In fact, the theorem holds for models of type (3.2),
where ¢;, are independent zero mean random variables with

sup E(exp(t{;,)) <~ for t small enough.

nx1
1<i<n

For such models G} can then be chosen as the least-squares estimate on an
e-net 7,

n
G: = argmin Y (Y; — 2a,f6(X))’,
Gest, i=1
where f;; is defined as in (3.2). In our model this coincides with the estimate
given in (4.3).

REMARK 3. The estimator G} given by (4.3) or (4.4) is primarily of
theoretical value. Algorithms for the numerical calculation of this estimator
would have exponential complexity when based on a global search on .7.
Estimators which can be calculated easier and which achieve the optimal
rates exist for several submodels. For instance, for sets with Lipschitz
boundaries (y = 1), edge estimators with optimal rates can be based on a
simple classification [Tsybakov (1989, 1991)]. We conjecture also that for
Model 1 the algorithm of Nagao and Matsuyama (1979) has an optimal rate if
v = 1. For smoother boundaries (y > 1) the calculation of optimal estimators
seems to be a hard numerical problem. In Korostelev and Tsybakov (1992,
1993b) algorithms are discussed for boundary fragments and for the classes
of “star-shaped” two dimensional sets G [see also Rudemo, Skovgaard and
Stryhn (1990) and Rudemo and Stryhn (1994)].

Proor OF THEOREM 4.1. Write for brevity & = &,. We apply Lemma A.1 of

the Appendix. Consider first Model 1. Let us check (A.3). In our case © = 2,
0 =G and

n
p(Z,0) = HP(Xi’Y;’G)’

1+2a,, ifY,=1,X;,€GorY,=-1,X,€G,

p(Xi,Yvi’G)= ol
1-2a,, ifY,=-1,X;€eGorY;=1,X, €G.

Here Z = (X,,Y)),...,(X,,Y,)) and p(Z, G) is the density of the distribution
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of Z with respect to the dominating measure » = (v, X »,)", where v, is the
Lebesgue measure on [0,1]" and v, is the measure concentrated at points
1, -1, with v{1} = v{—1} = 1/2.

We prove (A.3) with @ = 1, ¢, = 2. For this we have to consider sets 0 = G,
§=G and ¢ = G with dy(G,® < &, d(G,G) > &t, for some ¢ > t,. Then

P{p(2,8) = p(Z,6)} = Pe{(} + a,)° (3 —a,) " = 1} =Pe{S = 0},

where

M=

S=Y ({Y,=1,X,€G} +I{Y,= -1, X, ¢ G})

i=1

- f)(z{Yi=1,Xieé} +1{y, = -1, X, ¢ G}).

i=1

I

Note that
Eg{S} = 2na,|—d\(G,G) + dy(G,6)]
< 2na,[-d(G,G) + ¢].

Next, note that S = L ,7;, where ;s are independent random variables,
Iml < 1, and Var{n;} < E{n} = d(G,G) < d(G, G) +d(G,G) <d(G,G) +
¢. Applying the Bernstein inequality and using (4.5), we find

(4.5)

1 n
P,{S =0} < PG{; ‘;(m - E(n}) = 2a,(dy(G,G') - e)}

n[2a,(dy(G,G) — )]’
< exp|— .
4(dy(G,@) + &)
Put ¢, = 2. Then for d(G,G') > ts, t > ¢, we have
Ps{S = 0} < exp(—gna;st),

which proves (A.3) with c;; = 1, ¢gp = na2/6, @ = 1.

Now, let us check condition (A.4). Dudley (1974) proved that there exists a
constant C, > 0 depending on v, L such that the e-entropy [Kolmogrov and
Tikhomirov (1961)] satisfies

#(%,,1,dy, ) = log(card /&, 1, ds, £)) < Cpe™N7D/7,
Hence, for any £, C &, 1,
(4.6) H(Z,,dy, &) < Cpe™N1/7,
Choose & = (Cy/na?)?/*N=1 Then
H(Z,,dy,8) < Cpe~ VDY = nale = 5cq5¢,

which proves (A.4) with ¢,; = 1 and c,, = 0. Hence we can apply Lemma A.1.
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In our case, D = 1, a = 1 and (A.5) implies

1
sup Eg(e %d4(G},G)) < max(Zy,¢;) + e! exp(— —na,zls).
Geg, 12

If we substitute here the expression for &, we get (4.2) for Model 1.
Consider now Model 2. We apply Lemma Al with Z = (X,,..., X,), v
being the n-product of Lebesgue measures on [0, 1]¥ and

p(2,G) = if[lfg(xi)-

Let us check Assumption 1 of the Appendix. For showing (A.1) we have to
consider

47 [Vp(2,6)p(2,G) dv=J" where J = [Vfe(%)fa (=) dz.

Now, denoting MG) = 2a,M&) + 3 — a, we get

NG n @) +dy(G,6)[{(1/9) —al - ((1/2) - a,)]
VAG)A(@) '

Consider first the case a, = 1/2. If X\G N G') =0, then J =0 and (A1
holds. If MG N G') # 0, then

(4.8) J=

g MGNG) M(GNnG)
= AN I RGN G) + NG N GG, G)
s _dy(G, @
< (1-4dy(G,q)) % < exp(—(—z——)-).

Hence, for a, = 1/2, we have

(4.9) [Vp(Z.G)p(Z,@) dv < exp(—ndy(G,G")/2).
Assume now that lim, ., @, = 0. Then MGNG)=73—a, >0 for n large
enough. Note that
(4.10) MAONG) =2 (GNGE) + 2a,M(G N G)dy(G,G).
Denote for brevity A = A(G N @), d; = d{(G,G). From (4.8) and (4.10) we get
- - 1/2
L[ X 2Aan—an)did ¢ d2(a, — a2)’
< —
- MG)ME)

(4.11)

1/2
( 2¢2d, d2a? ) /
< .

1- = + -
A+2and1 %—an)

Clearly, A(G N @) + 2a,d(G,G) = a,[2NG U G) — 1] + l<a, + 3.
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Also, by (4.1), we have for a §, > 0 that d(G,G) < 2) <1 — §,. To-
gether with (4.11) this entails

1/2
2a2d1 (1 - 60)d1a2 1/2
J<|1- —1 4 rl = (1-a2dy(G,G)k,)",
1/2 +a, (1/2_an)2 ( nda( )Kn)

where «, =[2/(1/2 + a,) — A — §,)/1/2 — a,)?] > 48, + O(a,)] = 2§,
for n large enough. Hence, for n large enough, we have

(412)  J < (1-28,a2dy(G,G))"" < exp(—8ya2dy(G,G)).
It follows from (4.7), (4.9) and (4.12) that for both cases a,=1/2 and
lim a, = 0, we have

JVp(Z,6)p(Z,G) dv < exp(—c13di(G,G)),

where c;, = na2 min(8,,1/2). This gives (A.1).
_ Now we have to_prove (A.2), namely, that for every G € g, there exists
G €, with d(G,G) < ¢ and

(4.13) Pe{c, p(Z,G) 2p(2,G)} <c
Denote by d (G, G) the Hausdorff distance between the sets G and G:

dm(G,G;) = max{ma{(p(x,G), maxp(x,é)},

where p(x,G) is the Euclidean distance between the point x and the set G.

Note that for G € &, ; and G ¢ [0,1]1" we have d.(G,G) < & entails that
d,(G, G) < Ce, where C > 0 does not depend on G and G. This follows from
the fact that the boundary of G is piecewise Lipschitzian (since we assume
everywhere that y > 1) and thus mes(JG) is uniformly bounded for G €

To prove (A.2) we use a special construction of an &-net .7, which could be
called “e-net with one-sided bracketing.” Consider some m1mmal &/2C-net
A8 )5z on &, in Hausdorff metric d... For every set G [0, 1]V define its

(
g-neighbourhood as

6.(@) = {x € [0,1]": p(x,G) < &}.
Clearly, the set
A, = {é =0 ,20(G'): G’ E‘/’/({?6/2)5}

is the ¢/ C-net for £, in Hausdorff metric and also for every G € g, there
exists G €.#, which satlsﬁes G c G, d(G,G) < ¢/C. Namely,one can take
G= O /2)5(G) where (@ is the element of .4} 5z closest to G in Hausdorff
metric. Then

(4.14) GcG, dy(G,G)<e.

Let us prove that for the sets G defined for each G in such a way that (4.14)
is true we have the first inequallity in (4.13) with certain c,;,c,,. Let
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a, = 1/2. Since G c G, it is clear that (4.13) is satisfied if we have

AG) )"
<l\—=] -
=16
Note that this is true with ¢,; = (1 — 2¢&/Ay)" if ¢ is small enough. In fact,
since |MG) — M@)| < d{(G, GS <&, MG) = A, we have

(@) =(1—w 2(1— ° )n £< A
MG) MG) Ay — €

Assume now a, — 0. Then for ¢ and a, small enough, (4.13) holds with
¢,y = exp(—10na’e) and c,, = exp(— gna’¢). To see this, note that

log(p(Z,0)/p(Z, 8)) = nlog[ X(G) /A(G)]

- Rlog[(1/2 + a,)/(1/2 — a,)],
where R = L7 I(X; € G\ @) is a binomial random variable with parameter
1/2 -a )A(G\ G)/A(G) Taylor expansions show that for £ and a, small
enough, the expectation of the left-hand side of (4.15) is absolutely bounded
by 9na?e. Hence (4.13) with the specified values of c,; and c,, follows by
application of Bernstein’s inequality.

It remains to find an & > 0 such that (A.4) is satisfied. Note that for the
&-net with one-sided bracketing .7, constructed above, we have

(4.15)

k)

&
log(card.7) = log(card/l/o/zc) (f‘f ,d.,, ﬁ) < CLeWN-V/7,

where CJ, > 0 is a constant [the last inequality follows from Dudley (1974)].
Using this and arguing as in the case of Model 1, we get that it is sufficient to
find & > 0 such that — 3logc,, + Cpe™ N~ V/7 < 3¢yyet. If @, = 1/2, this is
equivalent to

2¢ n
(4.16) - —log(l - —) + CheMN-D/7 < — gt
A 4
since ¢, = n/2 in view of (4.9). Now —log(l — 2¢&/Ay) < 4&/A, for & small
enough.
The inequality (4.16) is satisfied if
4ne
Ao

If we choose & = const n="/@*N-1_then there exists such ¢; > 1 that (4.17)
holds for ¢ > ¢,. This proves (A.4).

For the case a, - 0 we prove (A4) similarly, with & =
const (na?)~Y/0*N-D

n
(4.17) + Cpem VDT < ot

Our approach can easily be extended to other classes &, which fulfill
entropy conditions. Let us mention the class &, of all closed convex subsets
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of [0,1]Y. The following theorem gives an upper bound for the optimal
convergence rate in &, ..

THEOREM 4.2. Let G€ g, C &,,,,. Assume condition (i) or (i) (resp.) of
Theorem 4.1. Then for the estimate of G defined by (4.3) or (4.4) (resp.) with
an appropriate choice of ¢ = ¢, we have for q¢ > 0,

sup Eq(d{(G;,G)) = 0((na§)‘2‘1/(N+1))'
Geg,

ProOF. We proceed as in the proof of Theorem 4.1, but we use another
entropy bound. Instead of (4.6) we apply [see Dudley (1974)]

(Zoony s A15 €) =0(e_(N—1)/é)_ .
REMARK 4. It is interesting to compare Theorem 4.2 with the results of

Rényi and Sulanke (1963, 1964). They studied the problem of support estima-
tion (Model 2) assuming that G € &,,,, N = 2 and a, = 1/2. The maximum

likelihood estimator is then the convex hull of Xj,..., X, :
(4.18) GMLE = arg Gmin MG) = conv{X,,..., X,}.
G2Xy,e ) X,)

Rényi and Sulanke (1964) assumed that the edge G is twice continuously
differentiable and proved that for dimension N = 2 the estimator (4.18)
satisfies

(4.19) EG(MGYE)) — MG) =0(n7%/%), n-—>o.
Since G is convex, we have that GM'F is contained in G. Hence (4.19) implies
Eg(dy(Gy™",G)) =0(n72%),  n e

Thus, GME has the same rate of convergence as our estimator G for the
case N = 2 (see Theorem 4.2 with ¢ = 1). In the next section we show that
the upper bounds of Theorems 4.1 and 4.2 cannot be improved. This entails,
in particular, that GM"F has optimal rate of convergence in £,,,, for N = 2.

The generalisation of this result for N > 2 can be also obtained, as noticed
by Schneider (1988). For convenience, we formulate it as a proposition.

.PROPOSITION 4.3. Assume Model 2 with a, = 1/2. Then
(4.20) sup Eg(dy(GIP,G)) < C(N)n 2/V+D

Geg,,,

for all n, where C(N) is a constant which depends on N only.
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To prove this proposition observe that by Groemer’s (1974) inequality we
have

EG(dl(G,f’”‘E, G)) < EB(dl(G},“LE, B)) foralG e %,,,,
where B is the Euclidean ball such that A(B) = AMG). Hence,
(4.21) sup Eq(dy(G™F,G)) < Ep (dy(GY™F, By)),

G

where B, is the ball such that A(B,) = 1. Now the right-hand side of (4.21)
does not exceed the right-hand side of (4.20), where C(IN) is some constant
[see Barany (1992) and the references therein].

For estimation of the area A(G) [which, in fact, was the original problem of
Rényi and Sulanke (1964)], the estimator A(GM"F) is not optimal. For N = 2
one gets here the optimal rate n~5/% [see Korostelev and Tsybakov (1993b),
Chapter 8].

REMARK 5. Note that we have the same optimal rates for &, ; and Z,,,,.
This is not surprising: one comes to a similar conclusion in nonparametric
density estimation and regression; see Mammen (1991a,b) and Nemirovskii,
Polyak and Tsybakov (1985).

REMARK 6. Theorems 4.1 and 4.2 can be applied to the model of a Poisson
forest (see above). In this model one has a Poisson random number of
observations, with the distribution of each observation as in Model 2. Thus,
the results of Theorems 4.1 and 4.2 hold with n replaced by the expected
sample size. The same is true for the lower bounds given in the next section.

5. Lower bounds on minimax risks. In this section we show that the
rates given in Theorem 4.1 and 4.2 are optimal. For the tuple of points
Z=(X,,...,X,) in Model 1 we assume in this section only that 2 is an
arbitrary collection of random points in [0, 1]V and that £ is independent of

15005 &,
THEOREM 5.1. Let na? > 1. Assume Model 1 or Model 2. Then for g > 1,

(51)  liminfinf sup (na2)™ """ VEg(di(G,.G))=Co> 0,
no G, Ge%,,

where the infimum is taken over all estimates én of G, and C, is a constant
which depends on q, N, y and L, and which, for Model 1, does not depend on
the distribution of Z.

~ PROOF. We proceed similarly as in the proof of Theorem 2 in Tsybakov
(1989); see also Korostelev and Tsybakov (1992, 1993b). It is sufficient to
prove the theorem for g = 1 since E5(d{(G,, @) > (E(d{(G,,@)? for g > 1.

The basic idea of the proof is to use the fact that the minimax risk is
bounded below by the Bayes risk of any prior that concentrates in the class
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Z,. 1- We construct such a prior which places its mass equally on the vertices
of a hypercube.

Consider first Model 1. Let 0 < n(¢) <1 be an infinitely many times
continuously differentiable function on R¥~! with support (—1/2,1/2)"" 1.
Put m = [(ra2)/O*V-D] + 1 and M = m" 1. For Ay, © = (@y,..., wy) and
for an integer r with0 <A, <1, 0;€{0,1},j=1,...,Mand0 <r <m” — 1,
we introduce the family of sets

G (w) = {x = (%4,...,%y) € [0,1]V:0 <xy < g, (%1y--5 Xy_1, w)},

where
r Ay M
(5.2) g(t,0) = — + WEI wm(m(t = b;)).

Here ¢ is the vector of the first N — 1 coordinates of x, that is, ¢t =
(x4,...,xy_q). Furthermore, BJ~' ={b,,...,b,} is the regular grid on
[0, 1]V~ 1, that is,

BN-1 = {t= (%4,..,2y_1):mx; —1/2 € {0,1,...,m — 1},
j=1,...,N—-1}

For A, small enough, the set G"(w) belong to &, ; for all w.
For k€{0,1}, j=1,..., M, define 0" as the vector o with w; =0 for
i #jand w; = k, that is,

We write ’
o =(o ®;_q1, 0; wyr)
1,0-0’ _1, J+1’-oc, M

and

T, = {x e[o,1]": gr(%1,-rxy_1, 08°) <xy < g (%150, Ty-1, wl! }

Assume that the )’s are i.i.d. Bernoulli random variables. Denote by E,, the
expectation with respect to this distribution and by E, the expectation with
respect to 2= (X,,..., X,). We now lower bound the minimax risk by the
Bayes risk for the chosen prior:

P Fold(G.G))

> r?,iXEG'(w(dl(Gr( “’)’é"))

mY—1

(53)

> ;zl—yEg[Ew( EG'(w)(dl(Gr(“’)’én)W))]

\

R Eg

m?

m'-1 M .
Ew{ ] .ZIEGr(w)(dl(Gr(w)mZ,,GnnZ,)%)}].
70 j-
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We show now that the expression in square brackets in (5.3) is greater than a
constant that does not depend on £. From now on, assume that 2’ is fixed. We
have

EwEGr<w)(d1(G’( ®) NF,,G, N 9},)!?)

&4 - "’j[ijEG'(w)(dl(Gr(w) NG, nZ-,)I%, “’j)]'
Here

E,|Eow(di(G7(0) N5, 6. 0T, )12, o)
(5.5)

4 Egriyin( (@7 (071 05,6, N 5, )12, )]

1\

d;
?]mln( I dP; Gr(uity I dPi,G'(wM)) I dP; Gr(ui0)
iU, ieUj,

ieU;

where d;, = d(G"(0”°) NT,, G(*)NT), U, =U2)={i: X;€7,},
P, ; is the distribution of Y; satisfying (38.1) with X; fixed and

(t)j’o = (wl,..., wj—l’ 0, Q)j+1,..., COM),

a)j’l = ((01,... 5 (t)j__l, 1, a)j+1,.. .y (t)M).
In (5.5) we used the fact that P; gr,i0) = P; gr(,1) for i € Uj,. By Le Cam’s
inequality [Devroye and Gyorfi (1985), page 226] one gets
(5.6) [ min(dP,dQ) = }(1 - H*(P,Q)/2)’,
where H(P, Q) is the Hellinger distance between two probability measures P
and Q. Note that
(5.7) &,(G7(070) N7, G (0P7) N F) = NT,).
It follows from (5.4)—(5.7) that

E,| g (6 (@) N, G, 0 7 ))]

5.8 ! 2 . Ar wj’l Wels wj,O 2
(58) 2"(?’)&,[1‘[ (1_H (Puo ). Puor ))) |2,].

ieU;,

‘Clearly,

2
H2(Pi’Gr(wj,1), Pi,G'(wj'o)) < (‘/% + an —_ .\/% — an) ,

(5.9)
M) = ey(Mm?) ™.
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Here and later ¢;, i = 1,2,..., are positive constants. The first inequality in
(5.9) follows from the definition of &;. Now, (5.8) and (5.9) entail

Ew[EGr(w)(dl(Gr( w) n '7]"" é" n Zr)W)]

2card U,
(5.10) > c2(Mm7)_1(§ +y1- aﬁ) e
> c2(Mm7)"1(1 - 2a'2L)2carde,.

An elementary argument [cf. Theorem 2 of Tsybakov (1989)] shows that for 2

fixed and for m large enough there exists a subset 9,,, =2,,,(#) of the set of

integers {0 < r < m” — 1} and subsets ¥, = ¥,(2) of {1,..., M} such that
card 9, = cgm?,

(5.11) card¥, > M/2 forr €92,,,

cardU, <c,n/(m'M) <c,/a?, forje ¥, and r €9,,,

Jr —

where cg and c, > 0 are some constants.
Using (5.8), (5.10) and (5.11) we find

A 1
GZ;I:,LEG(dl(Gn’G)) > WEg

Ew{ r X (A;;y) (1—2ai)2°arduj'}}

reg,, j€v,

csM ¢y
> —_—
T2 (Mm”)

(1 - 2a2)%/",

Since a, < 1/2, then (1 — 2a2)*%/ . is larger than some constant. The
assumption that na? > 1 entails the inequality m~" = ((na2)/*N=P] +
1)~ > 27 %(na?)~7/@*N=D Thus (5.1) follows.

Consider now Model 2. Introduce the functions (5.2) with r = (1/2)m”.
Denote these functions by g(¢, w). Define the sets

G(ow) = {x € [O,i]N: 0<xy<g(xy,...,%5_1, w)}
and the densities
foi®) = [20,1(x € G(0)) + } ~ a,]/(2,X(G()) + § - a,).
Clearly, G(w) € &, ;, for A, small enough, and inf, A(G(w)) > 3. Hence
(5.12) 2a,MG(w)) +3 —a, > 3.

Denote the distribution of X; by P,  if the underlying set is G.
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Using the same argument as in (5.3)-(5.7), we get

sup EG(dl(én,G)) > maxEG(w)(dl(G(w),én))
Geg, ; @

> Ew{ % E(;(w)(dl(G( w) m'7j’ é 0'71))}

j=1
>3 ) A(Z)Ew[f min( Il dP; ity I1 dPi’G(w""’))]
-1 i=1 i=1
n
> csm™7E, | [T(1 — H*(P;ge0inys Pi,G(“’j'o))/z)z]’
i=1
where
;= {x e [0, l]NZ g(xl""’ XN_15 "’5'0) <Xy Sg(xl""’ IN-15 wé’l)}
and

MT) = cg(Mm”) ™"

To complete the proof it suffices to estimate from above the Hellinger distance
in (5.13). Assume that » (and hence wJ’O.and w’!) are fixed. Using (4.8) and
the relations G(w’!) N G(w’°) = G(w’?) and MG(w’1) = MG(w”?)) +

2a,d(G(w”°?), G(w’1)), we find
A+ [y -a - (1/2) - a,)]
\/xz + 2a,Ad,

¥ + 204, [{(1/0) — e - (1/2) - a,)] )”2

A%+ 2a,Ad,

J = /‘/fg(wj,l)(x)f(;(wj,o)(x) dx =

(5.14)

>1 —40l1[i _: —aﬁ] > 1 - 8a2d,,
2 4
where A = MG(0?")) and d, = d{(G(w’?), G(»’1)). From (5.14) we obtain
H*(P; g(aiy: i, 6oi)
(5.15) =2(1-J) < 16a2d,(G(w”?),G(w’"))
= 16c6a,21(Mm7)_1 <c;n L.
From (5.13) and (5.15) we get

sup EG(dl(G,Gn)) >cym™7(1 - (c7/2)n‘1)2n.
Geg, |

Using the definition of m we get (5.1) for Model 2. O
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Theorems 4.1 and 5.1 show that (na2)~"/**N-D ig the optimal rate of
convergence for estimates of set G on classes £, ;. The next theorem shows
that the rate given for convex sets in Theorem 4.2 is optimal.

THEOREM 5.2. Let na2 > 1. Assume Model 1 or Model 2. Then for any
q > 0 there exists Cy > 0 such that

(5.16) lim 1nf1(1§1fG21;p (nal )2q/(N+1)EG(d‘17(Gn, G)) > Cj.

conv

For Model 1, the constant C;, does not depend on the distribution of Z.

Proor. Let g.(t, w) be the functions (5.2), where y=2 and m =
[(na2)N*D] + 1. Denote

grl(t’ w) =gr(t’ w) - |t|2’

where t = (x,..., xy_,). The sets

Grl(Q)) = {x = (xl,...,xN) S [0, I]N: O SxN Sg,.l(xl,...,xN_l, a))}

are convex if A, is small enough. In fact

M
Vzgrl(t, a)) = Vzgr(t, a)) - IN—l = Ao Z a)JV21](m(t - bj)) - IN—l’
j=1
where Iy ; is the (N — 1) X (N — 1) identity matrix. The norm ||V?y]| is
bounded. Therefore, for A, small enough the matrix V2g (¢, ) is negative
definite. This shows that g,, is concave, and that G,, is convex.
Now let 2 be fixed. Introduce for » = 0,1,..., m” — 1 the curved strips

- |t|2}.

It is clear that there exist at least 3m?/4 strips V, such that the number of
points X, in each strip is less than 4n/m" (otherwise the total number of
points would exceed n). This entails that there exist not less than m?”/4
strips V, with this property for r € [m?/4,3m?"/4]. Denote the set of indices
r corresponding to these strips by 2,,,. Then

(5.17) card 9,,, > m"/4.
Note that G,,(w) C @, where

1
Q, = {(xl,...,xN) S [0,1]N;|t|2 < ’n:y }

r

r
V. = {xE[O,l]N:—Y 1t <y <
m

Hence G,,(w) is given as

G (w) = {x =(%1,...,xy) €[0,1]V: 0 < xp, <g(xg,. s xy_q, w)},
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where
Gty w) =2 L wm(m(t —b;)) — It
Jjel,
and I, = {j: b; € Q,}. Write M, = card I,.
Clearly, for r € [m?/4,3m"/4] we have M, > BM, where 0 < B<1lis a
fixed number. Using the same argument as above we get that in each strip V,
with r €2,,, there exist at least M /2 pieces of the form

{xeV:lx, -bl<1/2m),k=1,...,N - 1}, Jj=1,..M,

such that the number of points X; in each piece is less than 8nm~"(BM)~L.
However, these pieces contain the sets

Tir1 = {x e [0,1]": &%y, 215 op®) <xy <&n(*1,- Tn-1s w{;’l))
Thus we have proved that for each r € [m”/4,3m?/4] there exists a subset
¥, c{1,..., M,} such that

card¥,, > BM/2,

cardU;,; < (8/B)n(m7M)_1 for j € ¥,, and r €9,

where U, = {i: X; € F,,}.

Note that (5.17) and (5.18) are of the same form as (5.11) and that
MT;,1) = M},). Therefore, one can proceed as in the proof of Theorem 5.1 for
Model 1.

For Model 2 the proof is similar to that in Theorem 5.1. Instead of g(¢, w),
one chooses the functions g,(¢, w) = g(¢, @) — |t|2 with y =2 and with A,
small enough. Then one uses the sets G(w) = {x € 0,117: 0 < xy < g4(¢, w)}.

O

(5.18)

APPENDIX

Let ©® be a compact metric space with metric d and let & be a positive
number. Consider the family of distributions P, defined on a measurable
space (Z,%) and indexed by parameter 6 € ®. Assume that there exists a
measure v on (2, %) which dominates the measures P,. We define for Z € 2,

dP,
p(2,6) = 7 (2).

Choose a fixed e-net .7, =#(0,d, &) on ® with respect to the metric d.
For an observation Z in Z with density p(:, §) we define the maximum
likelihood estimator on .7:

9* = arg maxp(Z,0).
g max p(Z,9)
" Assume either of the following assumptions:
AssumpTION 1. For 6, 6’ €., the density p(Z, 0) satisfies

(A.1) [Vp(Z,6)p(Z,6) dv < car exp(—cg2d*(6,0')),
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where ¢y, ¢45, @ > 0 are constants which do not depend on 6,6’ and for
every 6 € O there exists 0 €.#, such that d(6, ) < &£ and

(A2) P{c,,p(Z,0) = p(Z, 6)} < cpo,

where c,; > 0 and c,, > 0 do not depend on 6, 6.

AssUMPTION 2. There exist ¢ q, c49, @ > 0, £, > 1, such that

(A.3) sup  Pp{p(Z,0') 2 p(Z,0)} < cyyexp(—cyy(et))
0',6:d(0,6)<e
d(6,0") >t

for t > ¢, and for every ¢ > 0.

The following lemma is a modification of a result in Birgé (1983).

LEMMA A.1l. Assume Assumption 1 or 2 and let there exist an & > 0 such
that
(A4) - 3logc,, +log(card.s]) < jcgp°t®,  t>1ty,

for some t, > 0. Here we set, by definition, c,; = 1 and c,, = 0 if Assumption
2 holds. Then

supE,(e79d(6*, 0))
(A.5) €06

< max(ty,t;,) + (Q/s)q[cdlexp(—%cdze"‘) + cpz],

where E, is the expectation with respect to P,, 0* is the MLE on ./#, and 2 is
the diameter of ©:

2 = sup d(6,6).
0,00

Proor. If 6* is the MLE on .#, then for any ¢ > 1,

A6 P,(d(6*,0) > st) <P,| max p(Z,60)=p(Z6)],
6 0 e

(6, 6= st

where 6 is an element of s-net.# such that d(6, §) < &. Consider first the
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case when Assumption 1 holds. Choose 6 such that (A.2) holds. Then
P Z,0')>p(Z,6
0( max p(Z,0") = p( ))
d(8,6')>¢t

sP‘,( gpea/l’)/f: p(Z,6") 2cp1p(Z,0)) + ¢pa

d(8,6')=>¢t
(A7) Z,0
< (card.7,) glea}{ P, ———I;((Z 0)) > ‘/cp1 ,0(Z,0) #0| +cpy
(9, 0> et ’
< c;ll/z(card/lfs) m;,/x f\/p(z, 0)p(Z,0') dv + c,y
o'el:
d(e,6")= ¢t

< c,1/%cyy(card s, )exp( —cqp£°t%) + Cps.
It follows from (A.4), (A.6) and (A.7) that for ¢ > ¢,,
(A.8) Py(d(6*,0) = &t) < cgy exp( —Cap8t%/2) + Cp.
Assume now that Assumption 2 holds. Then (A.3), (A.4) and (A.6) entail
Py(d(6*,0) = et)
< (card.”;) sup  P{p(Z,6) =p(Z,0)}

(A9) 0',8:d(, B)<s,
d(6,0)> st

< cg1€xp(—cyp8°t%/2), t > max(¢y,t,).
Using (A.8) and (A.9) we find
Ey(s7d1(6*,6))

= [TB(d(6%,0) = st/7) dt
0

9’
< max(ty,%,) + Cd1f exp(—cgp8°t%/9/2) dt +D'cy,

max(¢g, t;)
< max(ty,t,) + cs1 D exp(—3C496%) T+ D'cyy,
where 9’ = (2 /¢)?. O
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