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ESTIMATING THE REAL PARAMETER IN A TWO-SAMPLE
PROPORTIONAL ODDS MODEL

By CoLiNn O. WU
Johns Hopkins University

This paper considers efficient estimation of the Euclidean parameter 6
in the proportional odds model G(1 — G)~! = 9F(1 — F)~! when two
independent i.i.d. samples with distributions F and G, respectively, are
observed. The Fisher information 1(9) is calculated based on the solution
of a pair of integral equations which are derived from a class of more
general semiparametric models. A one-step estimate is constructed using
an initial YN -consistent estimate and shown to be asymptotically efficient
in the sense that its asymptotic risk achieves the corresponding minimax
lower bound.

1. Introduction. Transformation models, including the well-known pro-
portional hazard model, the proportional odds model and so forth, have been
widely used in survival analysis, reliability theory and medical and epidemio-
logical studies. Examples and applications of these models can be found in
Cox (1972, 1975) and McCullagh and Nelder (1989). In the semiparametric
framework, Wellner (1985) and Bickel (1986) considered a class of transfor-
mation models which adopted the following form: Let X and Y be two
random variables on (0, ©) with cumulative distribution functions F and G,
respectively, and let f and g be the corresponding densities with respect to
Lebesgue measure. Let X;,..., X,, and Y;,...,Y, be two independent i.i.d.
samples of X and Y, respectively. Then F and G satisfy such a model if there
is a nonnegative transformation B(6, ) on (0,®) X [0,1] such that f and g
satisfy

(1) g(t) =B(6,F(¢))f(¢t) forall¢> 0andsome6>0,

where [} B(6,u)du = 1 for all 6 € (0,).

An important subclass of (1) is the generalized proportional odds-rate
‘model considered by Clayton and Cuzick (1986), Dabrowska and Doksum
(1988) and Dabrowska, Doksum and Miura (1989), among others. Define
A(tlc) to be the generalized odds ratio for any random variable T' such that

c(1-Qe) -1, t>0,e>0,

A -
r(H0) =\ _log(1 - (1)), £>0,c=0,

where Q is the c.d.f. of T. Then, F and G satisfy the generalized proportional
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PROPORTIONAL ODDS MODEL 377

odds-rate model if there is a known constant ¢ > 0 such that
(2) Ay(tle) = 0Ax(tlc) forall ¢ > 0 and some 6 > 0.

It is straightforward to verify that (1) reduces to (2) when the transformation
B is defined by

c1-(c+1)/c .
(3) Bc(o’u)={0[0_(0—1)(1—u) ] ’ ife¢ >0,
0(1—u)0_1, ife=0

In particular, when ¢ = 0, (2) yields the proportional hazard model

(4) 1-G(t) =[1-F(¢)]° forall ¢ > 0andsome g > 0.
When ¢ = 1, (2) gives the proportional odds model

(5) 1 —(-;(Cizt) = 01 f(ﬁt'Zt) for all £ > 0 and some 6 > 0.

By (1) and (3), if g, ; denotes the density of ¥ based on the parameter (6, f),
(5) is equivalent to

(6) go,7(t) = 0[1+ (6 — 1)F(¢)] *f(t) forall > 0and some 6 > 0.

For c other than 0 or 1, the interpretations of A,(¢|c) and model (2) were also
discussed by Dabrowska and Doksum (1988).

In most applications of model (2), the relative risk 6 is the principal
parameter of interest. When .F' belongs to a regular parametric family, the
estimation of 6 follows the framework of parametric estimation where the
usual procedures, such as the maximum likelihood estimate, Le Cam’s one-
step MLE, give asymptotically efficient estimators of 6, in the sense of
asymptotic efficiency corresponding to either the Hijek—Le Cam convolution
theorem or the local asymptotic minimax theorem (LAM) [see Le Cam (1972,
1986) or Millar (1979, 1983)]. When the structure of F is unknown, one
reasonable nonparametric model for F is the family of all probability distri-
bution functions on the real line. The estimation of 6 follows the semipara-
metric framework with F as an infinite dimensional nuisance parameter.
Theory and methods of constructing efficient estimators of § under semipara-
metric models were developed by a number of authors, such as Koshevnik
and Levit (1976), Levit (1975, 1978) and Begun, Hall, Huang and Wellner
(1983), where the asymptotic efficiency of estimating § was determined by
the convolution theorem or the LAM theorem of the corresponding least
favorable parametric submodels. For the special case of the proportional
hazard model (4), 6 can be efficiently estimated by the Cox partial maximum
likelihood estimate or the two-step procedure of Begun and Wellner (1983).
For model (2), Dabrowska and Doksum (1988) considered a class of estima-
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tors of 6 defined by

5 BW(E0)1 - 6,0] " ab, ()
W(E,())[1 - B.(0)] "V dbt)

where F'm and én are left-continuous empirical distributions based on
X,,...,X, and Y,,...,Y,, respectively, and W(-) is some score function.
Under some mild regularlty conditions, Dabrowska and Doksum showed that
(m + n)/%(6 — 6) has an asymptotically normal distribution and that for

0=1,
W(u) = Wo(u) = (c + 1)(1 —u)***

corresponds to a fully efficient estimate. However, for 6 # 1, the efficient score
function W(-) remains unknown.

With a slightly different sampling scheme, Klaassen (1989) considered the
problem of estimating 6 under a particular type of the transformation models
(1), and derived a second order differential equation whose solution deter-
mines the influence function of an efficient estimator. His result shows the
existence of a solution for this equation, and that efficient estimation of 6 is
possible in the Clayton and Cuzick semiparametric Pareto model. However,
there are two obstacles to extend Klaassen’s approach directly to the problem
of estimating 6 of (2) from samples X,..., X,, and Y;,...,Y,. First, since (2)
is different from the models he considered, a new differential equation for
estimating 6 under the two-sample model (2) needs to be developed. Second,
the estimation procedure he suggested relies on solving the differential
equation numerically, and does not lead to an explicit form of an efficient
estimator except for the proportional hazard model. Therefore, it is worth-
while to consider other approaches so that more practical and explicit effi-
cient estimators can be obtained.

We consider in this paper the special case of the two-sample proportional
odds model (5) and show that an efficient estimator of 6 can be constructed
based on the solution of a pair of integral equations. Because of the special
structure of the proportional odds model, the solution of our equations, which
determines the Fisher information of 6, can be obtained in a closed form.
Thus an asymptotically efficient estimate of 6 is constructed explicitly. It is
also important to note that our integral equations can be extended to the
transformation models (1), and their solutions should lead to the Fisher
information of 6 under many different models of this class. In particular,
some routine computation shows that the solution of the integral equations
under the proportional hazard model leads to the results of Efron (1977) and
Begun and Wellner (1983). However, since we do not have explicit solutions
for models (1) or (2), efficient estimates of 6 for these general cases are not
constructed in this paper.

The main results are given in Section 2, where we present a LAM theorem
for the proportional odds model and propose an estimate of 6 based on a
one-step procedure for which the locally asymptotic maximum risk achieves
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the corresponding minimax lower bound. In Section 3, we solve the integral
equations for the proportional odds model (5) explicitly and derive the closed
form of the Fisher information of 6. The proofs of the main technical results,
the LAM theorem and asymptotic efficiency of the one-step estimate are
presented in Section 4.

2. The main results. This section summarizes our main technical re-
sults on efficient estimation of 8 for the proportional odds model (5). Based on
a preliminary result on Hellinger differentiability, we first derive a minimax
lower bound for the asymptotic risk of any estimator of 0, and then show that
this minimax bound is attainable by a one-step estimator. The proofs of
Theorems 2.1 and 2.2 are deferred to later sections.

2.1. Hellinger differentiability. Let | -||, be the usual L,-norm with re-
spect to any sigma finite measure u on the real line and let ||| be the
Ly-norm with respect to Lebesgue measure. Given any fixed distribution F)
with density f, on (0,%) and 6, > 0, let go(x) = g, () satisfy (6) and let
G, be the corresponding c.d.f. of g,. Denote by H the collection of all mean
zero functions of L,(F,), that is,

H-= {h(x): xe (O,w),j:h(x) dFy(x) = o,[omhz(x) dFy(x) < oo},

F(h) the family of all density sequences {f,,} on (0,») such that

(7) lim |Vm (£Y/2 - f&/?) — 3hf}/?| =0 forsome h € H

and % the union of all {#(h): h € H}. It is easily seen that H is a subspace of
L,(F,). Throughout this paper, we assume that N = m + n,

lim (m/N) =X and l\ljim (n/N)=1-A,

n—w —
where 0 < A < 1 is a constant. Given any {f,,} € with corresponding c.d.fs
F, and {6y € (0,): \/NION — 6yl < a}, where 0 < a < =, define {g,,N , } to be
a sequence of densities on (0, ©) satisfying (6). o

The next lemma shows the Hellinger differentiability of g4, , at (6o, fy).

For the general definition of Hellinger differentiability, see Begun, Hall,
Huang and Wellner (1983).

LEMMA 2.1. Given any 6y > 0, f, and g,, suppose that {f,,} € F(h) for
some h € H, {0y} satisfies \/JVION — 6yl <o and 6y >0, N>1, and gy =
oy satisfies (6). Then

, ”g}\/z — g2 (1/2)((0N — 00) &, ,, 88" + m—l/zAh)”
1\111_13100 16y — 0, + m~1/2

=0,
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where A is a bounded linear operator given by
2(6, — 1)g¢/%(t)

(8)  Ah(e) = h(D&H() = T1 o1y Focay Jo () (™)
and

1 2F(¢)
(9) fo,F(t) = ; - 1+ (0_ I)F(t) .

REMARK. 2.1. It necessarily follows from the above differentiability that
&, r,25/2 L g/% and Ah 1 g¢/? in Ly(p), that is, [g &, r(t) dGy(t) = 0 and

3

15 th(t)gé/ 2(¢)dt = 0 for any h € H and for which there exists {f,,} € F(h).

ProOF. Using F,(t) — Fo(t) = [{(fY2(s) — fo/2(NFY/*(s) + fo/*(s) ds
and the Cauchy—Schwarz inequality, we can show that

Vi (Fo(t) = Fo(£)) = ['h(s) dFo(s)| = 0.

(10) lim sup
N-ox teR
Next we notice the following inequality:
W'Ig(%,zfm —g(1)/2 - %(ON - oo)foo,Fogé/z - %m_lﬂAh”
< VN | i, — i/, — 3(0x — 00)&,,5, 8000, |
+%W|0N - 00'" goo’Fmg;o/’zfm - goo’Fogé/z II
+VN || gi(%, — g¥/® — sm~'/?An|.

Notice further that both BY/2(0, F,)) = 6%/%[1 + (6 — 1F,,]"" and its partial
derivative with respect to 6 are uniformly bounded in F,, and in 6 within a
neighborhood of 6,. Then, for the first term on the right-hand side of (11), we
have that [see Le Cam and Yang (1990), Lemma 6.3.1]

VN

(11

1
1/2 1/2 1/2
8%, — &' — 5 (0w = 60) &, 5, 800,

¥ { J B2 (0. Fute) = B2 00, B0
P 9 1/2
—(6y — 90)£B3/2(9,Fm(t))|0=00] dFm(t)}

- | [ o0 B0
: 1/2

9 2
= (8 = 00) 55 Bo"*(0, u)|0=00] du}

-0 as N — .
For the second term, since (3/99)BL/2(6, F,,) is also continuous in F,,, (10)



PROPORTIONAL ODDS MODEL 381

implies that
”foo,F,,,g(}c{,me - goo,Fog(l)ﬂ” -0 as N - .
For the third term, we first observe that
63/2(0, — 1)
(1+ (6, — Du)’

J

—B§/%(6y,u) = —

au 0 (69,u)
and

VN

g%, — 8% — %m‘l/zAh ”
< VN |[(BY*(96, F) = BY(80, Fo))(fa” = o)

+VN

1
B/ (00, )12 = Fir2 = gm s

| [55000 2 - 8000

1 B J ¢
—Em 172 EBé/z(oo,u)|u=Fo(LhdF0)] 01/2 .

Now since lim,, _, ,sup, o|BY%(8,, F,,(t)) — By/%(8y, F(t)I = 0, f,, € and
that By(6, u) is bounded for all 0 < < 1 and 6 within a neighborhood of 6,,
we have that, as N — o,

VN |(BY2( 6, F,.) — B&’*(8,, Fo)) (L - f3/*)|| = 0

and
1
N | B (00, B £ = i/ - gm | o
Finally by (10) we have that
0 CRCESELTETES
1 d t
- Em 172 ‘536/2(00, u)|u=Fo(j(;hdF0)]f(}/2
<Vm By/%(8,, F,) — By/*(6,, Fy)
m_1/203/2(00 - 1) 1/2

2 (Fm “Fo) 0

+
(1+ (8, - 1)Fy)
07% (6o — 1)
(1+ (6, — 1)F,

. (fothdFO —(F, - FO))fol/z

-0
as m — o, Hence the conclusion of the lemma follows. O
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2.2. Minimax lower bound. Let g} be the joint density of the observa-
tions X;,...,X,, and Y;,...,Y,. If the density sequence {f,,} were known to
belong to a regular parametric family, that is, 2 of (7) were replaced by
(0y — 0)h , with h, known, then {f"g?} belongs to a regular parametric
model and the results of the locally asymptotical minimax theorems [e.g., Le
Cam and Yang (1990), pages 83 and 84] imply that the asymptotic maximum
risk of any estimator Ty of 6, is greater than or equal to the risk of a
N(0,1/1,(6,)) random variable, where

L.(85) = MA o FE21% + (1 = M) &, 5 gY/? + Ah I

is a two sample analogue of the usual parametric Fisher information of 6,,.
However, under the semiparametric framework where %, is unknown, the
asymptotic minimax risk of any estimator 7 may not reach the lower bound
given by the parametric models. Then it is adequate to describe the efficiency
of Ty through the corresponding least favorable parametric submodel of
{frgk). Let ¥ be a score function defined by

(12) V() = &, r,(2) + AR(t) g /*(2).

The Fisher information 1(6,) of 6, for the full model of {f"gr} is now given
by

I(6o) = inf {AlAf/2I + (1 - N)II¥gy/?I*)

(13)

. 2 2
hlgfl{Aj() h%dF, + (1 /\)j(; v dGo}.
This corresponds to the two-sample Fisher information of a least favorable
parametric subfamily of {f,;'g%}. For the geometric interpretation of 1(6,) in
the general semiparametric models, see Begun, Hall, Huang and Wellner
(1983) or Bickel, Klaassen, Ritov and Wellner [(1993), Chapter 3].

A crucial step in evaluating the efficiency of T\ under such a semipara-
metric model is to find a least favorable parametric subfamily, hence a A
which attains the infimum in (13).

For this purpose, it is more convenient to write (18) in the following
equivalent form:

0) = i : - 2Qu(dt,
e 1 hé‘ﬁ{sfﬁlfo [8h(t) + (1 - 8)W(t)]*Qy(dt a)}

= inf |8k + (1 — &)V,
hlgﬂll ( )¥lig,

where Q,(¢, 8) = A6F () + (1 — AX1 — 8)G((¢) is a probability measure on
(0,0) X {0,1} and Q(dt, 8) = A8 dFy(¢t) + (1 — AX1 — 8)dG(¢). This for-
mula will be used again in Section 3 in calculating the specific form of the
least favorable A.
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Now let M (@) be a Hellinger neighborhood of f{"g¢, so that
My(a) = {frgh: f, € Fand
l(frem)? - (fees)* | <2-a,0<a<2).

The next main result, which is a special case of Theorem 3.2 of Begun, Hall,
Huang and Wellner (1983), gives a lower bound for the local asymptotic
minimax risk of estimating 6.

THEOREM 2.1. Suppose that {f,,} € F and Lemma 2.1 holds for the family
{gn, N>1}. Let I(-): R — [0,) be any subconvex loss function, that is,
{x:1(x) <y} is closed, convex and symmetric for every y > 0, such that
El(yZ,) < o for all y > 0, where Z, has N(0,1) distribution. Then:

(i) The infimum in (13) [or in (14)] is attained by

T(8,,Fy;t) — [ST(0y, Foit) dFy(t),  if 0+ 1,
~(1 - )1 - 2Fy(1)) if 6, = 1,

and Y, (t) is defined in (12) with h replaced by h; hence,
1(60) = A[ AB(2) dFo(t) + (1= 1) [ W3(¢) dGo(2),
where T'(6, F;t) = T1(6, F;t) + Ty(6, F; t),
T,(6,F;t) = (M1 - 1)6) %7(0)

(18)  hy(t) =

N 1/2
Xarctan((m) (1+(0—1)F(t)) )

b0, Fi) - T+ (0= DF(®)
noT ML+ (06— 1)F(t))+ 6(1—))

and
7(0) = VAL - 0o
O(arctan\/—/W(l——)t) - arctan‘/m ) .
(i) For any estimdtor Ty of 0,

lim lim inf  sup  Epm VN (Ty — 0y)} > El(Z),

a0 N> Ty pmgheMy(a)

. where E¢n () is the expectation under the joint density fygy and Z has a
normal distribution with mean zero and variance I='(6,).

REMARK. 2.2. Since hy(¢) and ¥y(¢) are bounded for all ¢ > 0, we have
that 0 < I(8,) < . Furthermore, by (8), (12) and (15), straightforward com-
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putation shows that

(6o, Fo;t) =[5 T* (60, Fo; t) dGo(2), if 6, # 1,

M1 — 2F,(t)), if 0, = 1,
where I'*(6, F; t) = Ty(0, F; t) — I'(6, F;t). Some further straightforward but

tedious computation based on (8), (12) and (15), shows that A, and ¥, have
the following relationship:

(1 = D)A79,,(t)
[1+ (6, — 1) Fo(2)]”
B +2(1 = A)A10,( 6, — 1)‘1';)(3) dFy(s) +a,
0 [1+(90_1)F0(3)]

where a, which only depends on 6, and F, is determined by [; & ,(¢) dF,(¢)
= 0. ¥, and the first term on the right-hand side of (17) will be used next as
score functions in constructing an efficient one-step estimate of 6.

(16) Wy(t) =

ho(t) =
(17)

2.3. Efficient estimates. We now discuss the attainability of the lower
bound EI(Z). An estimator Ty is called asymptotically efficient or simply
efficient, if its local asymptotic maximum risk attains the lower bound, that
is,

(18) lim lim  sup  Em VN (Ty — 6y)} = El(Z).
a0 N=® frgheMpy(a)

The construction of VN -consistent estimates for the two-sample propor-
tional odds model is relatively intuitive and straightforward. In fact, by
selecting any suitable and convenient score functions, the estimators 6 con-
structed by Dabrowska and Doksum (1988) are not only VN -consistent, but
also asymptotically normal in the sense that VN (6 — 0y) has asymptotically
a normal distribution uniformly for all 6, < {6: VN|6 — 0ol < a},0 < a < oo,
In particular, if we take the score function to be W(u) =1 —u)? a
Dabrowska—Doksum estimate is given by

8, = f0°°(1 ~ B, (1)) (1 - G.(2)) " dGy(0),

where ﬁ‘m and én are left-continuous empirical distribution functions based
on X;,...,X,, and Y;,...,Y,, respectively. An easy application of Theorem 1

‘Y no

of Dabrowska and Doksum (1988) shows that the asymptotic distribution of
ymn/(m — n) (6, — 6,) is normal with mean zero and variance

o oo 2 I o 2
, 02=A1{]; ydeo—(/o yldFO)}+/\o{f0 ygdao—(fo 'yszO) }

G,)"2 dF,. Note that our notation here does not totally agree with that of
Dabrowska and Doksum (1988). Moreover, under frgy € My(a) for any
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a <o ymn/(m+n)( 0 — Oy) is also asymptotically normal with mean zero
and variance o2 Comparmg with Theorem 2.1, we see easily that 0 is

VN -consistent, but inefficient.

Our aim here is to apply Le Cam’s one-step procedure to our semiparamet-
ric model in order to construct efficient estimates based on some VN -con-
sistent, but possible inefficient, initial estimates, for example, the Dabrow-
ska-Doksum estimates, such as 0

Let ON be any VN -consistent estlmator of 6. We now define the one-step
estimate of 6 by

Ty = by + 1 (8y; B, )

(19)

i N m (1 M)A, (by, B, X))
Ng' ( ) l; [1+ (6y — 1), Am(Xi)]z

where I(0; F,,,G,) = A[§ h%(0, F;t) dF(¢) + (1 — ) [5¥2(0, F;¢) dG(t), and
h(0, F;t) and ¥(0, F;t) are as defined in (15) and (16) with 6, and F, being
replaced by 8 and F, respectively.

The next result shows that the local asymptotic minimax lower bound of
Theorem 2.1 is attained by Ty .

THEOREM 2.2. Let ON be any VN -consistent preliminary estimate of 6, for
example, ON may be chosen as 6, and Ty may be the one-step estimate defined
in (19). Then, for all a > 0 and 0y € {0y: VN| Oy — 6,| < a}, the asymptotic
distribution of VN (Ty — 0y) under the joint density fl'gk is normal with
mean zero and variance I71(8,). Thus (18) with I bounded holds for Ty.

REMARK 2.3. In general the construction of efficient one-step estimators
requires specially discretized VN -consistent initial estimators as described in
Le Cam and Yang [(1990), Section 5.3], Millar [(1983), Chapter VII], and
Bickel, Klaassen, Ritov and Wellner [(1993), Chapter 7], among others. The
motivation for such discretization is to eliminate those possible unreasonable
estimators obtained through the likelihood functions [e.g., Le Cam and Yang
(1990), page 59]. Here, because h(0, F;t) and ¥(0, F;t) are bounded and
continuous differentiable in § within a neighborhood of 6, for all ¢ > 0, the
discretization requirement can be removed for 6 in (19).

3. Fisher information and integral equations. Finding the Fisher
information is a crucial step in proving Theorems 2.1 and 2.2. In this section,
we develop a pair of integral equations for the proportional odds model (5)
and compute the explicit form of I(6,) based on the solution of these
equations.

Following the definition of I(6,) in (14), our aim here is to find a particular
h such that the function 82 + (1 — §)¥ has the smallest norm in the L,(Q,)
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space for all 2 € H. Let
S = {Su(2)(1 = ) + 8()0: [ 8(1) (1) = [ Si(6) dFy() =0,

Sy € Ly(Gy),S; € Ly(F,) and 6 € {0, 1}}
be a L,-space with respect to @, and let |- [lg, and < -, - )g, be its norm and
inner product, respectively. Let

T = {h(2)8 + (AR(2))g;'/*(2)(1 - 8): h € H, 5§ € {0,1}}.

Since T itself is a vector space and a subset of S, it is a subspace of S. Denote
by (&, r(2X1 — 8)) the projection of & 7(2X1 — 8) into T and by T L the
orthogonal complement of T in S such that S =T & T*. Thus T* is also a
subspace of S and

(€, 7(2)(1 = 8) = 11(4, 5 (2)(1 ~ )} €T

Basic properties of Hilbert spaces imply that there are unique A~ € H and
{My(2)1 — 8) + M(2)8} € T+ such that

&, 7 (2)(1 —8) =h(z)d+ (AR(2))go*%(2)(1 — 8)

(20) + My(2)(1 - 8) +M(2z)é
and by (14),
- 1(60) = &, 7 (2)(1 = 8) = T1(&, n(2)(1 — 8))[,

= My(2)(1 - 8) + My(2)5]l5..

LemMa 3.1, If My(2)(1 — 8) + M(2)8 is any element of T+, then

L 260(6 = 1)
M) = (=) [ e Mol 4F(®)
(1 = A)6,My(2) +(1-)K,,

[+ (0 - DE(1)]?

where
_ *© _290(90_ 1)Fo(t)
0 [1+ (6, - DF(D)]’

0 Mo(t) dFo(t).

ProOF. Let My(z)X1 — 8) + M(2)8 be any element of S. If it is orthogo-
nal to T, then the inner product between M (zX1 — §) + M(2)é and any
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element in T must be zero, that is, for any 2 € H,
(h(2)8 + (Ah(2))gs"2(2)(1 = 8), My(2)(1 — 8) + My(2)8)q,

= Y {f(h(z)ﬁ + (AR(2))g % (2)(1 - 8))

6=0,1
X (My(2)(1 — 8) + My(2)8)Qy(dz, 6)}

= 0.
Equivalently, we have that, for any 2 € H,

[ (=) + (1= N AR5 72()
X (My(x) + My(y)) dFo(x) dGo(y) = 0.

Thus, by (6) and the definition of A in (8), the following equalities hold for all
heH:

A B() M) dFo(x) + (1= X) [TAR(2)85™*(2) Mo(9) dGo()

= A h(x) My(x) dFo(x) + (1= 3) [ h(3) Mo(3) dGo(¥)
0 0

® -2(60, — 1
+(1 - A)j;) (1 + (00(—01)F3(y) Lyh(t) dFO(t))Mo(y) dGo(y)

1- A)ooMo(x)
[1+ (8 — 1) Fo(x)]”
= 20,(8, — 1) Mo(?)
R A rePatr ATy

- f:[AMl(x) +

dFo(t)]h(x) dFy(x)

The last equality holds if and only if, for some constant K,
a(e) = (1 - ) [l D)
t [1+ (6, — 1)Fo(s)]
(L= )0 M(2)
[1+ (60 - DF(0)]’
Then K, is determined by (6), [¢ M,(x) dFy(x) = 0 and
0o Mo(x)
[1+ (6, — DFo(2)]*

The conclusion of the lemma holds. O

M(s) dFy(s)

+ (1 - 21)K,.

j:MO(x) dG,(x) = [: dF,(x) = 0.
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Lemma 3.1 implies that (20) can be specified as
&, 5 (2)(1 - 8) = h(2)8 + Ak(2)g5/*(2)(1 — 8)
[1+ (8 = DFo(2)]”

= 200(0) — 1)Fo(s)
1-AM)A"%
+(L =070 [1+ (8o — DFo(8)]
+(1 - M) A8K,

+ My(2)(1 - 8) —
(22)

dFy(s)

for all z € (0,») and & = 0, 1. Furthermore, by (8), (9), (A dF, = [M,dG, = 0
and routine integration, (22) is equivalent to the following pair of integral
equations in A(x) and My(y):

i _ 2Fy(y)
0o 1+ (68— 1)Fo(y)
2(6, — 1)

=TT o TRy b O Fot) + B(3) + Ma(),

h(x) = (1= ) A8 My(x)(1 + (6, — D) Fy(x))™

e 26000 — DM(D)
HO e e TR )

—(1-A)A71s,

(23)

where x and y are arbitrary points in (0, *) and

=20,(6, — 1)(1 — Fy(s))

b= 3
0 [1 + (60 — l)Fo(s)]

My(s) dFy(s).

It is interesting to note that, when h(t) = —ho(t) and M,(¢) = ¥,() as
defined in (15) and (16), the second equation of (23) is reduced to the special
case (17).

LEMMA 3.2. The solution of (23) is given by h(¢) = —h(¢) and M(t) =
¥, (t) as defined in (15) and (16), respectively. Consequently, when (04, Fy, G)
satisfies (5),

1(80) =] ho(2)8 + Mo(2)(1 = 8) g,

PrROOF. Suppose that A(t) = —h(¢) and M(t) are the solution of (23). It
is easily seen from (20) that A(z) = —M;(z). Thus the last assertion of the
lemma follows from (21) and hy(¢) = M ().
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We now consider the solution of (23). If 6, =1, (23) reduces to the
following special case:

1—-2Fy(t) = h(t) + My(¢t) and h(t) = (1 — DA IM(2).
Thus the solution of the above equations is
My(t) = M1 —2Fy(t)) and h(t) = —hy(t) = (1 —A)(1 — 2F,(2)).
Now we consider the case of 6, # 1. First notice that, by direct integration,
(15) and (16) are the results of the following two integrals:

ot (1 = X)8,c(6y)
(24) ho(t) = fo [AU2(6,, Fy) + (1= 1)6,]
ot AC(GO)U2(00’F0)
(25) Yo(t) = j(; [/\UZ(OO,FO) (1 A)00]2
where U(0, F;t) =1+ (0 — DF(2),
0) =2 [ i d B for 6> 0
«(8) = [0/\[1+(0—1)u]2+(1—)t)0 ¢ o

and b, and b, are determined by (2, dF, = 0 and [¥, dG, = 0, respectively.
Then, by (24), (25) and direct computation, we have that

dF(s) + by,

Wy(y) = c(0,)U(6, Fy;y) _ c(6,)
)= (8, — D[AUZ(6y, Fo3y) + (1 — N)6,] (8o — 1)(A+ (1 — A)6,)
Y (1 = A)oc(6,)
o [AU2(8,, Fy;t) + (1 — A)6,]° WFo(t) + by,
200, — 1) ¥
U(6,,Fy;) fo ho(t) dFo(t)

y (‘1 —A)04c(6,) _ 2(8, — 1)b,Fy(y)
) j;) [’\Uz((’}o’l'wo;t)"‘(1_)‘)(’}0]2 Fol) U0, Fo; 7)
. (1= ) 86c(00)
MO, — 1)U(00,Fo;y)[/\Uz(OO?FO;y) + (1= A)6,]
) (1= 2)05¢(8,)
MO, — 1)(A+ (1 =1)0,)U(8,,Fy;5)

and
(1= 1) 6,%,(y) 2200(8, — 1)W(t)
AU (80, Fo; y) +(1_,\),\1[0 U (0, Fort) o)
- _[ (1 —2)8,c(6,) ~ B
) O[AUz(Oo,FO;t)+(1—A)00]2dF°(t)+(1 A)A” by .
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Now it is straightforward to verify that both equations of (23) are satisfied
when M (t) = ¥,(¢) and A(t) = —hy(#). O

REMARK. 3.1. Extending the method of this section to the general two-
sample transformation model (1), it is also possible to develop a pair of
general integral equations such that their solution gives a least favorable
parametric subfamily for estimating 6. In particular, applying these general
equations to the two-sample proportional hazard model (4), we can derive an
explicit form of the Fisher information of § which coincides with that given in
Efron (1977) and Begun and Wellner (1983). Unfortunately the solution for
the general case is unknown, hence, we do not have explicit forms of the
Fisher information of @ for the general models (1) or (2). Efficient estimation
of 6 under the general two-sample transformation models certainly deserves
further study.

4. Proofs. We provide in this section the proofs of Theorems 2.1 and 2.2.

Proor oF THEOREM 2.1. The first assertion is essentially the conclusion of
Lemma 3.2. Thus we only consider the statement in (ii). For {f,,} and {gy} as
in Lemma 2.1, define L, to be the local log likelihood ratio such that

) e ()
Ly =2log ;l_I1f/2(X) X I:I;lgl/z(Y-)
Z gN(Y)
- i=1 8 fo(X;) jgl go(Y)

Then Lemma 2.1 implies that L, is locally asymptotically normal, that is,
Lemma 2.1. of Begun, Hall, Huang and Wellner (1983) holds for L, and the
conditions of Theorem 3.2 of Begun, Hall, Huang and Wellner (1983) are
satisfied. It can be deduced from the proof of Theorem 3.2 of Begun, Hall,
Huang and Wellner (1983) that

(26) lim lim inf sup Epm VN (Ty — 0y)} = El(Z),
cy oo Now Ty fnEBlc,)
- gNEBgley)
where

Brp(cy) = {fn:fn €Fand VNIIfY/? - 321 < e}
aﬁd

Bg(cs) = {gn: gy satisfies Lemma 2.1 and VN llg}/* — g5/2Il < ¢}
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Now, by the independence of Xj,...,X,, and Y;,...,Y,, for sufficiently
large N,
I rze)” - (rra) [
=2 - 2(1 - Y2 - £a21) " (1 - Hlgk? - gd2I%)"
=2 — 2exp{(— IN)(MIFLY2 = F221P + Aolle® — gd/%I1%)} + o(2).
Consequently, for any estimator Ty and sufficiently large N,

frgkeMpy@2—2exp(—c /2)+0(1)

meBF(C*)
gnEBglcy)

Therefore, (26) completes the proof of the theorem. O

ProOF OF THEOREM 2.2. We first notice the following inequalities:

’jh2(éN,ﬁm)dﬁm — [r%dF,

(27)
< sup |n*(by, B, x) — B3(2)| +’fh§d(ﬁ‘m—F0)
x€(0,»)
and
’fqr2(éN,ﬁm) dG, - [¥¢ dG,
(28)

< sup I‘I’z(éN,ﬁ'm;x) - ‘Ifg(x)l +’f‘lf02d(én - GO)
x€(0,»)
Since 6, and F,, are VN -consistent and both h(t) and W,(¢) are bounded in
¢t € (0,), it is easy to verify from the definition of A(6, F;t) and ¥(6, F;t)
given in (19) that
sup |h2(§N’ﬁ‘m; t) - hg(t)‘ -0,
te(0,)

sup |¥2(0y, F,;t) - ¥3()| - 0,
t<(0,)

(29)

in probability as N — « and, by the law of large numbers,

’fhz(BO,Fo)d(F‘m —F,)| -0,
(30)
’jW(oo,Fo)d(én - Gy)| -0,
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in probability as N — «. Relations (27) through (30) imply that as N — o,
(31) 11(6y; B,,G,) = I(6,)| = 0 in probability.
Since 1(6,) > 0, (31) implies that
(32) I"Y(fy; #,,G,) > I71(8,) in probability as N — .
Next the error sequence VN (Ty — 6y) of (19) can be written as

YN (Ty — 6y) = VN (dy — 6y) + I"}(6y; F,, G,)

VW= % ¥(dy, B Y))
j=1

2|+

(33)

1 m (1 —/\)A‘léN\If(éN,ﬁm;Xi)}
N ~ S T
-1 [1+ (6y - 1)E.(X)]

Let {F; } be a sequence of distribution functions with densities {fj } such that

fo,(t) = fu(t) + (éN - oN)h(oN’Fm;t)fm(t)'

Note that f; is indeed a density function when N is sufficiently large. Let
{G;,} = {Ggy, fén} be a sequence of distributions as defined in (5). The VN -con-
sistency of 6y, VN |0y — 6ol < a, a > 0, and lim,, , VmllfY? — f3/2l < o im-
ply that both

sup VN|F; (t) — Fo(¢)] and  sup VNIG;(t) — Go(2)]
t(0,®) te(0,»)

are bounded in probability. Thus the second term of the right side of (33) can
be written as

1 n R n ]_ m (1 - A)A_léN\P(éN,F‘m;XL)
\/N —_ w6 ,Fm;Y - 7 A A
Nj§1 ( N J) N E’l [1 + (Oy — 1)Fm(Xi)]2

=(1- A)W{j:qr(éN,ﬁm;t) dG,(t)

o Oy ¥(Oy, Byst)
_fo _ 7)
[1+ (6y - 1)F,(t)]

dﬁm(t)} +0,(1)
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0

=(1—A)\/_f0\I'ON,m )d(G, - Gy,)

. Oyw(by, B,

= - . rd(ﬁ,,, - F,)

o [1+ (6y—1)F,

oo w équ(éN, ) A

+ op(l)

—(1- A)W{f:ﬂf(eN,Fm)d(én - Ga,)
o V(6. F) (£, - 7,)
o [L+(6y—VE,]* V" N

of 2 —=2(0y — 1)0y¥(0y, F, )
+f0 (fo [1+ (6y —1)F] F"”)

xd(B,(x) —Fé,,(x))} +0,(1)

=(1- A)W{j;w‘l’(oN’Fm)d(é" B GéN)

[ ON‘I’(GN’Fm) (A _ )
o [1+ (6 — DF,]’ "

of .x Z(ON 1)0N‘If(0N, )
oy R D) o

d(F,(x) —Fé,,(x))} +0,(1),

where the second and third equality signs hold because g; = ON(l + (0y —
F;,)~*f;, . Direct computation, (22) and Lemma 3.2 show that

&géN(t)/aéN|§N=0N = W(ON’Fm7 t)gN(t)
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and that the next equality follows from the usual Taylor expansions

1 . 1 m (1— XA 6y ¥ (by, B,; X))
VN|= Y ¥(6y,F, ;Y ) — =
(34) N,-; ( N ’) Ni§1 [1+ (6w - 1)1!3,,1(&)]2

= VN Ay = VNI(8,)(by — by) + 0,(2),

where
VNAy + (1 - A)\/IV{]:‘I'(ON,F,,,)d(Gn - Gy)

© GN‘I’(BN’ Fm)
o [1+ (6y - DF,]”

bl x_2(0N_1)0N\P(0N’Fm)
+f0(f0 [+ (- DE,T dF’")

d(F, - F,)

X d(E,(x) - Fm(x))}.

The central limit theorem then implies that the asymptotic distribution of
VN Ay is normal with mean zero and variance 1(6,). Thus (31) through (34)
imply that

VN (Ty — 6y) = W(éN — Oy) + ‘/NI_I(éN;ﬁm’GAn)AN
—WI‘l(éN;ﬁm,én)I(Oo)(éN — 6y) +0,(1)

— Z in distribution as N — o,

where the distribution of Z is normal with mean zero and variance I~'(6,). It
now follows that (18) holds for Ty with all bounded and subconvex loss
functions. The proof of the theorem is complete. O
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