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EXPONENTIAL INEQUALITIES FOR MARTINGALES, WITH
APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION
FOR COUNTING PROCESSES

By SARA VAN DE GEER
University of Leiden

We obtain an exponential probability inequality for martingales and a
uniform probability inequality for the process [gdN, where N is a count-
ing process and where g varies within a class of predictable functions £.
For the latter, we use techniques from empirical process theory. The
uniform inequality is shown to hold under certain entropy conditions on
2. As an application, we consider rates of convergence for (nonparametric)
maximum likelihood estimators for counting processes. A similar result
for discrete time observations is also presented.

1. Introduction. There are many results in the literature on empirical
processes indexed by functions. These include uniform central limit theorems,
asymptotic equicontinuity and uniform probability inequalities [see, e.g.,
Ossiander (1987), Pollard (1990) and the references therein]. Statistical
applications are, for example, the derivation of the asymptotic distribution of
an estimator [Pollard (1989), Kim and Pollard (1990)] or a rate of convergence
[van de Geer (1990, 1993a, b, 1995), Birgé and Massart (1993) and Wong and
Shen (1995)].

One could say that Bernstein’s (or Hoeffding’s) inequality lies at the root of
these results. We present some extensions of Bernstein’s exponential proba-
bility inequality to general martingales. Given such extensions, one can think
of proceeding to results analogous to those in empirical process theory and
applications, but now for dependent observations. We shall not attempt to
provide an exhaustive treatment of this idea here, but restrict ourselves
mainly to counting processes.

The paper is organized as follows. In Section 2, we review some exponen-
tial inequalities for martingales and also present a new one. Section 3
contains a uniform inequality for the counting process. This will be applied in
Section 4 to obtain a rate of convergence in Hellinger distance for the
maximum likelihood estimator. Some examples on censored observations are
given in Section 5. In Section 6, we state without proof a similar result for the
case of discrete time observations. Section 7 contains concluding remarks.
The proofs of the two main results (Lemma 2.2 and Theorem 3.1) are given in
the Appendix.
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2. Martingale inequalities. Let (Q),.#, P) be a probability triple and let
{M,}, ; be a locally square integrable martingale w.r.t. the filtration {Z}, ,.
Throughout, we take M, = 0. We assume that {7} satisfies the usual condi-
tions [see, e.g., Lipster and Shiryayev (1989)]. Denote the predictable varia-
tion of {M,} by V,=<(M,M),, ¢t >0, and its jumps by AM,=M, — M,_,
t>0.

The following inequality can be found in Shorack and Wellner (1986).

LEMMA 2.1. Suppose that |AM,| <K for all t > 0 and some 0 < K < «,
Then for each a > 0, b > 0,

a2

2(aK + b?)

(2.1) P(M, > a and V, < b* for some t) < exp[—

Note that if {M,} is continuous, one can take K = 0 in (2.1).

Recall now that Bernstein’s inequality for independent observations, as
stated in Shorack and Wellner (1986), only imposes certain moment condi-
tions. Indeed, the assumption |[AM,| < K for all ¢ in Lemma 2.1 above can be
relaxed. For this purpose, we introduce the higher order variation process
{X; < /JAM ™}, with compensator {V,, ,}, m € {3,4,...}. Moreover, we write
Vo=V, t=0.

LEMMA 2.2. Suppose that, for all t > 0 and some 0 < K < =,

m!
(2.2) Vo< 5 K"R,  m=238,.,

m,t =

where {R,} is a predictable process. Then for each a > 0, b > 0,

a2

(2.3) P(M,>=aandR, <b® for somet) < exp 2K 57

For the proof, see the Appendix.

In subsequent sections, we shall encounter martingales of the form
{/ogdM}, with {g,} a predictable process bounded from below, and {M,} as
before a martingale with variation processes {V,, ,}. Observe now that if
g, > —L, then '

m! 1 2
Igtlms____c%_(egt_l) R mE{2,3,...},
2 2
where
4(eL -1- L)

(2.4) c? I 1)
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[see Wong and Shen (1995)]. If, moreover, |AM,| < K for all ¢ > 0, then

j:lgl'" dv, < Km-2 j0t|g|m dv

m' 1 t
___gm-2,2 g _ 2
<K cLZ[O(e 1?av, me{2,3,...)}.
Let us write
d¥(g,0) =3[ (e - D*aV, t>0.
0
COROLLARY 2.3. Suppose |AM,| < K for all t > 0 and some 0 < K < «. Let

{g,} be a predictable process satisfying g, > —L for all ¢t > 0. Then for each
a>0,b>0,
g

ftngl > aand d?(g,0) < b? for some t)
0

(25) 2 p
= 2exp 2(aK + cib®) |’
with c2 given in (2.4).

3. A uniform inequality for counting processes. Consider a counting
process {N,}, , , with compensator {4,},, ,. We assume {A,} to be continuous.
Let 0 < T <« be a fixed time and let {g,} be a predictable process with
g, > —L for all ¢. By Corollary 2.3,

p 'fT d(N—A)'>aandd2( 0) <b?| <2ex ——ﬁ-z————
0 = i85 =0T =SSP T ola ¥ c2b?) |
We shall extend this to a uniform inequality, where {g,} is allowed to vary
within a class &£ C A, with A the class of all predictable processes {g,} with
g, > —L for all ¢.
As in empirical process theory, we shall need entropy conditions on & in
order to make this possible. The metric we shall use here is

(8.1) dr(g,8) = (%.fo "(e# — &)’ dA) .

DEFINITION 3.1 (Entropy with bracketing). Given b >0, §>0 and a
measurable set B C Q, let {[ gjL, g JU 2, © A X A be a collection of pairs of
predictable functions, such that for each g € £ there exists a j =j(g) €
{1,..., m} such that:

(i) the map g — j(g) is nonrandom;
(i) gﬁ <g< g}t’ for all ¢ and w € B;
(i) dy(gf,g") < & on{d;(g,0) < b} N B.
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Let N(§, b, B) be the smallest value of m for which such a bracketing set
{[gf, g}’]}}il exists and let H(S, b, B) > log N(§, b, B) V 1 be a continuous
majorant in & > 0. We call H(S, b, B) an upper bound for §-entropy with
bracketing of £, locally at a ball with radius b around the origin, on the set
B. Usually we shall refer to H(8, b, B) as the entropy of &.

REMARK 3.1. Condition (i) can sometimes be taken care of by choosing an
appropriate parametrization [see, e.g., (5.12) in the example for Case (ii)].

REMARK 3.2. If no finite bracketing set in the sense of Definition 3.1
exists, we take H(8, b, B) = . It can in general be quite difficult (if at all
possible) to calculate entropy. However, in (e.g.) the example of Section 5, one
can use minor modifications of entropy results for spaces with nonrandom
metric. For convenience, we do not require that H(§, b, B) is the best possible
bound satisfying the conditions of Definition 3.1.

REMARK 3.3. The set B in the definition is primarily introduced to make
it possible to restrict oneself to w € Q for which A, < o#, with o} playing

the same role as the number of observations n in discrete time.

THEOREM 3.1. Let & be a class of predictable functions with g, > —L for
allt >0, g €%, and let H(8,b, B) be entropy of &, where B C {A; < o2}.
There exist constants C,,C,,C3,C,, depending on L, such that for 0 < e <1
and

b2
(3.2) ‘Z—z[” VH(x,5,B) dx v b,
1

eb%/(Cyop)AD/8

we have

l

fOng(N —A)

szbzl

4

> ¢b? and d2(g,0) < b? for some g € ?} N B

<C, exp[ -

For the proof, see the Appendix. The proof uses a chaining argument with
adaptive truncation, of exactly the same nature as the one used in empirical
process theory [see, e.g., Bass (1985), Ossiander (1987) and Andersen, Giné,
Ossiander and Zinn (1988)]. It relies heavily on Corollary 2.3, and—for the
truncated processes—on Lemma 2.1 (which for K > 0 is a special case of
Corollary 2.3). For the case of independent and uniformly bounded random
variables, see also Birgé and Massart (1993).

4. Maximum likelihood for counting processes. As in the previous
section, {NV,} is a counting process with continuous compensator {A,}. Assume
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now that

dA
a, = — €4,
du

where u is a given (possibly random) dominating measure, and where % is a
given set of intensities with respect to u. We consider the case where the
log-likelihood ratio for the process {/V,}, observed up to time T, is equal to

Ly(a,ay) —f log( ) dN — f (e —ay) du, a Y.

A maximum likelihood estimator 4 is given by
Ly(d,a,) = maxLy(a,a,).
r(d,a;) = maxLr(a, a)
Throughout, we shall assume that such an estimator 4 exists, but we do not

require it to be unique.
The Hellinger process is

h2(a,d) = %fOT(JE ~ V&) dp.

Observe now that for

we have the equality

(4.1) d%(gal’gaz) = hi(a;,a,).

It is moreover easy to see that (4.1) implies

(4.2) 2[ log( )d(N A) — hZ(é,a0) =0

(see also the proof of Lemma 4.1 below). Thus, the theory of the previous
section seems well suited to establish a rate of convergence for 4;(d, a,). The
only problem is that, in general, the log-ratio log(a/a,), a €%, is not
bounded from below. However, thére is a simple way to overcome this by
considering the log-ratio log(3(a + a,)/a,), a €/, instead. Two lemmas will
show that this approach works.

The first lemma says that for the convex combination (4 + a,) the
inequality (4.2) is also valid.

LEMMA 4.1. For g, = 3log(3(& + a,), we have

(4.3) fgad(N A) — h3(3(8 + ao)-a,) = 0.
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Proor. Clearly, L;(d,a,) > 0. The concavity of the log function yields
that also
1 (& +a
LT(—(d + ao),ao) = leog(i—O—)) dN
2 0

20

IV

2[ log( )dN——f (6 — ap) du

1
Now, for any a > 0, and for g, = 3 log(a/a,),

T T T
1Lr(a,a,) = fo g.d(N —A) + fo g, dA — %jo (a —ao) dp,

and

[fo.aa -5 [ (a - ap) dn- flog(f)M—%LT(a—ao)du

<f (\/j—1) —%jOT(a—ao)du

=f0T\/5EdM—%fOTadM—%fOTaodu

= —h%-(a, a,).
Thus

T
3Lr(a,ay) < fo 8.d(N — A) — hi(a, a,).

This inequality with a = (& + a,) combined with inequality (4.4) completes
the proof. O

Note that inequality (4.3) involves the Hellinger process evaluated at the
convex combination (4 + a,), instead of at 4. However, such Hellinger
processes behave in an equivalent way, in the sense of the next lemma.

LEMMA 4.2. For any nonnegative a,

h3(3(a + ay),a,) < hi(a,ay) < 16Rh%(3(a + a,), ay).

For the proof, see van de Geer (1993a) and for better constants Birgé and
Massart (1993).
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It was already pointed out by Birgé and Massart (1995) that, in the context
of density estimation for i.i.d. observations, the concavity of the log function
ensures inequality (4.3), and that this combined with Lemma 4.2 shows that
one has in a sense not to be afraid of likelihood ratios that are not bounded
away from zero. In van de Geer (1993a), also a device with convex combina-
tions was employed, but here the purpose was to construct bounded likeli-
hood ratios. This device can be useful here too, but to avoid digressions we
shall not present it here. [This means that in Section 5, the example for Case
(i1), some details are left to the reader.]

Let us now return to uniform probability inequalities. We specify Defini-
tion 3.1 for a special choice of . Namely, in what follows, H(8, b, B) is
defined as entropy of the class £ = {3 log(3(a + ay)/a,): a €%}. Because
(4.1) holds true, H(8, b, B) can be seen as entropy of & for the Hellinger
metric.

THEOREM 4.3. Let
(4.5) B c{A; < af}.

There exist universal constants C,,C,,Cg,C, such that under the condition
that ¢(b)/b is nonincreasing, with

$(b) = [° VH(x,5,T) dx v b,

b2/(Coap)Ab/8
we have, for
b
(4.6) T, = ¢(b),
1
that
b
(4.7) P(hp(G,a,) > by) > Cyexp| — o |t P(B°).
3

PrROOF. From Lemma 4.1 and 4.2, we see that it suffices to prove that

T o1, . 1 b
P fogdd(N—A)th §(a+a0),a0) anth(E(a+a0),a0 >

2
*

b
<C, exp(——c——) + P(Bc)
3
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Write @ = 3(a + a,) and g, = 1 log(@/a,) = g;, a €. Now, the argument
is as in, for example, Alexander (1985). We have

by
([ g,d(N —A) > hi(a,a,) and hy(a,a,) > T for some a e%)

o2}

< j;lp({/;Tgad(N—A) > (2j_1-l-)f—)2 and

(4.8)

b
he(@,ay) < 2J—f— for some a GM} N B| + P(B°)

= ) P, + P(B°).
j=1
Because ¢(b)/b is assumed to be nonincreasing and (4.6) holds, the inequal-

ity
(270,
C

1

> ¢(27b,)

is valid. Therefore, we may apply Theorem 3.1 to each P;. The result inserted
in (4.8) leads to inequality (4.7) by choosing C, and C, approprlately O

5. An example: censored observations. Let X,,..., X, beii.d. failure
times and Uj,...,U, be censoring times. We only observe (X, A;) for i =
1,...,n, where X; = min(X;,U)) and A, = {X; < U}, i = 1,...,n. Consider
the counting processes

N, =X, <¢,A, =1}, i=1,...,n.

The number of observed failures at time ¢ is

n
N, = Z N,
i=1
and the number of individuals at risk immediately before time ¢ is

R(t-)= i X, >t

Let A;, be the compensator of M,, z 1,...,n. We assume a multiplica-
tive intensity model, with

(5.1)

dA;, .
o ~BulXizt),  £20,i=1,...,n,

where B, €% and % is a given class of hazard rates. In fact, we shall
assume that the log-likelihood ratio L( 8, B,) is

(52) LB Bo) = [ log( [f)dN f (B, = Boo)R,(t —) dt.
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In Jacobsen (1989), one can find conditions such that, given the structure
(5.1), (5.2) is indeed valid. See also Gill (1980) for several examples.

The maximum likelihood estimator B is defined as the maximizer over all
B €% of LB, By)- We shall establish a rate of convergence for the Hellinger
process h.( B, B,), where

BB, Bo) =3[ (VB — VBor) Ralt —) dt.

We renormalize this to

R*(B, Bo) = (1/n)RZ( B, Bo)-
We shall assume throughout that B, is bounded, say B, < 1, and that

1l

(5.3) P0n=“f R, (¢t =) dt =p py, 0 <py <
n’o

Then for {A,} = {£?_,A,,} being the compensator of {IV,}, we have

(5.4) Ao = [ BuiR,(t =) dt < npo,,

so that

(5.5) P(A. > 2np,) — 0.

In Cases (1)-(iv) below, we shall take
(5.6) B = {300 < pon < 2po}-

Condition (4.5) of Theorem 4.3 is then met, with o, = 2np,, that is,
B c {A, <2np,}.

In Case (v), we assume in addition that
1 o -

(8.7) pu=—[ tR,(t=)dt >p p, O0<p <, i=1..,m~-1,
nJo

and reduce B to

(5.8) B={3p,<pin<2p;,1=0,...,m —1}.

Furthermore, we consider in Case (v) the case where X|,..., X, have com-
mon bounded support, say, .

(5.9) X, e[0,1], i=1,...,n.

Here are the convergence results for the particular Cases (i)—(v).
Cast (). & = {B = const.}; (B, B,) = Op(n~172).
Cask (ii). & = {B is increasing}; (B, B,) = Op(n=1/?).

CasE (iii). & = { B is unimodal, B < C}; A( B, B,) = Op(n~1/3).
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Cask (iv). & ={B = a?, « is of variation bounded by C}; h(B By) =
0 (n—1/3)

CASE (V) B = {B = a2, f|a(m)|2 < C}; Z(B"’ BO) _ Op(n_m/(2m+l)).

The study of computational aspects (including the existence of the maxi-
mum likelihood estimator) is not within the scope of this paper. However,
LB, By) is of similar form as the log-likelihood ratio in the i.i.d. situation, so
that the problem is closely related to density estimation. Now, a genuine
estimator of a density should integrate to 1. The counterpart of this restric-
tion for hazard rules is

(5.10) [:étRn(t ~)dt =N,

Equality (5.10) will hold if
(5.11) rBes# forallr>0,Bcz.

In other words, if (5.11) is true, computational results can often be derived
along the lines of those in the literature on density estimation. Observe that
(5.11) is true in Cases (i) and (ii), but not in Cases (iii)-(v). In Cases (iv) and
(v), however, one may also choose to restrict the log-hazard rates, instead of
the square root of the hazard rates.

Let us briefly discuss Cases (i)—(v). To avoid a repetition of entropy
calculations [see van de Geer (1990, 1991, 1993a, b)], we only present the
basic ideas. R

Case (i). The maximum likelihood estimator is 8 = N, /(np,,). Of course,
such an explicit expression can be exploited to establish the rate. However,
we want to illustrate here that our general approach yields the usual rate in
regular finite-dimensional models.

We only have to do the calculations on the set {A.( B, B,) < b} N B [see (iii)
in Definition 3.1]. On B,

tnpo(VBr ~ VB2 ) < 3npoa(VB: — VB2 )
= hi( By, B) < nPo(\/B_l - \/—3—2)2

Using the fact that an interval of length b can be covered by const.(b/8)
intervals of length 3, one sees that

H(6,b,B) < const.log(b/3).

Thus, ¢(b) < const. b, so that one can take b, = const., that is, (B, Bo) =
Op(].)

Case (ii). The estimator § is closely related to the Grenander estimator of a
density [see, e.g., Groeneboom (1985)]. An explicit expression for B can be
found in Huang and Wellner (1995), who show that, under certain conditions,
B is asymptotically equivalent to the estimator obtained by differentiating
the greatest convex minorant of the Nelson—Aalen estimator.
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It suffices to calculate the entropy of %, ={B %, B <1} (say). This
follows from the same arguments as in van de Geer (1993a, b), replacing B,
(instead of B) by the convex combination 3( 8 + B,).

It is known that the set {g: [0, 1] — [0, 1], g increasing} has §-entropy with
bracketing w.r.t. the L, (Lebesgue measure) norm of order 1/8 [see Birman
and Solomjak (1967) and van de Geer (1991)]. We are now facing the problem
of calculating entropy of %, = {B: [0,») — [0,1], B increasing} w.r.t. the
(random) L,(nQ®,) norm, where

1
Qu(t) = - [ Ralt =) dt.

The following step may be thought of as a reparametrization (see Remark
3.1 following Definition 3.1). Writing

(5.12) BUR,(t =) >0} = By ,{R,(t —) >0}, ¢>0,
with
Bs = BQ;l(s)’ 0<sc< Qn(oo)’ B E‘gl’

we see that we may deal with the set of increasing functions with support in
[0,2p,], endowed with L, (Lebesgue measure). Hence, we may take

H(8,b,B) = const.Vn /8, 6>0.
This gives
#(b) = const. n¥/*/b,
and from (4.6),
b, > const.n!/8.

From Theorem 4.3, we now conclude that A.( B, By) = Op(n'/®) and hence
(B, Bo) = (1/ Vrh.{ B, By) = Op(n~1/%).
Case (iii). Consider the classes
g, ={g:[0,1] » [0,C], g(¢t) 1 fort < 7, g(¢)| for t > 7}
and
g= U 2.

r€[0,1]
Let us write H(5, £,) (H(8, £)) for the S-entropy with bracketing of £, (£)
endowed with L, (Lebesgue measure) norm. Using the assertion in Case (i)
on increasing functions, one obtains

H(6,%,) < const.(1/58).

Now, take 7; —j6 Jj=0,1,...,m, m < const(l/8).For g, € &, r € [1,_,, 7],
there is a &, €%, such that g, and &, only differ on the set [7,_1, 7] In
fact, one can take g, 2g, org, <g,. This implies

exp(H(28,%)) < 2lexp(H(8, ?,j)),
j=
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so that also
H(8,%) < const.(1/8).
Using the same reparametrization as in Case (ii), one finds therefore
H(8,b,B) < const.(Vn /).

Case (iv). This problem can be related to the estimation of the regression
function of bounded variation, where the least squares estimator is a piece-
wise constant with data-dependent knots [see Mammen and van de Geer
(1993)].

We have, for some constant C,,

{ B+ Bo

2
cZ ={g:[0,») - [0,%); g of variation bounded by C,}.

:BE.%”}

[Indeed, we may take the convex combinations ( 8 + B,)/2: recall the defini-
tion of H(S, b, B), just above Theorem 4.3.]
For /( B + By)/2 € &, we can write

with ¢ a constant and g; increasing, |g;| < Cy, i = 1,2. Using the same
argument as in Case (v) below, one obtains that on {k.( 8, B,) < b} N B, the
constant ¢ is uniformly bounded. The derivation is now the same as in Case
(ii).

Case (v). This problem is similar to the density estimation problem in
Silverman (1982). Alternative estimators of the (cumulative) hazard are, for
example, smoothed versions of the Nelson—Aalen estimator [Ramlau-Hansen
(1983)].

Similar to Case (iv),

B+ B
2

' B eg} cg= {g: [0,1] — [0,x), flg(”')lz < CO}.

We use the line of reasoning of van de Geer [(1990), Example 2.1 (ii)]. Birman
and Solomjak (1967) showed that the set

g1={gcg:g<Cy}

can be covered by explconst. (1/8)!/™] balls with radius & for the supremum
norm. Now, use the Sobolev embedding theorem. Write

B+ By
2

=&t 82,
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with g, € &, (C, appropriately chosen) and g, a polynomial of degree
(m — 1). On the set {k.( B, By)} N B, with B now defined in (5.8), we have

h(g3,88,) < b+ h.(g},88)

(5.13) <b+2C/np,
<4Cyy/npy,
provided b < 2y/np,. Because on B, p,; > 3p,> 0, i = 0,. -1, (5.13)

implies that the coefficients of the polynomials g, are also umformly bounded.
In other words, for b/ Vn — 0, one can indeed use a member of the covering
set of &, (C, appropriately chosen) to approximate B €% on the set
{hLB, By < b} NB.

Since the entropy with bracketing can be bounded by the entropy for the
supremum norm, we may conclude that

l/m

H(5,b,B) < const.(Vn /)

so that ¢(b) < const. n/¢mpEm-1/@m)

6. Maximum likelihood for discrete time. In this section, we specify
a version of Theorem 4.3 for n observations. Consider observations X;,..., X,
on (Z,%). For definiteness, let us take the filtration & = {o(X],.. X )}
t =1,...,n. Suppose that X, has conditional density f, , given 9;_1, wr.t. a
fixed dominating measure u, t =1,...,n. Here 6, is assumed to be a
member of a given parameter space 0.

The log-likelihood ratio is

- for(X,)
(61) n(o 00) = El (foot(X)

and the maximum likelihood estimator € ® is defined as the maximizer
over 6 € O of (6.1) (assumed to exist, but not necessarily uniquely defined).
The Hellinger process is now

h2(0,6) =%‘;f(\/ﬁ— iy

) 60,

DEFINITION 6.1. We say that a function f,(x), t=1,2,...,n, x €2, is
predictable if it is of the form

f(x) =f(x; Xy,..., X, 1),
with f: 2! > R a nonrandom measurable function.
DEFINITION 6.2 (Entropy with bracketing) ’Given b>0, >0 and a

measurable set B C Q, let {[ fz,, fov,], ¢ = , n}2; be a collection of pairs
of predictable functions, such that for each 0 € O there is a j=j(0) €
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{1,..., m}, such that:
(i) The map 0 — j(0) is nonrandom.
Gi) for (%) < fo(x) < fov(x) p-a.e. for all ¢ and w € B.
(iii) %,(6F,8Y) < & on {A,(6, 6,) < b} N B.
Let N(8, b, B) be the smallest value of m for which such a bracketing set
{[ foth, fgjut], t=1,...,n}, exists and let H(8, b, B) be a continuous majo-
rant of log N(8,5, B) v 1.

THEOREM 6.1. There exist universal constants C,, Cy, C3 and C,, such
that under the condition that ¢(b)/b is nonincreasing, with

b
b) = VH(x,b,B) dx V b,
¢(5) fzﬂ/(cz,/mAb/s ( )
we have, for

b
(6'2) C_l = d’(b*)’
that
A b2
(6.3) P(h,(6,6,) > b.) SC4exp(—F3) + P(B°).

ProOOF. The proof is completely analogous to that of Theorem 4.3. O

REMARK. For the case that X;,..., X, areii.d., Theorem 6.1 can be found
in Wong and Shen (1995).

ExampPLE. Consider the k-dependent case, that is, for ¢t > &, foot depends
only on ¢ through {X,_,,..., X,_,}. We illustrate the result for a very simple
case, where p is the Lebesgue measure, f,,(x) =f, , is fixed (known) for
t <k and

for(x) =0(x,X,_1,...., X,_}), t>k,
with
€0 ={9=a?a:[0,1]*"!' > [0,C],
all partial derivatives of order [ < m of «a are bounded by C }

From Kolmogorov and Tihomirov (1959), we know that {V/0: 6 € ®} can be
covered by explconst.(1/8)**1/™] balls with radius & for the supremum
norm. So clearly

H(8,b,B) < const.(\/;/8)(k+l)/m

Theorem 6.1 now yields the rate

1 ~
Whn(o’ 00) — Op(n_m/(2m+k+l)),

for m > (& + 1)/2.
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7. Concluding remarks. Uniform (exponential) probability inequalities
have many statistical applications. In this paper, we concentrated on the
derivation of rates of convergence for (nonparametric) maximum likelihood
estimators. However, the inequality of Theorem 3.1 can also be used to obtain
uniform local asymptotic normality in certain cases. This in turn may be used
to establish the limiting distribution of estimators.

Careful reading of the proof of Theorem 3.1 reveals that (A.10) and (A.11)
do not have obvious generalizations for arbitrary martingales. We believed it
to be more transparent at this stage to consider only counting processes,
instead of formulating conditions for martingales under which the proof of
Theorem 3.1 goes through without too many modifications. It should be noted,
however, that in the case of continuous martingales, conditions on the
entropy without bracketing seem to suffice. The lower integrand in the
entropy integral of (3.2) would then be zero. (Moreover, the process can be
transformed into a Gaussian one by a random time transformation.)

We also remark that in the case of discrete time martingales, Lemma 2.2
could be replaced by Hoeffding’s inequality. This also leads to conditions on a
version of entropy without bracketing.

Finally, it is interesting to note that we could avoid explicit moment
assumptions on the Hellinger process. However, it may be the case that in
several applications these moment assumptions occur in the entropy calcula-
tions.

APPENDIX

PROOF OF LEMMA 2.2. We may write M, = M + MZ, t > 0, where {M[} is
a continuous martingale and {M¢} is a purely discontinuous martingale.
Consider now for 0 < A < 1/K the process

Z, =AM, - S,,
where S, is the compensator of the process
W, = 1AM, M), + Y (exp(MAM,]) — 1 — MAM,)).
s<t

We shall first show that {exp Z,} is a supermartingale. For ¢, < ¢,, we have
by the stochastic integration formula,

t 2 c
expZ, — expZ, = j;zexp Z, dZ, + %[t xpZ,_d[Z,Z],
1 1

+ Y expZ,_[exp(AZ,) —1-AZ,]

t1<u <ty

=1+ 1II+ III.
Clearly,

1= [“expZ,_ dZ, = A[’expZ,_dM, - [ “exp Z,_dS,
t t

ty
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Il = %ftzepou_ d[Z,Z]. = %/\thzepou_ d{(M¢, M®),.

t, 131

Thus, for S, = S, — 2A2(M¢, M¢),, t > 0, we find

I+11 = A["expZ,_ dM, - [expz,_dS,
ty ty

= (i) — (ii).
To handle III, we use
exp(AZ,) —1-AZ,
=exp(AAM, —AS,)) —1- 1AM, + AS,
exp(AAM,)
T 1+AS,
exp(AAM,) —1-AAM, — AS, — AAM,AS, L AS
1+AS, “
AW, — AS, —AAM,_AS,
1+ A4S, + AS,,.

—1- 1AM, + AS,

IA

This yields

= ) expZ, [exp(AZ,) —1-AZ,]

t1<u <ty

x , [AW. - A4S, - AaM, 48,
expZ,_
ti<us<ty 1+A4AS,

+ )., expZ,_AS, = (iii) + (iv).

t1<u <ty

<

Define now

Then

— (i) + (iv)

u

~[%expZ,_dS,+ ¥ expZ, AS
t

ti<u<ty
ty =
= —f expZ,_ dS;
131

¢, €XP Zu_ .
L 1+AS, aSi.
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Collecting the results so far gives
exp Z, —exp Z, < (i) — (ii) + (iii) + (iv)

< /\ftlepo _dM
t2 u u

v A i AS - AAM,AS
+t1<ust2 T+ as, [ u «AS,]
£ epo J5¢
.1 +AS
= A[tlepo _dM, + [‘2———eXpZ“‘ d(W, -8,)
ts “ t, 1+AS, “oo
xp Z,
—)tf ——A—S—d[M Slu,
WhereW Y. : AW, t > 0. Since {Wt —St} as well as {{ M, S],} are martin-

gales, we thus have
IE(exp Z,, — exp Ztll.Zl) <0, t, <t,,

that is, {exp Z,} is a supermartingale.
Recall now that if {X,} is a supermartingale, then for any stopping time o,
(A1) EX {0 <} <1.

Let A={M,>a and R, > b® for some t}. Apply (A.1) with X, = expZ,,
t >0, and o = inf{t: M, > a}. Because o < © on A, we have

(A.2) [X,dP <1.

A
On the other hand, using condition (2.2), we see that, for 0 < A < 1/K,

o0 m 2
(A.3) z=: mt_m P t>0.
Soon A,
/\2
_ " g2
(A4) XUZexp(/\a 2(1_)\1{)b )
Combination of (A.2) and (A.4) yields
/\2

_ " g2

(A5) P(A)Sexp( Aa + 2(1__/”{)b )

This inequality is valid for all 0 < A < 1/K. Now, choose

a Ka
/\=ﬁ (1+-g-2-).
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Then (A.5) reads

P(A) Sexp(—z(TI{aTz)). a

PrROOF OF THEOREM 3.1. In the proof, ¢;, i = 1,...,16, will be constants
depending on L and C,,...,C,. Moreover, M = N — A. Let

. < .
= 5

Write H; = H2 “*Yb,b,B), i =0,..., I It is easy to see that, for proper
choice of C,,

I b
Y 2 HV? < c_lf" VE(%,5,B) dx < 25
=0 b Jeb2/(Chop)nbys 1
and
1 i /2 1 cyeb
(A.6) z-i( Y Hk) <c, Y 27HM? < ‘°’C—
i=1 k=0 i=0 1

If we choose

2—(i+1)(22=0Hk)1/201

cgebd

(A7) n,.=max{ ,2-(”2)\/{}, i=1,...,1,

then, by (A.6),

n; < 1.
1

I
im

Let, for i =0,...,I, {{§F, Y]} be a (2-C*Dp)-bracketing set for & as
defined in Definition 3.1. The subscript refers to the bracketing set and not to
the member of a bracketing set. Thus log{[ g%, §” }}| < H;, and for each g €%
there is a pair [§}, §”] such that gF <g<g/ and dp(&},87) <27¢* Db on
{dp(g,00) <b} "B, i=0,..., I Write

A8) gU = ming?, gl = maxgk, A, =gl — gk, i=0,..,1I,
i k i k i i i
k<i k<i
and
252—2i
(A9) v=min{i>0:A,>K,) AI, K, = . i=0,...,1-1.
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Note that the pairs [gf, g”] and A, i = ,I, as well as » depend on
g € ¢, although we do not express this in our notatlon Moreover, [gF, gV],
A;,i=0,...,1I, and v are predictable functions.

We may Write

I I
g=gr+ L(g—-gy){v=i}+ X (&f —gl.){r=1i)
i=0 i=1
=1+1II+1I,

and

gl

T eb?
<P fogo aM zTanddT(g,O)sbforsomegeZ N B

+ P({I[{)Té(g—go

dr(g,0) < b for some g e.‘?} N B

> ¢b? and d;(g,0) < b for some g € ?} N B)

2
> — and
4 an

2
zTand

dr(g,0) < g for some g € .‘?} N B

On {d;(g,0) < b} N B, also d;(g¢,0) < 2b. Therefore, using Corollary 2.3,
for some c,,

eb?
P; < P(‘Lng' dM‘ 2 — and d;(g¢,0) < 2b for some g(’;)

£b?
<2exp|H, — - |
4

Hence, we see by condition (3.2) that, for C; sufficiently large,

eb?
P; < 2exp| ——|.
Cs
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Fori=1,...,1 -1, A;l{v =i} > K; by definition (A.9). Thus, on {d;(g,0)
<b}NB,

N2dA  4dd(gF, gV
[Tad{v=1i)dA < f"é < T(ii &)
(A.10) 0 ! i
ebn;
< 2’;“, i=1,..,1-1

For i = I, we have on {d;(g,0) < b} N B,

r r 1/2 eb?
(A.11) [OA,1{v=I}dA < aT([O A2 dA) <20,dy(gF, 8Y) < -5

where we used the assumption that B c {A; < o2}.
It follows from (A.10) and (A.11) that

I r ) eb?
ig:ol; Ail{v—l}dA < ?,

since ¥!_;7; < 1. This implies

PHSP({
i=0

Now it is clear that (A.12) implies

[Al{v—z}dM‘ —and

(A.12)
dr(g,0) < b for some g € .‘?} N B).

2

T eb
P, <P |[0 Aol{v=0}dM‘2?and

dr(g,0) < b for some g € ?} N B)

P

- pd 2
=P + P{.

To handle P{, we use the fact that on {d;(g,0) < b} N B, and for some
constant c; depending on L,

dr(4,,0) < chT(goL,gg) < 3¢6b?,

+P

[Al{v—l dMI and

dr(g,0) < b for some g E?} NB
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so that, from Corollary 2.3,

eb?
PP < [P’(lfTAOl{v = 0} dMl > —-and
0 2

1
(A.13) dr(4,,0) < —cﬁb2 for some A )
eb? eb?
<2exp|H,— — | <2exp| ——|,
Cq Cg

for C, sufficiently large.
To handle P, we use
caebn,2'H1

( Lz Hk)l/z =7

k<i
and A,l{r =i} <K, ,,i=1,...,I, by (A.9). Also, we know that on {d,(g,0)
< b} N B,

[0 dA < 4d3 (gt g?) < (27b)".
0

Application of Lemma 2.1 now yields
P® < Z [P’('f A1

2

£
ot M and

fTA%. dA < (2"'b)2 for some {Ak},i=0)
0

(A14) I 8b2,n222i I 8b2,n222i
<Y 2exp( Y H, - ——————t—-) <Y 2exp(—~—————f————~)
i=1 k<i Co i=1 C10
I eb?i eb?
< ) 2exp|-— <cpexpl ——|.
i=1 Cu €13
Observe now that |gf — gl I <A,_;,i=1,...,1. We may write

2
— and

T
Py < P({|f0 (g1L -8

dr(g,0) < b for some g E?} N B
I
i=2

_ pa 2
= Pi + P).

T L 2 . eb?
/0 (gF gl )Yv=i}dM| > -5 and

dr(g,0) < b for some g e?} NB
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It follows by similar arguments as in (A.13) that Corollary 2.3 implies

eb?
Py < zeXp(———),
Ci14

and similar arguments as in (A.14) yield that Lemma 2.1 implies

eb?
P@ < c,5exp| ——|. ]
Ci6
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