The Annals of Statistics
1995, Vol. 23, No. 5, 1684-1711

PERIODOGRAM-BASED ESTIMATORS
OF FRACTAL PROPERTIES

By GRACE CHAN, PETER HALL! AND D. S. POSKITT

Australian National University

We suggest an estimator, based on the periodogram, of the fractal
index and fractal dimension of a continuous, stationary Gaussian process.
We argue that the cosine part of the periodogram is more appropriate
than the full periodogram for this application. The term “semiperiodo-
gram” is used to describe the cosine component, and our estimator is
based on simple linear regression of the logarithm of the semiperiodogram
on the algorithm of frequency. Theoretical properties of the estimator,
including its bias, variance and asymptotic distribution, are derived.
Consistency is possible using only a small trace of the process, recorded
over a fixed interval. We do not need to model the covariance function
parametrically, and assume only mild conditions on the behaviour of the
covariance in the neighbourhood of the origin. The issue of aliasing is
discussed in both theoretical and numerical terms, and the numerical
properties of the estimator are assessed in a simulation study.

1. Introduction.

1.1. General motivation. During the last decade there has been consider-
able interest in modelling real phenomena using self-similar processes. One
particularly popular application is to the problem of describing surfaces. For
example, the surface of a fractured metal bar or of a highly magnified
polished metal sheet may be modelled in this way. Literature inspired by
problems such as this includes Berry and Hannay (1978), Coster and
Chermant (1983), Mandelbrot, Passoja and Paullay (1984), Thomas and
Thomas (1988), Ogata and Katsura (1991), Taylor and Taylor (1991) and
Constantine and Hall (1994). The reader is referred to Carter, Cawley
and Mauldin (1988), Dubuc, Quiniou, Roques-Carmes, Tricot and Zucker
(1989) and Dubuc, Zucker, Tricot, Quiniou and Wehbi (1989) for discussion of
a variety of ways of estimating fractal properties in an engineering context.
Often the data obtained from surfaces are in the form of line transect
samples, and so the self-similar process under study is a curve in the plane
rather than a surface in three-dimensional space. In this context, some recent
developments in time series analysis are of interest, namely, work that has
focused attention on processes exhibiting long range dependence. Such pro-
cesses are characterised by a power spectrum proportional to an inverse
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power law near the origin and have covariances that decay slowly; examples
are fractional Brownian motion, due to Mandelbrot and Van Ness (1968), and
fractional differences, introduced by Granger and Joyeux (1980) and Hosking
(1981), both of which have been used to model strongly dependent behaviour
in economics, geophysics and hydrology. Various approaches to the estimation
of parameters of interest in strongly dependent processes have been pro-
posed, including the rescaled range and frequency domain methods. The
former are discussed in Mandelbrot (1975) and Mandelbrot and Taqqu (1979),
while Fox and Taqqu (1986), Geweke and Porter-Hudak (1983), Janacek
(1982) and Kashyap and Eom (1988) consider the latter. Cox (1984) and
Hampel (1987) provide general reviews of many of these ideas. In this paper
we are concerned with the analysis of line transect samples, but because we
have in mind applications that involve examining the smoothness of surfaces,
our focus of attention centres not on the long range properties of the process,
but on its local behaviour. As will be seen below, although there are analogies
with the investigation of long range dependence, this change of emphasis
introduces several subtle and important differences.

1.2. Relationship between fractal and covariance properties. If the self-
similar process under study is Gaussian, then the fractal properties of its
sample paths may be described very simply in terms of the behaviour of its
covariance function at the origin. For example, if the stationary Gaussian
process X has covariance given by y(s — t) = cov{X(s), X(¢)} and if

(1.1) v(2) = v(0) — clt|* + o(l£]%),

as t = 0, where 0 < a < 2 and ¢ > 0, then « is called the fractal index of X.
The fractal or Hausdorff dimension of X, equivalent also (on the present
occasion) to capacity, is given by

(1.2) D=2-la.

See, for example, Adler [(1981), Chapter 8]. When o = 2, the process X is
differentiable with probability 1 and so D =2 — 3 -2 = 1, as expected. For
smalier values of «, the fractal dimension is fractional and lies strictly
between 1 and 2. The relationship (1.2) between fractal dimension and fractal
index persists for a variety of non-Gaussian processes, but not for all such
processes. This issue will be discussed lfurther in Section 1.4.

1.3. Summary. In the present paper we suggest a technique for estimat-
ing fractal index, and hence [using formula (1.2)] fractal dimension of the
sample paths of a stationary Gaussian process, based on the periodogram. We
assume that the data are in the form of a trace of the process in the
continuum. The trace need not be a long one. Indeed, our asymptotic theory is
based on a trace over a fixed interval, which we take without loss of
generality to be (— 1, 1). Issues of aliasing, that is, of discretizing a continuous
trace on a grid, are discussed both theoretically and numerically. We show
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that the cosine part of the periodogram has certain advantages over the full
periodogram in the context of of estimating «.

We should stress that all our theory is conducted under the nonparametric
model (1.1), rather than a fully parametric model such as y(¢) = exp(—cl¢|*).
It is easy to show that an estimator based on the latter assumption is
inconsistent if the model is misspecified.

Section 2 introduces our estimator and derives its basic properties, includ-
ing variance, bias and asymptotic distribution. Section 3 discusses numerical
issues and summarises the result of a simulation study. Proofs of results in
Section 2 are deferred to Section 4.

1.4. Engineering aspects of fractal estimation. Surface data of a fractal
nature may be gathered in a very wide variety of ways. All involve a certain
amount of smoothing or degradation of the “true” surface data. The nature
and extent of this smoothing depends very much on the method of recording,
of which we shall mention only a few. A stylus, rather like a gramophone
needle, may be drawn across the surface, its oscillations magnified electroni-
cally and the resulting height measurements recorded at regular intervals.
The shape, and in particular the width, of the stylus influence the extent of
smoothing, although sometimes there are other significant factors, such as
complex electronic filters in the recording device. The type of smoothing
offered by a stylus is distinctly nonlinear, which may be seen by noting that
the stylus cannot record any information at all from crevices which are
narrower than the stylus width. Relatively linear smoothing is provided by
devices which measure surface height via the interference patterns of re-
flected light from a narrow beam. Often the beam is from a laser, but
sometimes it is white light. The diameter of the light beam, and again aspects
of the recording equipment, determine the extent of smoothing. Third, two-
dimensional data may be recorded on a camera pixel grid. Fractal data
obtained by electron microscopy are often of this form. Here, properties of the
camera determine the nature of smoothing, which is often approximately
uniform over pixels, but occasionally is very close to point measurements at
pixel centres.

The effects of smoothing are related to those of discretizing, or gridding.
They should be acknowledged in some way by the manner of statistical
analysis. In the context of periodogram-based estimation of fractal dimension,
smoothing provides yet another factor which limits the size of the frequency
at which one may estimate the periodogram (or semiperiodogram). The extent
of such limitations is admittedly easier to see when using methods such as
box-counting or the variogram, where calculations are based directly on
differencing the process at grid points. Those points should be paired at
distances which are at least several stylus widths or light beam widths or
pixel widths apart. A concise mathematical account of some of the effects of
smoothing, in the context of recording fractal surfaces, has been given by Hall
(1995).
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Virtually all methods for estimating fractal dimension are based on so-
called scaling laws, which involve seeking approximately linear relationships
between the logarithm of a certain estimable function and the logarithm of its
argument. There are many possible choices for the function, of which some
will be discussed shortly. Exceptions to this rule included the stochastic
modelling of concave or convex departures from linear relationships, for
example, modelling the effect of data degradation by smoothing. Other mat-
ters, related to discontinuities and oscillations, may be addressed at least in
part by modelling arguments. There also exist scaling laws based on fitting a
linear relationship to the iterated logarithm of a function and the logarithm
of its argument. See, for example, Ling (1987). However, while these laws
have been discussed in the context of fractal properties, they do not seem to
be efficacious in actually estimating those properties.

The scaling law based on the (semi)periodogram is the subject of this
paper, and will be discussed at length in the next section. To place it into
context, we mention here two other laws, based on the length of an approxi-
mating polygonal path and on the variogram. The first of these is arguably
the “classical” scaling law, very commonly associated with physical proper-
ties. It declares that if (1.2) holds, then the length I(s) of a polygonal
approximation to a fractal curve, constructed on a grid of edge width s,
should vary in such a way that log I(s) increases like (D — 1)|log s| as s
decreases:

log I(s) = (D — 1)|log s| + constant + o(1),

as s = 0. For discussions of the application of this law to real data, the
reader is referred to Ling (1987, 1989, 1990), Majumdar and Bhushan (1991)
and Brown, Charles, Johnsen and Chester (1993).

The variogram scaling law is founded on the observation that if v(s)
equals the mean square of the difference between two values of a fractal
process at points distant s apart, then in the presence of (1.2), |log v(s)|
should decrease like 2(2 — D)|log s| as s decreases:

|log v(s)| = 2(2 — D)llog s| + constant + o(1),

as s — 0. Examples of the practical application of this law include Serra
(1968), Delfiner and Delhomme (1975), Journel and Huijbregts (1978) and
Burrough (1981).

The power spectrum method, discussed, for example, by Dubuc, Quiniou,

Roques-Carmes, Tricot and Zucker (1989), is closely related to estimation via
the periodogram. However, it is tailored specifically to discretized data and so
requires an adjustable level of smoothing to estimate the spectrum at all
-frequencies. We have deliberately avoided such an approach here, since
incorporation of a smoothing parameter would considerably complicate our
theoretical analysis. Thus, we consider the twin issues of discretizing and
statistical smoothing (as distinct from the unwanted smoothing of the data
during recording) from the viewpoint of aliasing.
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An alternative approach to inference, quite different from those discussed
above, is based on modelling the covariance function in greater detail. This
can take a wide range of forms. At one extreme, the second-order term in
(1.1), that is, the o(|t|*) term, may be modelled. This amounts to modelling
one aspect of the departure of the scaling law from a straight line. Alterna-
tively, one may model the entire function 7y, for example, by y(¢) =
exp(—clt|*). Philosophically we find ourselves uncomfortable with such an
approach. It relates the long-range dependence of the process to its fractal
properties in a way which is rather difficult to substantiate without extensive
information. Of course, more complex models are possible, which allow more
flexible relationships between long-range dependence and fractal behaviour.
However, with more complex modelling comes greater difficulty of conducting
inference. Nevertheless, completely parametric models have been used very
successfully in some settings; see, for example, Ogata and Katsura (1991).

The assumption that the underlying process is Gaussian is of course not
completely necessary to the estimation of fractal dimension. However, some
restriction of this sort seems to be required. Virtually all scaling laws derive
from the relationship between fractal and covariance properties discussed in
Section 1.2. This is true even for scaling laws which do not explicitly involve
covariance; for example, the length-based law discussed earlier is of this
form. Therefore, any stochastic model must be capable of supporting a
connection between the fractal dimension of sample paths and second-order
moments. This is a tall order, and is usually only available for processes
which are closely related to Gaussian. Even among such processes there are
definite limitations to the validity of key elements of the scaling laws, such as
formula (1.2). For example, if X = |Y|”, where Y is a stationary Gaussian
process, then (1.2) holds if and only if » > 1. See Hall and Roy (1994).

2. Methodology and basic properties.

2.1. Introduction and summary. Our estimator of fractal index is based
on a version of the periodogram for a continuous trace of a stochastic process
X. The definition of the continuum periodogram I is similar to that of the
periodogram computed from discrete observations of X, and is given in
Section 2.2. It is composed of both cosine and sine parts. We define the
semiperiodogram J to be the cosine part of the periodogram. Section 2.2
provides asymptotic formulae for expected values of both the cosine and sine
components of I, assuming a regularity condition similar to (1.1). Those
results imply that, when a > 1, the value of a cannot be estimated directly
from the periodogram, but that the semiperiodogram can be employed suc-
cessfully whenever 0 < a < 2. Therefore we focus attention on the semiperi-
odogram, and define an estimator & based on regression of log J on the
logarithm of frequency.

Bias and variance of & are discussed in Sections 2.3 and 2.4, respectively.
The size of bias depends critically on behaviour of the “o(|¢|*)” term in (1.1),
and so that expansion must be elaborated upon if we are to describe bias.
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Section 2.5 discusses the overall performance of &, explaining concisely how
the accuracy of & is affected simultaneously by both deterministic errors and
stochastic fluctuations. We present a central limit theorem for the estimator
and address the issue of recording the data on a fine grid rather than in the
continuum. This matter of “aliasing,” as it is often called, can influence the
accuracy of our theoretical description of the properties of &. We state an
explicit condition, on grid width, that is sufficient to ensure that aliasing does
not affect the central limit theorem for a.
Proofs of the results in Sections 2.2-2.5 are given in Section 4.

2.2. Methodology. Let X denote a stationary Gaussian process observed
on the interval (—1, 1) and define

A(w) = f_llX(t)cos(wt)dt, B(w) = f_llX(t)sin(wt) dt,

I(0) = A(w)® + B(w)?, J(0) = A(w)>.

We call I the periodogram and J the semiperiodogram. Note that I(w) =
I(—w) and J(w) = J(—w). If w is an integer multiple of 27, then, regardless
of the mean of X, EA(w) = EB(w) = 0. Henceforth we suppose that o is a
positive integer multiple of 2.

The theorem below states that if 0 < a < 2, then EJ(w) ~ constant X
0 (“*D a5 @ - ©, and that the same is true of EI(w) provided 0 < o < 1.
These properties form the basis of our approach to estimating «. To state the
theorem we must introduce regularity conditions, which we do next.

Given ¢ > 0, let A(¢) denote the class of functions A on (0, 2) such that

sup [*|h(¢ +u) — h(t)|dt = O(5*),
lul<s°0

as 8 » 0. [We extend % from (0,2) to (—,») by periodicity.] Note that if
0 < 1 < 1, the function A(¢) = ¢~ is in A(1 — 7). Given a real-valued func-

tion g, let g’, g”,... or equivalently g, g®, ... denote its successive deriva-
tives. Define g, by
(2.1) v(2) = v(0) —ct*+gy(¢), >0,

for constants ¢ > 0 and 0 < @ < 2 [as in (1.1)]. We assume that, for some
>0, '

(2.2) g1€A(a+e), fa<l, or gieA(at+e—-1) ifl<a<2.
For 6 > 0, put

K{sin}(_a) = fwt‘s{ii,‘; },(t) dt,

cos 0

respectively. Here, the sine and cosine functions should be taken respectively.
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THEOREM 2.1. Assume condition (2.2). Then, as w — © through integer
multiples of 21,

E{A(0)?) = - w-ljoz(z — t)y'(t)sin( wt) dt

(2.3) 2caw”“* VK, (a—1), if0<a<l,
~{2cw 2, ifa=1,
2ca(a— 1w VK, (a—-2), ifl<a<?2;

E(B(w)?} = - w-ljoz(z — t)y'(t)sin( wt) dt

+ 2072 2y’(t)cos( wt) dt + 207 2{y(0) — y(2)}
(2.4) 0
2caw VK, (a—1), if0<a<l,

~12{c+7(0) —v(Q)}o™?, ifa=1,
2{y(0) — y(2)} o2, ifl<a<2.

In view of the theorem, log EI(w) ~ —(a + 1)log w, for 0 < a < 1, but
log EI(lw) ~ —2log w, for 1 < a < 2. Thus, in the case a > 1 we cannot
expect to be able to estimate a in terms of the slope of the regression of
log I(w) on log w. On the other hand, log EJ(w) ~ —(a + Dlog w for 0 <
a < 2, so that regression of log J(w) on log w is practicable for estimating o
in this wider range. Therefore we focus attention on the semiperiodogram.

Let 0(w)? = EA(w)?, Z(w) = A(w)/0(w), Y(w) = log A(w)? and

e(w) = log Z(w)® — Elog Z(w)?, C,=ElogZ(w)”.

Since Z(w) has the standard normal distribution for each w, then C; does not
depend on w. In this notation,

Y(w) =log o(w)® + C, + e(w).
Formula (2.8) may be written as o(w)? ~ C,w "D, where C, > 0. This
observation prompts the approximate regression model,
Y(w) =Cy— (a+ 1)logw + e(w),
where C; = C; + log C,. That in turn suggests the following approach to

estimating «. Let w; < --- < w, denote positive integer multiples of 27. Put
x;=log w, X =k 'Lx;, Y, = Y(w) and

&= —{ é(xj —9_5)2} é(xj - F)Y; - 1.

The systematic and random errors of this estimator are described by bias
and variance, respectively. We treat them separately. To simplify exposition
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we take w; = 2jmm, 1 <j < k, where the integer m = m(k) > 1 may depend
on %k and could diverge to +» as & — o,

2.3. Bias. The size of bias is determined by the “o(|¢|*)” term in (1.1),
corresponding to g; in (2.1). In order to be explicit about bias it is necessary
to enter into more detail about properties of g;. With this in mind we shall
refine (2.2) to the new condition (2.6) below.

Define g, by

(2.5) y(t) = y(0) —ct* —dt**P + d't? + g,(t), ¢t>0,

for constants ¢ > 0,d,d',0< ¢ <2,0< B8<1, B+ 2 — a We assume that,
for some £ > 0,

gy€ANa+B+e) fat+p<l,
(2.6) gy€ANa+B+e—-1) fl<a+p<2,
g8 €EANa+B+e—-2) if2<a+B<3.

Put
Ksin(g_ 1)’ if0 < é<1,
_ 1’ lf§= 1,
@D M= (e nK,(¢-2), 1< £<2,

—(€-1(£-2)K,(6-38), if2<¢£<3

(not defined for ¢=2), 7, =dec™ (1 + a " BM;'M, 5, 7= —7 B —
B)2(@2m)7k.

THEOREM 2.2. Assume condition (2.6). Then, as k — =,
E(&) = a+ 7(km) " + o{(km)~*}.

24. Variance. If the variables Y; = Y(w;) were stochastically indepen-
dent, then variance would be given by

-1
3
var( &) = { X (x; - 9'5)2} var(Y;).
j=1
Of course, the Y;’s are not independent, but we claim that, nevertheless, this
variance formula is asymptotically correct, as evidenced by the following

theorem.

THEOREM 2.3. Assume condition (2.2) and that y"(t) = O(t*"3) as ¢ | 0.
Then

(2.8) var(a) ~ { i (x; —5)2} var(Y;) ~ k= ! var(Y;).
j=1
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We should comment on the fact that, in Theorem 2.3, the asymptotic
variance of & does not depend on m, although that quantity does appear in
our asymptotic formula for bias; see Theorem 2.2. The fact that m does not
enter the first-order asymptotics for var(&) is a consequence of our definition
of the design points, x; = log(2mjm). Note that m vanishes from the centred
design points x; — x. For other choices of design, in particular for w;/2w
equal to the integer part of exp{(jm)°}, for some & > 0, and x; = log w;, the
first asymptotic relation in (2.8) continues to hold, but the second is no longer
true.

2.5. Discussion. The conditions of both Theorems 2.2 and 2.3 hold if we
assume that, for some & > 0, the function g, appearing in (2.5) satisfies

(2.9) gf(t) = O(z*Fre7t),

as t 0. In the event that the conditions of both theorems hold, we may
deduce from those results that, as £ — o,

&—a=r(km) ™" + k7 V2W, + o {(km) " + 2712},

where the random variable W, has zero mean and variance s® =
var{log N(0,1)?}. Thus, & > a in probability as £ — ». If m is chosen so
large that 21"2#m=%f - 0 as k - = (e.g., if m > 1 in the case 8 > 1), then
k1/2(& — ) has asymptotically zero mean and variance s2. Quite generally,
k1/2(a — E&) has an asymptotic normal distribution, as our next result
shows.

THEOREM 2.4. Assume condition (2.2) and that y*(t) = 0(}‘/"‘4) ast 0.
Then kY2(&4 — E&) is asymptotically normally distributed with zero mean
and variance s2.

Condition (2.9) is sufficient for the assumptions of Theorem 2.4.

In practice, the integrals defining A(w,),..., A(w,), and hence &, would
usually be approximated by a series computed on points of a grid. So we
should state a result which points out that if the grid points are sufficiently
closely spaced, then our asymptotic results continue to hold. In the discussion
above we noted that & — « is at least as large as £~ !/2, and so it suffices to
describe a series-based approximation to & which is accurate to terms of
smaller order than £~ 1/2 as & — o,

To this end, define

‘

n—1
A(w)=n"1 Y X(i/n)cos(iw/n),
i=—-n
our approximation to A(w) based on a 2n-point grid. Let &, denote the
corresponding approximation to &, computed with A, (w;) replacing A(w)) for
1 <j < k. Our next theorem shows that if n = n(k) increases sufficiently
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rapidly, then & — &, = o(k~1/2), so that (for example) &, — E& satisfies the
same central limit theorem as & — EQ.

THEOREM 2.5. Assume condition (2.2) and that vy is decreasing on an
interval (0, &), for ¢ > 0 sufficiently small. Suppose n = n(k) — « so fast that

(2.10) n=e(mk)** 'k5(log k) - 0,
as k — ». Then k'/%(& — &,) > 0 with probability 1.

We suspect that condition (2.10) is substantially more severe than is
necessary in practice, and our simulation study indicates this too. However,
in strictly rigorous theoretical terms we have not been able to improve on it.
The effect of discretizing the time variable, commonly called aliasing, will be
taken up in more detail in the next section. It should be stressed that the
problem is aggravated by the requirement that we examine the spectral
density for large values of its argument, w; for small values the effects of
aliasing are much less. However, there seems no way to avoid this difficulty.

The cosine and sine parts of the periodogram are not individually shift
invariant—that is, the random processes

Alw, \) = f_llX(t)cos{w(t +A)} de
and

B(w, A) = f_llX(t)sin{w(t +A)} dt

are nondegenerate functions of A as well as . (The full periodogram,
{A(w, )? + B(w, A)?}'/2, does not depend on A.) This property may be used to
enhance the performance of the estimator &, as follows. Let &()) denote the
same function of A(wy, A),..., A(w,, A) as & was of A(w,),..., A(w,), let
v > 1 be an integer, let A;,..., A, be arbitrary real numbers and put

v
ag=v' Y a(A).
j=1

The distribution of @(A) does not depend on A, and so
E(a&y) =E(a), var(a,) <var(a).

It follows that in mean-squared error terms, &, performs at least as well as &
and possibly a little better.

To appreciate the extent of any improvement offered by &,, we must
evaluate its variance. To this end, note that A(w, A;)/0(w) and
A(w, A\y)/0o(w) have a bivariate normal distribution with zero means, unit
variances and correlation coefficient equal to

cos{w(A; — Az)}
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uniformly in )tl and A,, as o — . Let g(p) denote the covariance of
(log N2,log N2) if (N, Nz) are bivariate normal N(0,0;1,1, p). Then g(p)
depends only on |p| and is strictly positive unless p = 0, in which case
g(p) = 0. It may be shown that the asymptotic variance of &, equals

{Z(xj - 3?)2}_2 Y (% - 3—6)2,,—2 Vl; lZg[cos{wj(/\l1 - )‘lz)}]’

which for appropriate choice of v (= ®) and A;,..., A, is asymptotic to
k~1ns? where 0 < n < 1.

The variance may be further reduced by using appropriate weights in the
linear regression, but it may not be reduced to o(%~!). The specific practical
problem which motivated this work, that of assessing the roughness of rollers
used to produce metal sheet [see Constantine and Hall (1994)], is one where
additional data values may be derived with relatively little expense. There-
fore we have not felt particularly motivated to discuss issues of statistical
efficiency, in terms of choice of v and the A’s. The issue of aliasing has been of
much greater concern. However, the matter of statistical inconsistency, in
connection with practical estimation of fractal dimension via the periodogram
when a > 1, has considerable practical interest and actually caused practical
difficulties until it was well understood.

3. Numerical results.

3.1. Sampling design and integral approximation. Recall from Section 2.5
that our initial approximation of semiperiodogram A(w) is defined by

n—-1
(3.1) A(w)=n"' ¥ X(i/n)cos(iw/n).

i=-n
This, of course, amounts to using a uniform sample design of 2n points on the
interval [ —1, 1). It is known, however, that for the problem of approximating
a weighted integral of a stochastic process over a finite interval, uniform
sampling is not necessarily optimal; see Benhenni and Cambanis (1992) and
the references contained therein. More generally, therefore, we may consider
estlmatlng A(w) using 2n + 1 observations of the process X at the points
t; nyi = —n,...,n,over the interval [ -1, 1] and an integral approximation of

the form
n

An(w) = n_l ) Z LU’iX(ti’n)COS( wti,n)’
l=—n
where the sample design {t, .} and weights {w,} are chosen so as to minimise
the asymptotic mean-squared error E(A(w) — A (®))?; see Benhenni and
Cambanis (1992). This choice depends on the process covariance structure,
and in the simulations reported in Section 3.2 the underlying covariance
function is assumed, for convenience, to be of the form

(3.2) v(s —t) = exp(—cls — ¢|%),
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where ¢ > 0 and 0 < @ < 2. We shall therefore examine this case in a little
more detail.

From the two differential equations given in (3.3) below it is straightfor-
ward to verify that the regularity conditions required by Benhenni and
Cambanis for the determination of the optimal sample design are only
applicable if we know a = 1. In that case we find that {¢; ,} is obtained by
solving

; n+
f_t”l"xwl cos( wt)[”/? dt = o

where the constant «, is such that

fl k| cos(wt)|® dt = 1.

We have evaluated {t; ,} for various combinations of w and »n and in Table
1 present typical examples of the minimum and maximum values of [¢; , —
i/nl,i= —n,...,n, for a range of v values when n = 500.

Table 1 shows that only for small values of w = 27 will |¢; , — i/n| equal
or exceed the length of the uniform sampling interval; for moderate and large
values, the difference between the optimal and uniform sampling points will
be less than n~! by an order of magnitude at worst. Although these figures
relate to the particular case a = 1, it is clear that the close proximity of {ti, )
and {i/n} for increasing w is brought about by the increasingly rapid oscilla-
tions in |cos(wt)|?? over [—1,1] and it appears reasonable to conjecture that
the behaviour of the cosine function would similarly dominate such calcula-
tions for other values of «, as well as more general covariance functions
obeying (1.1), could they be made. This suggests that in general very little
may be lost by using a uniform sample design. Indeed, in practice the true
value of a is unknown and we envisage estimating it using a range of
frequency values. Thus the estimation process will be more convenient and
versatile if the same set of sampling points can be employed in all circum-
stances, as appears to be the case.

Once the sample design is known, the determination of the weighting
sequence {w,} is governed by the continuity properties of X. Differentiating

TABLE 1
Absolute differences of optimal and uniform design points for o = 27l, n = 500

® Minimum Maximum
27 2.20 x 108 1.99 x 1072
207 3.18 x 1077 213 x 1073
507 3.63 x 1077 9.36 x 107*
1007 1.52 x 1078 548 x 1074
1507 9.07 x 1077 415 x 1074

2007 1.82 x 1077 3.37x 1071
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v(¢) in (3.2) we obtain

9y(2) a- @
= (—sgnt)calt|* " exp(—cltl*),
Jat
(3.3) )
97y(t) 2a-2 2 .
e =cafcat?*? — (a — 1)t* ?Jexp( —clt|”).

Since all a’s of interest are less than 2, these formulae confirm [Benhenni
and Cambanis (1992), page 166] that the process has no quadratic mean
derivatives. Given that the optimal sampling design is closely approximated
by the uniform sequence {i /n}, particularly when « = 27! is large, following
the arguments presented immediately above, this implies that the optimal
weighting is likely to differ little from the trapezoidal rule. Hence, in the
simulation experiments that follow we will consider the performance of the
quasioptimal integral approximation

n—1
A(o)=n{X(-1) +X()}/2+ Y X(i/n)cos(iw/n)|.

i=-n+1

With regard to the latter, it is perhaps of interest to observe that An(w) may
be viewed as a conventional approximation based on tapered data, and it is
known that in the frequency domain analysis of time series, tapering can
produce high resolution estimates with enhanced performance; see Dahlhaus
(1988). As a basis for comparison we will therefore also investigate the
alternative approximation

A(w)=n""! f; X(i/n)cos(iw/n)h(i/n),

i=-n

where A(-) is the split cosine taper with cosine bell applied to 20% of the data.
The properties of

A (w)=n"1 Zn: X(i/n)cos(iw/n)

i=-n
and, following the suggestion of a referee,
n—-1

- A(w)=n""1 ¥ X(i/n + 1/2n)cos{(i/n + 1/2n) )

i=-n

will also be examined.

3.2. Simulation study. The purpose of this study is to illustrate the
methodology outlined in Section 2 and to compare the performance of the
integral approximations A,(w), A,(0), A (w), A, (w) and A(w). In view of
the theoretical results presented above, the experiments are based on the
simulation of Gaussian processes whose covariance function is as given in
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(8.2). The following values for the covariance parameters ¢ and a were
considered:

a=0.01,025,05,0.75,1,1.25,1.5,1.75 and 1.99,
_/0.1(2%), a<1,
2%, otherwise.

The total number of sampling time points were taken to be 3751 (n = 1875)
and 5001 (n = 2500). The first of these corresponds to an actual value used to
analyse data from a metal surface and the second is used to demonstrate the
improvement in estimation brought about by increasing rn. The number of
frequency values & was taken to be [n/2] and [(2n + 1)?], p= 1,1, 2, for
each n, [ x] denoting the integer part of x. The first value gives the Nyquist
frequency and provides an upper bound on k. This value is used as a point of
reference even though, according to condition (2.10) in Theorem 2.5, it is
inappropriate. This condition implies that n > £1*8/¢ for 0 < a < 2, and if
k = 25, it would mean sampling the realization of the process at at least
2 X 10'° points. Clearly this is not practicable. The last three values for k
were chosen in accord with the spirit of Theorem 2.5 while maintaining
feasibility.

For each combination of values 100 replications of 2n + 1 observations of
the process X on the uniform grid {i/n} were generated, each With Zero
mean, unit variance and cov(X(i/n), X(j/n)) = y{(i — j)/n}, i,j = ., .
The realisations were generated using the simulation method descrlbed in
Wood and Chan (1993). For each realisation, values of the estimates D, D
D,, D and D were then obtained, the different estimates denotlng that
Alw), j= ,k, was replaced by A(a)) A(w) A(a)) A(w) and
A (a) ), respectlvely, when computing the approx1mat10n to D The frequency
spacing parameter m was fixed at unity in all cases. The empirical perfor-
mance of the five estimators was summarised by calculating the observed
bias (B), standard deviation (SD) and mean-squared error (MSE) in the usual
manner, namely, given &, ;,..., &, 199, Say, the estimated values of the true
« obtained from each replication, we put

D,,=2-a,,/2, 1=1,...,100,
B 100
D,=100"' 3. D, ,,
=1
B=D, - D,
100 9
sD? = 100" ¥ (B, , - D,)
=1
and
MSE = B? + SD2,
Some representative results are presented in Tables 2, 3 and 4. The rows
labelled U and L give counts of the number of times the estimator of D
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TABLE 2
Comparison among different approximations when n = 1875, k = 61

. A ~ %

D, D, D, D, D,
D=175 B 0.006 0.022 0.003 -0.076 -0.011
SD 0.136 0.143 0.153 0.183 0.130
MSE 0.019 0.021 0.023 0.039 0.017
U 5 7 5 4 5
L 0 0 0 0 0
D=15 B -0.003 -0.012 -0.014 ~0.095 -0.002
SE 0.144 0.146 0.138 0.189 0.156
MSE 0.021 0.021 0.019 0.045 0.024
U 0 0 0 0 0
L 0 0 0 2 0
D =125 B -0.022 -0.039 -0.018 -0.061 —0.024
SD 0.128 0.147 0.139 0.149 0.165
MSE 0.017 0.023 0.020 0.026 0.028
U 0 0 0 0 0
L 5 9 6 11 5

produced a value greater than 2 and less than 1, respectively. If the estimate
of D fell outside the interval [1, 2], it was reset to the nearest value within
the interval. The estimates of bias, standard deviation and mean-squared

error include such reset values.

Table 2 presents the observed outcomes obtained using the different
integral approximations when D = 1.75, 1.5, 1.25 (a = 0.5,1,1.5), n = 1875

TABLE 3 B
Comparison between different values of n and k for D,

n = 1875 n = 2500
k=15 k=17
D=175 B —0.044 —0.002
SD 0.278 0.238
MSE 0.065 0.057
U 37 24
L 0 0
D=15 B —0.026 0.012
SD 0.300 0.292
MSE 0.090 0.085
U 8 4
L 11 5
D =125 B 0.060 -0.001
SD 0.285 0.254
MSE 0.085 0.064
U 4 2
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TABLE 4 B
Comparison among different values of k when n = 1875 for D,

k =937 k=241 k=61 k=15
D =1.625 B 0.121 0.031 0.001 —0.082
SD 0.046 0.078 0.151 0.308
MSE 0.017 0.007 0.023 0.102
U 0 0 1 10
L 0 0 0 7
D =1375 B 0.088 0.006 0.002 -0.022
SD 0.036 0.079 0.193 0.312
MSE 0.009 0.006 0.037 0.098
U 0 0 0 6
L 0 0 1 21

and £ = [3751/2] = 61. It indicates that although there is no estimator that
dominates the others, the top two rankings are invariably shared between
D,, D, and D,, whatever the performance criterion. A more detailed analysis
of the relationships between the performance measures and the interaction
between n and % is provided in Tables 3 and 4. For the moment we simply
note that although a choice between these three estimators is problematic, on
the basis of these and other results not reported here, we would express a
preference for D,,. B

The results given in Table 3 relate to the behaviour of the estimator D,
when D = 1.75,1.5,1.25 and (n, k) = (n,[2n + 1]/3) = (1875, 15), (2500, 17).
They show that increasing n can improve the estimation of D, even though
almost the same value of % is being employed. This presumably reflects the
increasing accuracy of the integral approximation as n is increased and the
reduced confounding brought about by using a finer grid. _

The figures given in Table 4 show how the performance of the estimator D,
changes as %k is varied. They relate to the situation where D = 1.625,1.375
(a =0.75,125), n = 1875 and k = [1875/2] = 937 and % = [3751"],
(p=2%,1 1) =241,61,15. From the table it is clear that the standard devia-
tion is reduced by about one-half as % is increased by roughly a factor of 4. It
is also apparent that a reduction in bias can be obtained by increasing k.
Such results are to be anticipated, of course, from Theorems 2.2 and 2.3, but
the improvement achieved is neither harmonic nor monotonic, particularly
for the bias. This suggests that although % = [(2n + 1)%/?], like & = [n /2],
may be too large in relation to n, coarser discretizations than would be
allowed under condition (2.10) of Theorem 2.5 may be efficacious. As inti-
mated previously, sampling at a rate correspondingto n > k7% 1 < o < 2,
as implied by (2.10) is not claimed to be optimal in any way and choosing
n > k9 2 < q <4, seems to provide a fairly effective practical rule.

Finally we also investigated three processes with fractal dimension D =
1.6,1.5,1.4 (« = 0.8,1,1.2) in order to compare our methodology with the
one-dimensional variation method introduced by Dubuc, Quiniou, Roques-
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Carmes, Tricot and Zucker (1989). Using D, in conjunction with & =
[16,383Y/%] = 127, n = 8191, we found that the largest observed bias was
0.002, which compares favourably with the smallest bias of 0.005 reported by
Dubuc, Quiniou, Roques-Carmes, Tricot and Zucker (1989) for a similar
exercise.

It goes without saying that extrapolating from limited and specialised
Monte Carlo experiments is fraught with dangers. Nevertheless, the results
we have obtained lend support to the following tentative conclusions: the
reduction in both bias and variance, and hence mean-squared error, produced
by increasing the number of frequency values and associated sampling time
points predicted by our theoretical results can often be quite considerable.
The estimator D, based on the quasioptimal integral approximation A, (w)
performs well relative to the alternatives. Additionally, the semiperiodogram
regression-based technique seems to provide a reasonable procedure for
estimating fractal dimension.

4. Proofs.

4.1. Proofs of Theorems 2.1-2.3. Our proofs rely on the following lemmas.
Lemma 4.1 is taken from Zygmund [(1959), page 46], Lemma 4.2 may be
derived by elementary calculus after making the change of variable v = wt
and Lemma 4.3 follows from Euler—-Maclaurin—type integral approximations
to series; see Abramowitz and Stegun [(1965), page 886].

LEMMA 4.1. If h € A(¢), for some 0 < £ < 1, then if g(x) denotes either
sin x or cos x,

[h(t)g(wt) dt = 0(a™*),
as w — © through integer multiples of .
LEMMA 4.2. Let 0 < ¢ < 3, define
Ly(v) = [02(2 — £)¢5 1 sin( wt) dt,

and (for &+ 2) let M, be given by (2.7). In the case {¢ =2 and for w an
integer multiple of m, we have L,(w) = 0. When 0 < ¢ < 3 and § # 2, we have
as w — o through integer multiples of ,

Ly (w) =2M,0 % + O(o ' D).
LEMMA 4.3. Assume that 0 < B < 1. Thenas k — =,

k k k
k1Y j P log - (k‘l Zj“‘*)(/’e‘1 )y logj)

Jj=1 Jj=1 Jj=1

= -B(1-B) *k P+ O(k 'logk),

B! {: (log j)? — (k‘l i logj) =1+ O{k*(log k)z}.
j=1 j

Jj=1
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To obtain the initial equation in (2.3), observe that

E{A(0)Y) = [_11 / 117(t1 — t,)cos( wt,)cos( wty) dt, dt,

= —arlfl cos( wt,) dt2f1 y' (¢, — t,)sin( wt,) dt,
-1 -1

_(2“’)—1 f_llf_ll')”(tl - tz)[Sin{‘”(tl - tz)}

+sin{w(t; + t,)}] d¢, dt,

~2a) 7 [* y() dt

Xfl/\(l—t) [sin(wt) + sin{w(t + 2t,)}] dt,
(-Dv(-1-1)

=~ [Py(t)yde [ [sin(wt) + sinfa(t + 265))] diy

- _w‘lj;zy’(t)(2 — t)sin( wt) dt.

A similar sequence of identities gives the first equation (2.4). The asymp-
totic relations then follow from Lemmas 4.1 and 4.2. This completes the proof
of Theorem 2.1.

To derive Theorem 2.2, recall that w; = 2jmw, x; = log w;. Put Togk=
k1Y log j and observe that by Lemma 4.3,

k k
(41 X (x-%)"= ¥ (logj~Togk)’ =k + O{(log k)?},
j=1

Jj=1

k k
Y (%~ %)wj# = (27m)* ¥ (logj — Togk)j "
(42) j=1 i1

= —B(1-B) *(27m) PR1"F + O(m# log k).
More simply, if 0 < B + ¢ < 1, then

k
(4.3) lx; — Xlw; B¢ =0(m P~ k' F ¢ log k).
Jj=1

By (2.5),

o(w)? = —w? f:(z — t)y'(t)sin( wt) dt

ol fz(z —t){—cat* ' —d(a+ B)t**F ! + 2d't}sin( wt) dt
0

— o' [%(2 - 1) gy(¢)sin(wt) dt.
0
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In view of Lemma 4.2, the first term on the last right-hand side equals
Zw‘l{caMa o *+d(a+ B)Ma+3w_(a+3) + O(w e 1))}.

By Lemma 4.1, the second term equals O(w (**A*¢*D) provided &> 0 is
sufficiently small. (Integrations by parts are necessary if a + B > 1.) There-
fore,

o(w)’ = 2caM, 0 V(1 + 107 f + O(0” F*9)},
log o(w)® =log(2caM,) — (a + 1)log w + 10 # + O(w™ F*®) + w~ 2P),
k

5 -1 (
E(&)—a=—{§l(xj—?c)2} Z(xj—a'c)loga'(wj)z—(a+ 1)

Jj=1

(E o] 5 (- o(er s o)

=7, B(1 — B) }(2mkm)~? + of(km) "},

the last line following from (4.1)—(4.3). This completes the proof of Theorem
2.2.

As a prelude to establishing Theorem 2.3, we derive the following lemma.
Let w,, w, denote positive integer multiples of 27r.

LEMMA 4.4. Under the conditions of Theorem 2.3,
cov{A(@,), A( )]

=2(w} - w%)_1 j;)zy’(t){cos( wyt) — cos(w,t)}dt.

Furthermore, there exists a constant C > 0 such that, for w; < w,,

(4.4)

(4.5) |cov{A(w,), A(w,)}] < C(wy — ;) " w1 w3,
|cov{A(w;), A(wy)}| < Cor{w;I(a < 1)
(4.6) +wyl(log wy)I(a = 1)

+wyI(a > 1)}

ProoF. Formula (4.4) may be obtained by change of variable in a double
integral. To derive (4.5), note that when «a < 1, using Lemmas 4.1 and 4.2 and
condition (2.2),

[*¥ (t)cos( wt) dt = O(w™°),
0
and when a > 1, by the same argument,

[*7(t)cos(wt) dt = —w* [*y'(t)sin( wt) dt = O(w™*).
0 0

Result (4.5) is now immediate from (4.4).
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To establish (4.6), observe that for 0 < a < 2,
Koy, 05) = [¥(2){cos(wyt) — cos( w,t)) dt
0

= (@102) (w2 — o) [ %y (£)sin( w,t) dt

~(wwn) " (w2 = 01) [y (£)(1 ~ cos(wyt)) dt

+(a)1w2)_2(w2 — 0)Ki(0,, w,),

where, with 6 = 0,/ w,,

Ki( o, 0y)
20, [ t \[1— cos{(6— 1)t} sin{(6 — 1)¢}
=f0 ty (;2—)[ Y cost + w_—l)tsmt dt.
Now,

v"(t)sin( w,) dt

2w
= wglfo *y"(t/wy)sin ¢ dt

- o{wgl foz“’2(t/w2)“‘2(1 A t) dt}
= O[wy *{I(a < 1) + (log w,)I(a = 1) + 0§ U(a> 1)}],

L7 (0){1 = cos(wy2)} dt
0
— 03" [*y"(t/0,)(1 ~ cos t) dt
0

= O{wglfoz"’z(t/w2)a-3(1 A t2) dt}
- 0(w}°),
K (v, wy)
= O[j(’)zwzt(t/wz)“_3{'1 A (10— 1lt) + 1 At} dt]
= O[wg‘a{l(a <1) + (log wy)I(a=1) + wg—l[(a > 1)}]

Therefore,
Ki(w, wy)

= O((w2 — wl)[(w1w2)_1w§_“{l(a <1) + (log wy)I(a=1)
+ i H(a> 1)} + (w%wz)_lwg_“ + (w1w2)_2

x{w}I(a < 1) + w}(log w,)I(a = 1) + w}I(a > 1)}])
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= O[(w; — ;) {0} I(a < 1) + w72(log w,)I(a =1) + wiI(a> 1)}].

Hence, result (4.6) follows from (4.4). This completes the proof of Lemma 4.4.
O

By Theorem 2.1, var{ A(w)} ~ constant - 0 (**1 as @ — «, and so inequal-
ities (4.5) and (4.6) yield, for w, < w, and a constant C; > 0,
(47 feorr{A(w;), A(wy)}] < Cy(w; = ;) " @ " Zofr /2,
48 |corr{ A(w,), A(w,)}| < C, {3/ 2+ D2 w5l (a < 1)
(4.8) + ;' (log wy)I(a = 1) + wz'I(a > 1)}.

It may be shown that if Z,, Z, have a bivariate normal distribution with
zero means, unit variance and correlation coefficient p, then for an absolute
constant C, > 0,

| cov(logl|Z,|,loglZ,)| < C, p2.
Therefore,
ileov{Y(0,),Y(w,)}| =[cov{log| Z(w,) |, log| Z( w,) |}
< Cy[corr{Z(w,), Z(wy))]’
= Cy[corr{A(w,), A(w,)}]".

Hence,

(4.9) Si= XX |eov(Y},,Y,)| <4C,S,,
1<j;<ja<k

where

S,= LY [eorr{A(w;), Aw,))]"

1<j;<j2<k

When « < 1, results (4.7) (in the case »; < 3 w,) and (4.8) (for v, > 1 w,)
imply that

(4.10) |corr{A( ®,), A(wy)}| < Cyw{l™*/ %pix=3/2,
Therefore, .
$,<C: LY ol
1<j,<ja<k
k J2—1
<C; Y js® X"
(4.11a) Pt i

=O( f‘,jgl) = O(log &).

Jo=1
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Similarly, when a = 1, result (4.8) implies that
(4.11b) S, = O{(log k)*}.
When a > 1, we employ both (4.7) and (4.8), as follows:
S,<C: Y)Y wj":_3wj‘;_1 +C% Yy (w;, — wjl)_2 wjlw;;'l,

1<j1<jo<k 1<j,<ja<k
Je<ii+ii e Je>iitiiT®
2 ca—3ra—1 2 . N2 1—qgra—1
S, <C; XX iU+ CE XX (Je—q) T ATUS
1<j,<ja<k 1<j1<ja<k
Ja<i1 i Je> i1+t
ko_ +x27
=0{fx“3dxfxx a1 dy
1 x
E o, k —2 .
(4.11c) +f xt "dxf (y —x) " y° 1dy}
1 x+x27@

k
f xa—3x2—axa—1 dx
1

+f1k3c1“'k"_1 dxfk Ly -x)7? dy}

x+x<T®

=O{

_ O(ka—l + pe-1 [kxl—axa—z dx)
1
=O(k* 'logk).
Combining (4.1), (4.9) and (4.11) we deduce that
ZZ (le - i)(sz - .’J-E)COV(yjl, yjz)

J1#J2

< 2(log £)*S,

< 8C,(log £)°S,

= o(k) = o ¥ (=, - %"},

as had to be proved. O

4.2. Proof of Theorem 2.4. Our proof is by the method of moments. Note
that, since Z(w) is a linear function of a Gaussian process, it has a normal
distribution. Let E, E, denote expéctation under the true model for the joint
distribution of Z(w;), 1 <j <k, and the model where the Z(w,)’s are stochas-
tically independent with standard normal marginal distributions. Put u =
Ef{log|N(0, 1)|}. It suffices to show that, for each integer v > 1,

k v

E| ¥ (x; - %){log|Z(w))| — u}

Jj=1

14

) (5 5)os{ 2 |

=o(k v/ 2) ,
as k — «, The left-hand side is dominated by a constant multiple of a sum of
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a bounded number of terms of the form

(log k)" 2 2|d Door b @), @) )

all dlstmct

b

where

d(lyseeislps 0., 0, )= (E - Eo)[l"lloglz( )| - }]

and1l <m <vandl,...,[, > 1denote integers satisfying /; + --- +1,,

Put Z = (Z(w;), . Z(w ))T and let % denote the covariance matrlx of Z
Define A =3, — I and cons1der Taylor expansions of the quantities (I + A)~!
and (I + A)"'/2 in the elements of A. Arguing thus we may express the
density of Z,

4.12 da(2) = (2m) ™AL + A7V exp{—12T(I + A) 12},
A
as a Taylor expansion of the form

(4.13) 6a(2) = bo(2){1 + py(2) +py(2) + -},

where ¢(2) = (27) ™ /2 exp(3272) and p(z) denotes a polynomial in the
sm(m + 1) quantities z, 2y 1 <1y <iy <m, in which each coefficient is a
sum of constant multlples of products of precisely j elements of A, and

fpjd’o = 0.
In this notation,

d(ll,...,lm;w-,...,wm)

(4.14) m L
l=—[1 (loglz,| - ®) L}{d)A(z) - d’o(z)} dz

-/
(4.15) -xf T (oglz = )" }o,(2)60(2) e

Now, p/(2) may be written as a linear form in terms
Hesl(zl) Hes (zm)’

where He,(u) denotes the ith Hermite polynomial (orthogonal with respect to
the Welght function e~*/2), the number of such terms is bounded by a
constant depending only on j and m and the coefficient of each term is
a product of j elements of A. Thus, the jth term in (4.15) may be expressed as
a linear form in terms

J{ X1 0osll = )" H, (2} ()
(4.16) = V1

m

= 1_[ {(277)_1/2 f(loglul - ,u)l’ He, (u)exp(—u?®/2) du}.
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The quantity in (4.16) vanishes if (i) for some i, s; is odd or (ii) for some ¢,

, = 0 and [, = 1. Therefore, we may assume that, for each i, either (a) [, = 1

and s; = 2,4,..., or(b) [; > 2, and s; = 0,2,4,..., and also that (c) not each

s; = 0. [The case where each s; = 0 corresponds to the subtracted term in
(4.14)]

Without loss of generality, the first r s,’s all exceed zero and the others all
equal zero. Let p; ;, = corr{Z( wfu)’ Z( “’j,z)}' Inspecting the way in which (4.13)
arises from (4.12) we see that the coefficient of (4.15) is dominated by a linear
form in terms like

r
2
l—[p‘h i)
i=1 )

where i # h(i) € {1,..., m}. Note that, since [, >2 for r + 1 <j <m, we
have

r+2(m-r)<v, thatis,m —r<(v—r) <3(v-1).

Therefore, it suffices to show that for each 1 <r <m satisfying m —
r < 3(v — 1) and functions A: {1,...,r} = {1,..., m} such that A(i) # i, we
have

r

Z Z Hlpz?h(i) = O{kv/z(l‘)g k)_v}-
O w, 1=

all distinct

(4.17) sup
h

If we prove that
2
(4.18) LY [corr{Z(w;), Z(w,)}] = O{(log &)},
Ji#J2
then it follows that the left-hand side of (4.17) equals
O{(log £)* k™) = O{k"~V/2(log k)*'},

which establishes (4.17) and completes the proof of Theorem 2.4.

In the cases o < 1 and « = 1, result (4.18) follows from (4.11a) and (4.11b),
respectively. However, (4.11c) does not yield (4.18) in the case a > 1. To
establish (4.18) in this instance we shall first prove (4.10) for a > 1.

When w, < 3w, (4.10) follows from (4.7). In the case w; > jw, we shall
refine the proof of (4.6) in Lemma 4.4. By that proof, for 0, < w; < w,,

|cov{A(w;), A(wy)}| < 4(w1w2)_2'j;)2y"'(t){1 — cos(wyt)} dt

-1
+2(wiwd) K0, 0,)]

< Cy(wfos) " +2(0lod) | Ky, 0],
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where C,,Cs, ... denote positive constants. To bound K,, put

1 - cos{(6—1 inf{(0— 1
H(u )—[[ c(():_(l)t )4 cost+%sint dt

and note that H(u) is bounded uniformly in z > 0 and 3 < 6 < 1. Now,

K@y, ,) = ([01 + [12“’2)ty"'(t/w2) dH(t)

fzwzty’”(t/w2) dH(t) + O(wi ™)
1

-/, "y (8/w3) + w3ty O (t/ wy) JH(2) dt + O(w] ™)

= (f2“’2(t/ ) 2 dt + i | = O(wd ).

Therefore, if 3w, < w; < w,, then
|cov{A(w,), A(wy)}| < Cs01%0;* < Cyoi w37,

which (in view of Theorem 2.1) is equivalent to (4.10). From that result and
the argument at (4.11a), follows (4.18). This completes the proof of Theorem
24. 0

4.3. Proof of Theorem 2.5. Theorem 2 of Garsia (1972) implies the exis-
tence of a random variable V such that, with probability 1 for all —1 <s <
t < 1 satisfying t — s < 3,

a 1/2
|X(s) ~ X(1)] = V{(¢ - ) |log(t — )}
Therefore, if n > 2,

sup |X(t) — X(i/n)| < V(n~*log n)"?,
i/n<t<G+1)/n

whence for 0 < w < 27E,

n—-1
|A(w) — A, ()] =‘f_11X(t)cos(wt) dt —n ' Y, X(i/n)cos(wi/n)

i=-n

n—-1 ‘
<n? Z[ sup  |X(¢) - X(i/n)]

i=—-nli/n<t<@+1)/n

+{ sup IX(t)l} sup [cos(wt)—cos(wi/n)l]

—-1<t<1 i/n<t<G+1/n
< W{(n " log n)"/? + kn~'},

where the random variable W does not depend on w or n.
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If 8 > 0, then the complement of the event,
g = { Z(w)| > 5}
S
has probability

P(%) < ZP{]Z( )| < 8} < ks.

Hence, if we choose 8 = (k) = o(£™1), then P(&) — 1. Furthermore, for a
constant C1 >0, 0(w) = Cw; **V/? for all j, and so on the set &,

(@)] ~|A(w) ]| ACw))
< W{(n *logn)"* + kn'l}{Cle—(a+ /%)

-1

< C,W{n=(mk)**  log n + n~2(mk)* 1k} F671.
Therefore,
A -1
la — { ; (x; — %) }
k
(4.19) i - 1| log[1 + {| A,(@)| | ACwp [} A(ap ||

= O[{n_"(mk)a+llog n+ n_z(mk)“lkz}l/26‘1 log k]

with probability 1. Condition (2.10) is adequate to ensure that § = §(%2) may
be chosen so that § = o(%~!) and the right-hand side of (4.19) equals o(2~1/2).
This shows that /2|, — & — 0. O
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