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INTRINSIC ANALYSIS OF STATISTICAL ESTIMATION

By J. M. OLLER AND J. M. CORCUERA!

Universitat de Barcelona

The parametric statistical models with suitable regularity conditions
have a natural Riemannian manifold structure, given by the information
metric. Since the parameters are merely labels for the probability mea-
sures, an inferential statement should be formulated through intrinsic
objects, invariant under reparametrizations. In this context the estimators
will be random objects valued on the manifold corresponding to the
statistical model. In spite of these considerations, classical measures of an
estimator’s performance, like the bias and the mean square error, are
clearly dependent on the statistical model parametrizations.

In this paper the authors work with extended notions of mean value
and moments of random objects which take values on a Hausdorff and
connected manifold, equipped with an affine connection. In particular, the
Riemannian manifold case is considered. This extension is applied to the
bias and the mean square error study in statistical point estimation
theory.

Under this approach an intrinsic version of the Cramér—-Rao lower
bound is obtained: a lower bound, which depends on the intrinsic bias and
the curvature of the statistical model, for the mean square of the Rao
distance, the invariant measure analogous to the mean square error.
Further, the behavior of the mean square of the Rao distance of an
estimator when conditioning with respect to a sufficient statistic is consid-
ered, obtaining intrinsic versions of the Rao—Blackwell and Lehmann-
Scheffé theorems. Asymptotic properties complete the study.

1. Introduction. Estimation can be defined as the theory that concerns
making inductions from the data and inferences about inductions. In para-
metric statistical estimation theory we make inductions by proposing proba-
bility measures that belong to a parametric family, the parameters being only
a name and playing no role in the induction process. The inferences are
usually in the form of point and interval estimates no matter what specific
inferences may eventually be needed. In this approach estimators supply
different methods of induction.

The bias and the mean square error are the most commonly used measures
of performance of an estimator. These concepts are clearly dependent on the
coordinate system or model parametrization. No difficulty would arise if
closely related properties, like unbiasedness or uniformly minimum variance
estimation, were preserved under coordinate system transformations. Unfor-
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tunately, this is not the case, as the reader can easily check by considering
different parametrizations in a given parametric family, essentially due to
the nontensorial character of the bias and the mean square error.

In this situation a natural question arises: could notions analogous to the
bias and the mean square error be formulated depending only on the estima-
tion procedure employed? There are several ways to attempt to achieve this.
First, we may try to grant a privilege to a coordinate system, but it would be
difficult to justify the choice. Second, we may define a loss function, extrinsic
to the statistical model, invariant under reparametrizations, and proceed as
in Lehmann (1951). This may be a reasonable procedure from a decision
theoretical point of view, but for statistical inference purposes it might be
better to work exclusively with concepts intrinsic to statistical model.

The aim of what we shall refer to as intrinsic analysis of the statistical
estimation is to develop a statistical estimation theory analogous to the
classical one, based on geometrical structures of the statistical models. One
goal of the intrinsic analysis is to supply invariant tools in order to analyse
the performance of an estimator, and another is to obtain results that are
analogous to classical results and to establish relationships between the
classical noninvariant measures and the invariant ones herein obtained.

A related and interesting study has been developed by Hendriks (1991)
about estimators with values in a manifold, but his purpose and mathemati-
cal framework are quite different. It is also important to consider the works of
Kendall (1990) and Emery and Mokobodzki (1991) in developing the stochas-
tic calculus in manifolds.

2. Moments and mean values. Let (2, %, P) be a probability space,
where 2 is the sample space, ./ is a o-algebra of subsets of 2 and P is a
probability measure on «. Let (M, %) be an n-dimensional C” real manifold,
where U is the atlas for M.

Let f be a measurable map, f: 2 — M, also called a random object on M,
that is, a map such that, for all open sets W c M, f~1(W) €.&. We will now
introduce the notion of mean value and moments of f, making the fewest
necessary assumptions and maintaining the intuitive notion of centrality
measure, in a closely related idea of center of mass as we shall see later [see
Karcher (1977), Kobayashi and Nomizu (1969), Kendall (1990, 1991) and
Emery and Mokobodzki (1991)].

Let .7 be the set of all C* tensor fields in M, of order r + s, r-times
contravariant and s-times covariant. If we fix p € M, any map X from 2 to
&, induces a map X, such that X,: 27— T/(M,) with X (x) = (X(x)),,
where T/(M,) denotes the space of (r, s)-tensors on the tangent space at p
(M,) having a natural topological vector space structure. Considering the
Borel o-algebra on 7] induced by the Borel o-algebras of the M, a simple
definition follows.

DEFINITION 2.1. A C” random (r, s)-tensor field on M (X) is a measurable
map from 2 to 7.
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It follows from the definition that V p € M the induced map X, is a
measurable map on (2, .%).

Let ® stand for the tensor field product. In the present context it is
natural to define the kth-order moment of the random tensor field X as the
ordinary (kr, ks)-tensor field on M

k

Rk k.
/%k(X)=E(X®~'®X)=£?X(x)®~~~®X(x)P(dx), keN,
provided the integral exists.

In order to consider the mean value of a random object, we have to
introduce an additional structure on the manifold: we shall assume that it is
equipped with an affine connection. Typical examples of manifolds with an
affine connection are Riemannian manifolds.

Associated with an affine connection there is a map, for every p € M,
called the exponential map exp,: M, —» M. It is defined for all v in an open
star-shaped neighbourhood of 0, € M,. Additionally it is also well known
that this map, in general, has no inverse, although there are important
particular cases where one exists. Nevertheless, we can always restrict the
map in an open neighbourhood of 0, € M, such that the inverse is well
defined, the exponential map being a local diffeomorphism.

Let us describe the kind of neighbourhoods that we consider suitable to
define the mean value of a random object.

DEFINITION 2.2. A neighbourhood W(p) of p € M is said to be normal if
W(p) is the diffeomorphic image, by the exponential map, of an open star-
shaped neighbourhood of 0, € M,,.

Notice that a normal neighbourhood W( p) of p has the property that every
q € W(p) can be joined to p by a unique geodesic in W( p).

In the vector space M, we shall consider star-shaped neighbourhoods
V(p) such that V(p) = —V(p) (i.e., balanced neighbourhoods) when we have
only an affine connection, and balls in the Riemannian case. Both shall be
referred to as balls with center 0,,.

DEFINITION 2.3. The image W(p), by the exponential map, of an open ball
V(p) with center 0, is said to be a normal ball with center p if W(p) is a
normal neighbourhood of p.

In the Riemannian case, the shortest geodesic that joins p with any
g € W(p), W(p) being a normal ball with center p, is unique in M and lies in
W(p). However, we can consider more general neighbourhoods with this
property.

DEFINITION 2.4. An open set W(p) is said to be a regular normal neigh-
bourhood of p iff its intersection with any normal ball with center p remains
normal.
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We can ensure the existence of neighbourhoods of this kind in the Rie-
mannian case. This is because for every point p there is a ball in M, with
center 0, where the exponential map is a diffeomorphism. It is also easy to
see that a neighbourhood W(p) of p is regular normal iff the shortest
geodesic that joins p with any other point in W(p) is unique and lies in
W(p). Thus regular normal neighbourhoods are a generalization of neigh-
bourhoods with this property to the affine case.

Then, given a random object f taking values on a (Hausdorff and con-
nected) manifold, equipped with an affine connection, there is a natural way
to define a random vector, fixed p € M, given by exp;l( f(x)). This vector is
not necessarily defined for all x € 2, but if it is defined almost surely, we can
introduce the following intrinsic mean value concept.

DEFINITION 2.5. A point on the manifold p € M is a mean value of the

random object f if and only if there is a regular normal neighbourhood of p
(W) such that P{f€ W} =1 and

j;xp;l(f(x))P(dx) =0,.

REMARKS. We shall write J¢(f) to denote any mean value or the set of
mean values, depending on the context. These mean values are, essentially,
what Emery and Mokobodzki (1991) call exponential barycenters.

Hereafter we use the notation exp;l(‘) to indicate the inverse of the
exponential map in some regular normal neighbourhood of p.

ExampLE 2.6. Let M be R". Identifying the points with their coordinates
on the trivial chart, and considering the usual Euclidean affine connection,

we find, for g, p € R", that exp, 1(q) = g — p. Therefore we recover the
classical definition IM(f) = E(f) = [, f(x)P(dx).

ExampLE 2.7. Another interesting example is given by considering the
mean values of the von Mises distribution. In this case the manifold is the
unit n-dimensional Euclidean sphere, with the connection induced by the
natural embedding into the Euclidean space R”. The probability measure
induced in the manifold is absolutely continuous with respect to the surface
measure on the sphere and the corresponding density function (Radon-
Nikodym derivative) is given by

p(x; €, A) = a,(A) exp{A&'x}, x,é€8,={zeR": 2z=1}, A € R",

where a,(A) = \*/271/27)*/2[, ,, () is a normalization constant, I, ,_;
being the modified Bessel function of the first kind and order k/2 — 1. In this
case it is clear that there are two mean values, given by ¢ and — ¢. Compare
this result with the mean direction defined in Kent, Mardia and Bibby
[(1979), pages 424—451]. See also Jupp and Mardia (1989) for a comprehen-
sive exposition.
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ExampLE 2.8. Consider a random variable uniformly distributed on a
circle, with the connection induced by the natural embedding into the Eu-
clidean manifold R2. Then all points on the circle are mean values.

We can supply, in the Riemannian case, a scalar dispersion measure with
respect to a mean value p, E( p%2(f(x), p)), the ordinary expected value of the
squared Riemannian distance between f(x) and p, p2(f(x), p), which may
be regarded as a coordinate-free version of the variance of a real random
variable.

We may also observe that, with this extension of the concept of mean
value, we maintain the appealing intuitive meaning of centrality measure,
even though we do not have the linear properties of the expectation. How-
ever, this is natural since we cannot in general identify M with its tangent
spaces. Similarly we have a dissociation between the mean value and the
concept of first-order moment. The moments of a random object f on M
should be defined as follows.

DEFINITION 2.9. The kth-order moment of the random object f is an
ordinary (%, 0)-tensor field on M defined by .#*(f )y =H k(exp; ), VpeM,
k € N, provided the integral exists.

We can establish a relationship between the defined mean value and the
Riemannian center of mass

€ = argmin Z(p),
DPEM

r‘/here Z(p) = [y p%(f(x), p)P(dx). First of all we have the following proposi-
ions.

PROPOSITION 2.10. If there is a ¢ € M such that #;(q) is defined, then the
function #p) is defined for all p € M, it is differentiable and

X, % = —2<Xp, /;xp;l(f(x))P(dx)>,
whenever exp, 1(-) is well defined for all p € M almost-surely-P.
PROOF. By the triangular inequality #( p) < 2%(q) + 2p*(p, q), the first

part of the proposition follows.
Since, fixing ¢ € M, p?(-, q) is a C* function for all X, € M,, we can write

X, p2(-q) = X,lexp,} (q)I* = 2(Vy exp()! q,exp;(q))
= —2(X,,exp,(q)),

where the last equality can easily be checked considering a geodesic spherical
coordinate system with origin q. Then we have | X, p®(, @)l < 21X, |l p(p, @).
The proposition follows by the mean value and dominated convergence theo-
rem. O
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Now the connection between mean values and center of mass mentioned
above is given by the following proposition.

ProrosITION 2.11. Let (%, %, P) be a probability space, let (M, ) be a
complete Riemannian manifold and let f: & - M be a measurable map, such
that P; is dominated by the Riemannian measure Vg, P; < Vg. Let the
function #; be as before. Then #; has a critical point at p € M if and only if p
is a mean value of f.

ProOOF. It is straightforward from the previous proposition and the fact
that the cut locus of any p € M is a Riemannian measure-zero set. [See
Spivak (1979).] O

REMARKS. From Proposition 2.11 we show that the defined mean value
concept is weaker than the center of mass concept. Notice also that to define
the first we only need an affine connection, while the second requires a
Riemannian structure.

Moreover, we could give sufficient conditions to ensure the existence of a
mean value whenever /%:(-) would be defined. If we have a regular convex set
in a complete manifold M (ie., a set A € M such that for any p, g € A the
shortest geodesic from p to ¢ is unique in M and lies in A) and the
probability is concentrated on it, then the random object will have at least a
mean value in the interior of A.[See also Kendall (1990).]

3. The intrinsic bias and the mean square Rao distance. We now
apply the concepts mentioned previously to develop intrinsic measures analo-
gous to the bias and the mean square error of an estimator.

Let {(#Z,%, P,); 0 € O} be a parametric statistical model, where O, the
parameter space, is an n-dimensional C* real manifold. Usually ® is an open
set of R™ and in this case it is customary to use the same symbol (6) to denote
points and coordinates.

We shall suppose a one-to-one map 6 — p(-; ), and we shall consider the
set of all probability measures in the statistical model M with the n-dimen-
sional C” real manifold structure induced by this map. Let us denote this
manifold by (M, UA), where U is the atlas induced by the parametrizations,
that is, the coordinates in the parameter space.

In the dominated case, which we shall assume hereafter, the probability
measures can be represented by density functions. Then let us assume, for a
fixed o-finite reference measure u, that Py < u, V 6 € ® and denote by
p(:; 8) a density function with respect to u, that is, a certain version of the
Radon-Nikodym derivative dP,/du. Now, through the identification P, —
p(-; 0), the points in M can be considered either densities or probability
measures. Additionally, we shall assume certain regularity conditions:

1. The manifold (M, ) is a connected Hausdorff manifold.
2. When x is fixed, the real function on M & — p(x; &) is a C* function.
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3. For every local chart (W, 6), the functions in x, d log p(x; 6)/d6%, i =
1,..., n, are linearly independent and belong to L*(p(-; 8) du) for a suit-
able a > 0.

4. The partial derivatives of the required orders,

d 9? 33

90" 30'907°  30' 507 90% "’
and the integration with respect to du of p(x;6) can always be inter-
changed.

i,j,k=1,...,n,

When all these conditions are satisfied, for a version of the density
function, we shall say that the parametric statistical model is regular, and in
this case the manifold (M, %) has a natural Riemannian structure, given by
its information metric. Then there is an affine connection defined on the
manifold, the Levi-Civita connection, naturally associated with the statisti-
cal model. For further details, see Amari (1985), Atkinson and Mitchell
(1981), Barndorff-Nielsen and Blaesild (1987), Burbea (1986), Burbea and
Rao (1982) and Oller (1989), among many others.

In this context, given a sample size k, an estimator % for the true density
function (or probability measure) p = p(-; ) € M of the statistical model is a
measurable map

U2 > M,
assuming that the probability measure on 2* is (P),(dx) = Py (x5 0y (dx)
= IT1E ; p(x;; O)puldx)).

DEFINITION 3.1. An estimator % is intrinsically unbiased if and only if p
is a mean value of % computed with respect to the true probability measure
(P),, whatever the true density function p € M.

Notice that the definition of unbiased estimator, unlike the classical one, is
invariant with respect to any coordinate change or reparametrization.

Given the random vector field A (x) = exp,'(#(x)), which we shall call
the estimator vector field, it is convenient, in order to measure the bias, to
introduce the following.

DEFINITION 3.2. The bias vector field is defined as B
components notation,

B*(9) =[%Aa(x;o)p(k)(x;e)ﬂk(dx), a=1,...,n,

provided that they exist.

» = E(A,(x)), or in

Notice also that ||B||> would supply a scalar measure of the intrinsic
unbiasedness.

PROPOSITION 3.3. An estimator % is intrinsically unbiased if and only if
its bias tensor field B is null.
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REMARKS. It is interesting to point out that an estimator is intrinsically
unbiased if and only if it is stationary in the sense of Hendriks (1991) if we
take p? as the loss function.

When the manifold associated to a regular statistical model is Euclidean, it
is obvious that an estimator % will be intrinsically unbiased if and only if it
is unbiased in the affine coordinate system.

ExaMPLE 3.4 (The univariate exponential distribution). Let us consider
the exponential density function parametrized as
A ! ud A ER*
TA) = — - — e R".
p(xid) = yexp( -3}

The metric tensor component is given by g,,(A) = 1/ Then, if we consider

the maximum-likelihood estimator for the parameter A given by X, the
ordinary sample mean computed from a sample of size k, we have

-1 X
Bl(A) = EA([exp/\_l(X)] ) =E)l(log(7)) =VY(k) —logk,

where W(k) = I"(k)/T'(k), T being the usual gamma function. Therefore it is
a biased estimator. However, we can easily correct the bias, obtaining in this
case an intrinsically unbiased estimator given by

kX
exp[¥(k)]
ExaMmPLE 3.5. Consider the multivariate elliptic probability distributions

with fixed dispersion matrix 3 = 3, that is, the parametric family with
density functions, in R* with respect to the Lebesgue measure, given by

A=

I'(n/2) .
p(x;p) = T,,/Z—IEOI YVER((x — w) 35 (x — n)),
where 3, is a fixed n X n strictly positive-definite matrix, u = (uy,..., u,)

is a parameter vector and F is a nonnegative function on R, = [0, %) satisfy-
ing

fwr”/2_1F(r) dr=1.
0

We have to assume, in addition, that -
4
a=— [ t"/2(LF)(t)F(t) dt <,
nJo
where ZF = F'/F, in order to ensure the existence of the information metric
for this parametric family of probability distributions, given by
ds® =ady 35t dp.

See Mitchell and Krzanowski (1985) and Burbea and Oller (1988) for more
details.
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Since the metric tensor field is constant, the manifold is Euclidean and the
geodesics are straight lines. Identifying the manifold points with their coordi-
nates, and considering the estimator in u-coordinates given by the sample
mean X, we may write

E#(expgl()?)) =E(X-p)=0.

Therefore X is intrinsically unbiased.

4. Lower bound of mean square Rao distance. In this section, the
relationship between unbiasedness and the mean square of the Rao distance,
the Riemannian distance between the probability measure estimates and the
true one, is studied. The inequality obtained is an intrinsic version of
Cramér-Rao lower bound, and it is based on the comparison theorems of
Riemannian geometry [see Kobayashi and Nomizu (1969), Chavel (1984) and
Karcher (1977), among others]. Some related results, as we shall comment
later, can be seen in Hendriks (1991).

First it is necessary to remember some basic definitions and results in
differential geometry.

Write ©, = {£ € M, |£| = 1}, and for each ¢ € ©, we define

gp(f) = sup{s > 0: p(p, 75(8)) = 8},

where p is the Riemannian distance and Y% is a geodesic defined in an open
interval containing zero, such that Ye (0) = p and with tangent vector equal to
¢ at the origin. Then if we set

D,={s¢eM,:0<s<E,(¢);6€6,}
and
D, = exp,(D,),

we know that exp, maps ©, diffeomorphically onto D, [see Hicks (1965)]. In
fact, D, is the maximal regular neighbourhood of p in the sense that any
other regular neighbourhood of p is included in it.

DEFINITION 4.1. Given two vector fields X and Y in M such that for any
p €M they span a two-dimensional subspace, the sectional Riemannian
curvature K is defined as the scalar function

where R(X,Y) is the (curvature) operator,
R(X,Y)=VYVX—VXVY—V[Y,X], [V, X]=YX-XY
and V is the Riemannian connection of M.
In the two-dimensional case it coincides with the Gaussian curvature of a

surface. In the general case the sectional curvature at a point p € M is the
Gaussian curvature of the surface generated by the geodesics that start at p
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and are tangent to the two-dimensional subspace generated by X(p) and
Y(p)in M,. If n = 1, we adopt the convention K=0.

THEOREM 4.2 (Intrinsic Cramér—Rao lower bound). Let % be an estimator
corresponding to an n-dimensional regular parametric family of density func-
tions for a sample of size k. Assume that manifold M is simply connected and
(P),o# (M \D,) =0V p € M. Let A be the estimator vector field, and let
B be the correspondzng bias vector field B = E(A). Let us assume that the
mean square of the Rao distance between the true density and an estimate,
E(p*(%, p)), exists for all k € N and that the covariant derivative of B exists
and can be obtained by differentiating under the integral sign. Then the
following hold:

(i) In general we have
{div(B) — E(div( A))}*
kn

where div(-) stands for the divergence operator.
(i) If all sectional curvatures are bounded from above by a nonpositive
constant ¥ and div(B) > —n, then

E(p*(%,p))

e _fav(B) + 1+ (n- 1)V=Z | Blicoth(Y— 271 BI))’
- kn

(iii) If all sectional curvatures are bounded from above by a positive
constant %, d(M) < w/2V% , where d(M) is the diameter of the manifold,
and div(B) = —1, then

E(p*(%,Dp))

(2) _faiv(B) + 1+ (n - )VZd(M)eot(VZd(M)))’
- kn

E(p*(%,p)) = +BII?,

+[IBII*.

+[IBII*.

In particular, for intrinsically unbiased estimators, we have the following:

(iv) If all sectional curvatures are nonpositive, then
E(p*(%,p)) = &

(v) If all sectional curvatures are bounded from above by a positive
constant % and d(M) < 7/2V%Z , then

1
E(p*(%,p)) = ot

The expectations, at each point p, are computed with respect to the corre-
sponding probability measure (P),.
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ProoOF. (i) Let C be any vector field. Then, applying the Cauchy—Schwarz
inequality twice,

E(KA - B,C)l) <E(IA - BIllCl) < VE(IA - BI?) YE(ICI?),

where ( , ) and || || stand for the inner product and the norm defined on each
tangent space.

Let C(x; 6) = grad(log p,(x; 6)), where grad(:) stands for the gradient
operator. Taking expectations and using the repeated index convention,

E(ICI*) = E(8.s8" 9, 10g pu,8 “* 4, log py,) = kg.p8 ™8 *g,\ = kn,
where J, = d/d60°. Furthermore, we also have
|[E(CA,C))|=|E({A-B,C))I<E(KA - B,C)|)
and
E(IlA - BI*) = E(IAlI*) — || BI”.
Thus

|E(CA,C))| < VE(IAI?) — |BI? VEn

but || All® = p2(%, p), where p is the Riemannian distance, also called in this
case the Rao distance. Moreover,

div(B) = E(div(A)) + E((A,C)),

therefore (i) follows.

Fixing x, we now choose a convenient coordinate system in order to
estimate div(A). Given p and #%(x), we choose a geodesic spherical coordinate
system with origin #(x), defined almost surely since (P), e % (M \ Dyxy)
=0.

It is clear that the components of tensor A are (—p,0,0,...,0) when p, the
Riemannian distance between p and #(x), is the first coordinate. Addition-
ally, using the repeated index convention

A 9 log g
_6—’)’

prr i —1 and TJjA’= —pl = >
where I’ are the Christoffel symbols of the second kind and g is the
determinant of the metric tensor. Then

div(A) = —[1+

010g\/§)
pr—— |,
ap

(ii) Sectional curvature nonpositive. If the sectional curvatures are bounded
from above by Z < 0, as a corollary of Bishop’s comparison theorem (I) [see
Chavel (1984), pages 38-39, 66—-69], we have

(3) % > (n — 1)V =% coth(V—%p),
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yielding
E({A,C)) = div(B) + 1 + (n — 1)V =%l Bllcoth(v —%ZIIBIl) = 0,

where the first inequality is due to the fact that the function ||u|lcoth(||u|) is
convex and the second is because ||ullcoth(||z|) > 1 and div(B) > —n.

(iii) All sectional curvatures are bounded from above by a positive constant
Z, d(M) < w/2V% and div(B) > —1. As a corollary of Bishop’s comparison
theorem (II) [Chavel (1984), pages 38—39, 71-73], we have

dlo
(4) &L‘/g_z(n—l)@cot(p\/i)zo.
p
Then, taking into account that u cot u is a monotone decreasing function, it
turns out that

E({A,C)) = div(B) + 1 + (n — W)VZd(M)cot(VZd(M)) > 0,

where the last inequality follows from the conditions d(M) < 7/2V% and
div(B) > —1since ucotu > 0,0 <u < w/2.

[Gv) and (v)] These follow trivially from (ii) and (iii), with div(B) = 0 and
IBll=0. O

REMARKS. In the Euclidean case, K = 0, it is not necessary to impose the
condition div(B) > —n. It should also be pointed out that the case (i) of
Theorem 4.2 can be deduced from Hendriks [(1991), Theorem 3.2] if B = 0,
the squared Riemannian distance p? is the loss function and the Hendriks’
mapping ¢ is the identity of M. However, his setup is restricted to unbiased
estimators. In our context we can also obtain a Cramér-Rao tensorial in-
equality, independently of the bias structure, for the following tensor.

DEFINITION 4.3. The dispersion tensor field of an estimator # is defined
as

S,=E(A®A)(p)=E,(A,®A,) VpeM,
where A, = exp, ' (#%).
Observe that in the Euclidean case S — B ® B = Cov(%).
PROPOSITION 4.4. With the same conditions as in Theorem 4.2 and where

the inequality means that the difference between two sides is a nonnegative
definite tensor, we have

1 &
S > —];Tr“[G“[(DB — E(DA)) ® (DB - E(DA))]] + B®B,
where TrJ and G*/ are, respectively, the contraction and raising operators

on index i, j; D is the covariant derivative; and the expectations are evaluated
at any p € M with respect to the corresponding probability measure (P),.
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ProoF. Let
1
T=A-B- ZTr2’3[G§;2[E(A ®C) ® C]];

then the proof is straightforward by taking the expectation, at each point
p € M, with respect to (P),, of the tensor T ® T, where G’ is the lowering
operator on index i, j [see Hicks (1965) for notation]. O

REMARKS. Notice that all the one-dimensional manifolds corresponding to
one-parameter families of probability distributions are always Euclidean.
Moreover, there are some well-known families of probability distributions
which satisfy the hypothesis of the last theorem, such as the multinomial [see
Atkinson and Mitchell (1981)], the negative multinomial [see Oller and
Cuadras (1985)] and the extreme value distributions [see Oller (1987)],
among many others.

Additionally, it is easy to check that in the multivariate normal case, with
known covariance matrix, the sample mean is an estimator which attains the
intrinsic Cramér—Rao lower bound,

E(p*(Xp, 1) = B((Xp = w)371(X, - u))

_ — , n
= t(STE((X, - u) (X - u))) = o
Finally, since the mean square Rao distance is bounded from above by
d(M)?%, d(M) being the diameter of the manifold, it turns out from Theorem
4.2(v) that a necessary condition for an unbiased estimator is d(M) > 1/ Vkn .

5. Conditional mean values of manifold-valued maps and the
Rao-Blackwell theorem. Classically, we can decrease the mean square
error for a given estimator by taking the conditional mean value with respect
to a sufficient statistic. We shall follow a similar procedure here, but now our
random objects are valued on a manifold and thus we will have to explain the
meaning of the conditional mean value in this context and then obtain
intrinsic versions of the Rao—Blackwell and Lehmann—Scheffé theorems.

Let (2, &, P) be a probability space. Let (M, 2) be a complete (Hausdorff
and connected) C*, n-dimensional Riemannian manifold. Then M will be a
complete separable metric space (a Polish space) and we will have a regular
version of the conditional probability of any random object f taking values in
M with respect to a o-algebra & on the sample space 2.

Moreover, if the mean square Riemannian distance of f exists, we can
write

E(p*(m, )|2)(x) = [ p*(m,8) Ppa(x, dt),

where P (x, B) is the regular conditional probability of f given 9, x €&
and B is a Borel set in M.
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If for each x € 2 there were one and only one stationary point p € M of
E(p2(, f)I2)Xx), that is, a point p € M such that

fMexp;l(t)Pflg(x, dt) =0,,

we would have a map from 2 to M that would assign a mean value for each
x. It is clear that if the image of this map were countable, the map would be
measurable, but since we have a dense countable set on M it turns out that
this map is always measurable. This justifies the following definition.

DEFINITION 5.1. Let f be a random object on M, and let & be a o-algebra
on &; we shall define the conditional mean value of f with respect to & as a
Z-measurable map Z such that

E(exp;'(f(1))12) = 0.

REMARKS. We shall write JU(f|2) to denote any conditional mean value
or the set of conditional mean values, depending on the context. From the
remark at the end of Section 2, a sufficient condition to ensure the mean
value exists is that there should be an open regular convex subset N ¢ M
such that P{f € N} = 1. Also we can extend the previous results to the case
where M is not complete, since N is diffeomorphic to an open set in R”, and
then there will be regular versions of the conditional probability of f given 2.

The following propositions are immediate.
PROPOSITION 5.2. If fis a @-measurable map, then IN(f|D) = f a.e.-P.
PROPOSITION 5.3. If f is independent of &, then M(f12) = M(f) a.e.-P.

REMARK. It is necessary to point out that, in general, JNCN(f|2)) + M(f),
as observed in Emery and Mokobodzky (1991) and Kendall (1990) and as is
easy to see from simple counterexamples.

Let us apply these notions to statistical point estimation. Given a paramet-
ric statistical model {(Z,.%, P,); 6 € ®}, let M be the associated manifold
with the Riemannian metric given by Fisher’s information matrix. We shall
assume that the model is regular, M is complete or there is an isometric
embedding into a complete manifold and that there is an open regular convex
subset N € M such that u(M \ N) =0 (u being a dominating reference
measure of the model).

Let 9 be a sufficient o-algebra for the statistical model. Given a sample of
size £ and an estimator %, we can now consider the estimator JU#%|2). Let

A% (p) = E,( p*(#,p)) and Az‘m(%g)(p) =E,( p2(M(%12), p)).
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Taking into account that a function 4(q), ¢ € M, on the manifold is said to be
convex if h(y(t)), ¢ € R, is an ordinary convex function for any geodesic line
v(t), we have the following theorem.

THEOREM 5.4 (Intrinsic Rao—Blackwell). If we fix p € N and the square of
the Rao distance p(:, p) is a convex function, then Ny ;0/(p) < A%(p).

Proor. This proof is adapted from Kendall (1990). By convexity, for all
positive ¢,
dp*(v(s), p)

p*(v(t), p) = p*(v(0), p) + I

s=0
d
=p*(v(0), p) + <grad( pz)(O),gg(O)> ‘T

Then, writing m = y(0) and g = y(¢), since

d
—2(0)t = exp,'(q) and grad(p?)(0) = ~2exp;’(p),
the above inequality can be written

p*(q,p) = p*(m, p) — 2{exp,'(p),exp,'(q)).

Then, taking m = P(%|2) and integrating with respect to Py 5(x, dq), we
obtain

[ p*(@, P)Puo(x, da) = p*(M(%19), p),
since [y, exp;,l(q)P?Ag(x, dg) = 0,,. Finally, taking expectations, we obtain
&y (p) = E,(p*(%,p)) = E,(E,(p*(#, p)|2))
> E,(p*(W(%12), p)) = Mo P)- O

REMARKS. It is interesting to note that if N is simply connected and the
sectional curvatures in N are at most 0, or # > 0 with d(N) < 7/2/%, then

A, (p) = A%m(m@)(l’),

since these are sufficient conditions to ensure N is a regular convex set and
the squared Riemannian distance is convex. If some curvatures are positive
and we do not impose conditions about the diameter of the regular convex set
N c M, we cannot be sure about the convexity of the squared Riemannian
distance, and then it is not necessarily true that the mean of the squared
Riemannian distance between the true density and the estimated one should
decrease when conditioning on 9.

On the other hand, we can improve the efficiency of the estimators by
conditioning with respect to a sufficient o-algebra 2, obtaining JU(%|2), but
the bias is not preserved in general, in contrast to the classical Rao—Black-
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well theorem. In other words, if % were intrinsically unbiased, (% |2)
would not, in general, be intrinsically unbiased since JM(PUZ|2)) + PU%).
However, if we let By 4 5, be the new bias tensor, by the Cauchy-Schwarz
inequality,

||B\))?(?/|9)(P)”2 =< Az‘ll?(?/l.@)(p) < A%(p).

Even though the bias tensor is not preserved in general when we condition
with respect to a sufficient statistic, a theorem (which is analogous to the
Lehmann—Scheffé theorem) can be formulated in the intrinsic context. We
need first to redefine the notion of completeness.

DEFINITION 5.5. A sufficient statistic 7' is said to be complete, for M, if
and only if, for any M-valued measurable maps f and g

M,(A(T)) =M, (g(T)) VpeM
implies that f(T) = g(T) (a.e. V p € M).

Then, with the same conditions as in Theorem 5.4, we directly have the
following proposition.

PROPOSITION 5.6 (Intrinsic Lehmann—Scheffé). Let % be an estimator that
is a function of a complete sufficient statistic for M. Then it is the uniformly
minimum Rao distance estimator for a fixed bias vector after conditioning.

6. Asymptotic properties. First notice that, given a sequence of ran-
dom objects taking values on an n-dimensional C* (Hausdorff and connected)
manifold with Riemannian structure, the definition of the different types of
stochastic convergences is straightforward: weak, in probability, almost sure
or in rth-mean convergence, as in any metric space. Moreover, since the
topology induced by the Riemannian metric is the same as the topology
induced by the atlas, if a global chart exists, we can reduce the study of these
convergences, with the exception of the rth mean, to the convergence of
random sequences taking values on R”.

Since we prefer to use the term estimator instead the more cumbersome
term estimator sequence, we shall redefine the estimator as a family of
measurable maps

#={%: 2" > M, keN}.
We have seen that the estimators often are intrinsically biased, but we aim

to show that the intrinsic bias tends to zero for large samples in important
cases such as the maximum-likelihood estimators.

DEFINITION 6.1. An estimator % is asymptotically intrinsically unbiased
in a large sense if and only if it is intrinsically unbiased asymptotically, that
is, we can construct a sequence of mean values of %, which converges to p.
When the sequence of mean values is uniquely defined, we may write

}}Er:owlp(?/k) =p =p(:;0) whateverp € M,
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where I, stands for the mean value of % computed with respect to the true
probability measure (P),, and we shall say that % is asymptotically intrinsi-
cally unbiased.

In the two following propositions we shall suppose that the estimator % is
regular in the sense that

supE,( p*(#%,,p)) <
keN

and the covariant derivative of the vector field &(q) = E, (exp, (%)) exists
and can be obtained by differentiating under the integral sign. We shall also
assume that the associated manifold of the regular parametric family of
densities is complete, simply connected and has sectional curvatures K
bounded from above and below [i.e., k < K <% and if Z > 0, d(M) < 7/2V%,
d(M) being the diameter of the manifold]. Notice that in Theorem 4.2 we had
analogous conditions, and it can be shown that these conditions are sufficient
to ensure the existence and uniqueness of a mean value and that in fact the
mean value is a centre of mass.

PROPOSITION 6.2. A regular estimator % is asymptotically intrinsically
unbiased if and only if, for the corresponding bias vector field,

B,(p) = E,(exp; (%)),
which depends on the sample size k, we have

}}imBk(p) =0 VpeM.

PrOOF. Since grad(#, X p) = —2B,(p), then, following Karcher [(1977),
Theorem (1.5)],

C(Z)p(M (%), p) <|By(p)ll < c(k)p(M,(#,), p),

where C(%) and c(k) are constants that depend on the curvature bound and
where we have used the inequality utanhu <1 + u, u € R*, and the fact
that the second-order moments are uniformly bounded.

REMARK. If we consider the maximum-likelihood estimator for the uni-
variate exponential distribution, we obtain (see Example 3.4) that B,(p) =
W(k) — log k, where W(k) = I"(k)/T' (k). Then, since lim, _, , k/exp(V(k)) =
1, it turns out that it is asymptotically unbiased.

Now we introduce a definition of normal distribution on a manifold. There
are several ways to build distributions cn a manifold [see Jupp and Mardia
(1989)1.

As usual in this paper we are going to consider only random objects Z that
take values, almost surely, on regular normal neighbourhoods (see Definition
2.4) of any point in a complete manifold M. For random objects of this kind
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the random vector field exp;l(Z ), p € M, will be almost surely well defined,
and we shall suppose that exp;l(Z ), p € M, is defined in this sense.

DEFINITION 6.3. Let Z be a random object valued on a complete manifold
M. We shall say that Z is normally distributed with respect to p and with
parameters (n, %), where 7 is a vector and 3 is a positive definite 2-con-
travariant tensor in M, if there is a random vector Y ~ N(n,2) on M. e such
that Z = exp,(Y). We shall write Z ~ N(x, 2),.

Notice that if n = 0 and the cut locus of p is empty, then p is a mean
value of Z. This definition is in fact an extension of wrapped normal distribu-
tion as used in directional statistics [Jupp and Mardia (1989)]. It seems
natural to introduce the concept of asymptotically normal distribution as
follows. Let {Z,},  \ be a sequence of M-valued random objects. Then we have
the following definition.

DEFINITION 6.4. Let M be a complete manifold. A random sequence
{Z,}; cn is said to be s,-asymptotically normally distributed with mean
p € M if and only if there is a positive definite 2-contravariant tensor 3 in
M, such that

{srexp,(Z,)}, . 22 ¥ withY ~N(0,3),

where ¢ stands for the weak convergence or convergence in law, and {s,}, <
is a sequence of positive real numbers with lim, _,, s, = .

REMARK. Notice that if {Z,}, . is s,-asymptotically normal with mean p,
then

{expp(sk exp;l(zk))}keN -, Z with Z ~N(0,3),,

but if {X,}, .y =& Z, it is not necessarily true that exp,(X,) converges in
law to a normal distribution.

We also say that the estimator % is s,-asymptotically normally distributed
if its corresponding random M-valued sequence is asymptotically normally
distributed.

PROPOSITION 6.5. Let % be an's,-asymptotically normally distributed
estimator of a regular parametric family of probability distributions, with
mean p € M. Also, assume that there is an £ € R* such that

supE,(p'**(%,, p)) < .
keN

Then % is asymptotically intrinsically unbiased.

PrOOF. It is straightforward since p(%,, p) = IIeXp;l(?/k)Il are uniformly
integrable. O
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THEOREM 6.6. With the assumptions of Proposition 6.5, maximum-likeli-
hood estimators are asymptotically intrinsically unbiased.

Proor. This is an immediate consequence of Proposition 6.5, assuming
sufficient conditions to ensure sup,, . E,( p*e(#,, p)) <, foran ¢ € R*, #
being the maximume-likelihood estimator, by observing that maximum-likeli-
hood estimators are V% -asymptotically normally distributed. In fact,

vk exp, (%) =2 N(0,(g°)),

where (g *#) is the contravariant version of the metric tensor. O

From the equations of the geodesics it is easy to obtain a power expansion
of the inverse of exponential map at a point p of the manifold M. Let (U, 6(-))
be a local chart, where 6(p) = 6,. Then, if we write 6, = 6(%,),

(exp;l(?/k))“ =65, — 65 + %rg(é&, - 03)(}@) - eg) + 0( p®).

Then with certain obvious conditions we can relate the intrinsic and the
ordinary bias as follows.

ProPoSITION 6.7. Let (U, 6(-)) be a local chart, where 6(p) = 0,; let Z be
an estimator such that Vk exp;l(?/k) converges in distribution to a random
vector with mean zero and second-order moments; sup,, c y E(k%3* (%, p)) <
o and the Christoffel symbols and their derivatives are uniformly bounded on
the support of {%,}. Then

B*(p) = Bias“(é(k)) + %Fijf{Biasi(é(k))Biasj(é(k)) + Cov(é(ik), é(fk))>
+ O(k™3/2),
with B*(p) = E,((exp, (#%,)]*) and Bias(d,,) = E,(6,;, — 6,).

7. Concluding remarks. The parametrization invariance of an infer-
ence procedure has been valued as an important and desirable property by
several authors [see Barndorff-Nielsen (1988) and Amari (1985), among
others]. Notice, for instance, that we need this property if we want to use the
parametric bootstrap in a consistent way. Basically the parametrization
invariance means that the inference procedure yields the same conclusion in
any coordinate or parameter system. But what does “same conclusion” mean?
We cannot talk about the same conclusions if the tools used to reach a
conclusion like the bias, the mean square error and so on depend on the
parametrization. The Rao distance distance has been used as a tool in
different approaches, but now we emphasize its use as the convenient dis-
tance between estimates, namely, the appropriate scale at which to observe
and compare the estimates and consequently the estimators. The Rao dis-
tance has permitted us to build the intrinsic bias and mean square error, the
invariant quantities whose classical analogues are, as we have shown, some
kind of approximations.
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