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ALIGNMENT OF CURVES BY DYNAMIC TIME WARPING1

BY KONGMING WANG and THEO GASSER

University of Zurich¨
When studying some process or development in different subjects or

units}be it biological, chemical or physical}we usually see a typical
pattern, common to all curves. Yet there is variation both in amplitude
and dynamics between curves. Following some ideas of structural analysis
introduced by Kneip and Gasser, we study a method}dynamic time
warping with a proper cost function}for estimating the shift or warping
function from one curve to another to align the two functions. For some
models this method can identify the true shift functions if the data are
noise free. Noisy data are smoothed by a nonparametric function estimate
such as a kernel estimate. It is shown that the proposed estimator is
asymptotically normal and converges to the true shift function as the
sample size per subject goes to infinity. Some simulation results are
presented to illustrate the performance of this method.

Ž1. Introduction. When studying some process or development e.g., a
.biological, chemical or physical process , we usually see a typical pattern

which is common to different subjects or units, and yet there are variations in
Ž .both amplitude and phase or timing between curves. One example is growth

of humans or animals, where growth evolves at different intensities and at
different paces in different individuals. Another example is speech signals,
where the same words are spoken with varying loudness and varying speed.
Classical statistical approaches such as repeated measure analysis of vari-
ance or principal component analysis deal exclusively with amplitude varia-

Ž .tion, and methods to deal with both are scarce. In Kneip and Gasser 1992 ,
‘‘structural analysis’’ was proposed to align or shift curves to a common
average time scale before applying further statistics such as averaging curves.
Estimating ‘‘structural average curves’’ proved to be successful to study
human growth for variables which have been inaccessible because of their

wsmall size and relatively large residual variation Gasser, Kneip, Binding,
Ž .Prader and Molinari 1991 and Gasser, Kneip, Zieger, Molinari, Prader and

Ž .xLargo 1994 . However, the step leading to individual shift functions for the
alignment of curves is somewhat delicate and time-consuming.

In the engineering literature, a different approach, called dynamic time
wwarping, was developed to align two signals with different dynamics Parsons

Ž . Ž . Ž .x1986 , Rabiner and Schmidt 1980 , Qi 1992 . This method has been mainly
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applied to speech analysis and speech recognition. We will give details in the
next section and sketch here how time warping works. Suppose that two

� Ž . 4 � Ž . 4sequences f i , i s 1, . . . , M and g j , j s 1, . . . , N characterize two sig-
nals f and g, respectively. We want to find the best match between f and g
by some alignment w, based on minimizing a cost function. The classical cost
function is given by

2inf f i y g j .Ž . Ž .Ž .Ý
w Ž .i , j gw

�Ž .4 Ž . Ž .Here ws i, j is a warping path connecting 1, 1 and M, N in a two-
dimensional square lattice and satisfying monotonicity and connectedness.

�Ž Ž . Ž ..This means that both coordinates of the parametrized path w s i k , j k :
Ž . Ž . Ž . Ž . 4k s 1, . . . , K ; i 1 s j 1 s 1, i K s M, j K s N have to be nondecreasing,

and that they can only increase by 0 or 1 when going from k to k q 1.
Obviously this is a minimization problem which can be solved efficiently by
using dynamic programming. What controls the warping result is the cost
function. How a sample of functions can be aligned by dynamic time warping
to some average time scale, however, needs some further thoughts.

We now describe briefly the methods proposed in the statistical literature
to analyze samples of functions. Suppose the observed data y fit the modeli j

y s f t q « ,Ž .i j i i j i j

j s 1, . . . , n timing for subject i ; i s 1, . . . , m subjects .Ž . Ž .i

1Ž .

� 4 w x ŽHere f : i s 1, . . . , m are unknown smooth functions, t g J ' 0, 1 ; R Ji i j
. � 4could be any closed interval , and « : j s 1, . . . , n ; i s 1, . . . , m are inde-i j i

Ž . Ž . 2pendent random variables with mean E « s 0 and variance V « s s )i j i j i
� 40. Note that the t do not need to be equally spaced.i j

Ž .When all subjects have the same number of measurements n s n , thei
resulting multivariate data matrix can be analyzed by principal component

Ž .analysis, as suggested by Rao 1958 . In this way, m functions are reduced to
a small number of ‘‘elementary’’ functions. This approach does not take into
account the inherent smoothness of the functions f ; and, more crucially, iti
does not account for ‘‘dynamic variability’’ but only for amplitude variability.
The first drawback was eliminated in the proposal by Rice and Silverman
Ž . w1991 , incorporating a penalized smoothing approach into PCA see also the

Ž .xrelated paper by Ramsay and Dalzell 1991 . To account for the second
Ž .drawback, Silverman 1995 also incorporated an individually constant shift

parameter into PCA.
The cross-sectional average Ým f rm is not a good estimate of the averageis1 i

Ž . Ž Ž .. Ž .dynamic and amplitude in general. Let us assume that f t s s u t in 1 ,i i
� 4where s is some shape function and u is an i.i.d. random sample of shifti

Ž Ž ..functions satisfying E u t s t and strict monotonicity. If s is nonlinear,i
Ž . y1 m Ž .then E f / s. By the law of large numbers, m Ý f ª E f / s in1 is1 i 1

probability.
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Ž .The structural analysis suggested by Kneip and Gasser 1992 , leading in
particular to a structural average curve, proceeds as follows.

ˆ Ž̂1. Ž̂2. X1. Kernel estimates f , f , f of f , f , f 0 are obtained.i i i i 1 i
ˆ Ž̂1. Ž̂2.2. Individual structural points are identified from f , f andror f . Roughlyi i i

Ž .speaking, structural points called ‘‘landmarks’’ in shape analysis are
features that are common to all or most curves.

3. Shift functions u are constructed from the locations of the structuralˆi
points such that individual structural points are shifted to the respective
average location. In between, smooth monotonic interpolation is used.

ˆ Ž .4. A structural average f in contrast to a cross-sectional average is ob-0
Ž .tained by averaging aligned smoothed curves:

m1ˆ ˆ2 f ? s f u ? .Ž . Ž . Ž .Ž .ˆÝ0 i im is1

Figure 1 shows the alignment of the velocities of two growth curves of
Ž . Ž . Ž .shoulder width boys by steps 2 ] 3 and by dynamic time warping. The

Ž . Ž .structural points used in steps 2 ] 3 are simply extremes and inflection
points. Dynamic time warping is introduced in the next section. Both methods
produce rather good results in this example.

Ž . Ž .A delicate step is 2 , and to a lesser extent 3 ; it is not easy to define
features which are common to most curves and to determine them unequivo-
cally from noisy data, such that they have an equivalent meaning. Dynamic
time warping, which addresses a similar problem, does not need such prereq-
uisites. The method is fully nonparametric. It is thus of interest to establish
whether and when dynamic time warping leads to meaningful shift functions.
This problem is dealt with here mainly in the context of aligning one function
with respect to another. The possible extension to m functions is discussed
but not treated exhaustively.

Section 2 is devoted to an introduction into dynamic time warping and to
some improvements. First, a variational problem in continuous time is formu-
lated in order to obtain smooth shift functions instead of a warping path.
Secondly, new cost functions are introduced to offer an improvement. At the
end of Section 2, we present approaches for aligning m curves to their
common time scale so that a structural average curve can be computed. A
theoretical analysis of this method is beyond the scope of this paper. In
Section 3, various classes of models are introduced and it is shown that
dynamic time warping identifies the correct shift functions in these classes.
Asymptotic properties for the estimators of shift functions are derived in

Ž .Section 4 with proofs in the Appendix . Simulations with a small number of
replications are presented in Section 5.

2. Dynamic time warping. Dynamic time warping has been designed
for aligning one curve with respect to another, and it is well documented in

Ž .the engineering literature. The article by Sakoe and Chiba 1978 is a good
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FIG. 1. Example of aligning two curves: top left gives two smoothed velocity curves; top right is
Ž . Ž .the alignment by dynamic time warping; bottom left is the alignment by steps 2 ] 3 ; bottom

right gives differences of shift functions and the identity function. The shift functions are produced
Ž . Ž . Ž . Ž .by dynamic time warping solid line and by steps 2 ] 3 dotted .

reference for basic ideas, and we present this approach in Section 2.1. A new
cost function is introduced there. In Section 2.2, we deal with the problem of
aligning m regression functions.

2.1. Aligning two regression functions. In speech recognition, a word or a
sentence can be expressed as a sequence of features by feature extraction
methods. This feature vector, rather than the original audio signal, is then
further analyzed. The recognition process consists of comparing the recorded
word with words in a template set. If its feature sequence matches closely to

Ž .the feature sequence of a word in the template set, then the word or speech
is recognized. For this comparison, the time-axis fluctuations between the
given word and a template have to be eliminated. The template for a word
might be what we call a structural average here and it is obtained by
averaging samples spoken by many people.
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We describe briefly the version of dynamic time warping given in Sakoe
Ž . Ž Ž . Ž .. Ž Ž . Ž ..and Chiba 1978 . Let FF s f 1 , . . . , f M and GG s g 1 , . . . , g N be two

feature vectors. Whether the two speech patterns are of the same category is
similar to asking whether there is a mapping w of the form

3 w s i 1 , j 1 , . . . , i K , j KŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .

such that the discrepancy

K

4 C FF , GG , w ' d f i k , g j k r kŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý0
ks1

is small enough. The warping path w has to satisfy several side conditions.

Ž . Ž . Ž . Ž . Ž .CONDITIONS. i Monotoncity: i k F i k q 1 and j k F j k q 1 .
Ž . Ž . Ž . Ž . Ž .ii Continuity: i k q 1 y i k F 1 and j k q 1 y j k F 1.
Ž . Ž . Ž . Ž . Ž .iii Boundary: i 1 s j 1 s 1, i K s M and j K s N.
Ž . < Ž . Ž . <iv Window: i k y j k F a given positive integer.
Ž .v Slope contraint: neither too steep nor too gentle a gradient should be

allowed.

Ž . Ž .In 4 , the function d ?, ? is a distance measure and r is a nonnegative
w Ž . xweighting function usually one takes r k ' 1 . The length K of the warping

path w is determined by the warping process. Note that this cost function is
symmetric in FF and GG.

The time-normalized distance between the speech patterns FF and G is
defined as the solution of the following minimization problem:

5 D FF , GG s inf C FF , GG , w .Ž . Ž . Ž .0 0
w

Ž . Ž . Ž .Conditions i and ii are natural. Condition iii is posted since the start
Ž .and end of words are detected before time normalization. Condition iv is

posted according to the concept that time-axis fluctuations should not lead to
Ž .too excessive differences in timing. Finally v is used to prevent unrealistic

< <warping if M y N is relatively large. Figure 2 shows what time warping
does.

In principle a cost function could be any functional of the two input
sequences and a warping path, depending on the purpose of the application.
The cost functions used in speech recognition and pattern classification are

Žvarieties of the classical quadratic cost function see Table 1 for some
.examples .

Ž .Some explanations might be helpful. In the second line of the table, P w
is a penalty function which penalizes jumps and flat spots on the warping
path w, and b is a coefficient which controls how severe the penalty is
w Ž .b s 0.0075 in Roberts, Lawrence, Eisen and Hoirch 1987 , chosen by trial
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FIG. 2. Tutorial illustration of dynamic time warping. Top left: two given curves; top right:
warping function; bottom figures: the warping of one curve to the other.

x Ž .2 Ž 2 2 .and error . From the equality ab s y a y b r2 q a q b r2, we see that

2 2 21 1y f i g j s f i y g j y f i q g j .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ý2 2
Ž . Ž . Ž .i , j gv i , j gw i , j gw

The first term is just the classical cost function. Since the second term tends
Ž .to make the warping path longer, a penalty is needed. A version of P w

Ž .given in Roberts, Lawrence, Eisen and Hoirch 1987 is the following. Write
�Ž Ž . Ž .. 4w s i k , j k : k s 1, . . . , K where K is the length of w. Then

K

P w s p w , k ,Ž . Ž .Ý
ks2

TABLE 1
Cost functions

2Ž Ž . Ž ..f i y g j ClassicalÝ
Ž .i, j gw

y f i g j y bP w Roberts, Lawrence, Eisen and HoirchŽ . Ž . Ž .Ý
i, j gwŽ .

2f t g u tŽ . Ž .Ž .1 2a yH ž /5 5 5 5f g0

2f 9 t g 9 u tŽ . Ž .Ž .2q 1 y a y q f u9 t dt Proposed hereŽ . Ž .Ž .ž /5 5 5 5f 9 g 9
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where

2¡ k y r y 1 ,Ž .k

if i k s i k y 1 , r s min r F k y 1: i r s i k ,� 4Ž . Ž . Ž . Ž .k~ 2p w , k sŽ . k y r y 1 ,Ž .k

if j k s j k y 1 , r s min r F k y 1: j r s j k ,� 4Ž . Ž . Ž . Ž .k¢
0, otherwise.

With the penalty term added, the cost function is no longer a convex function.
The third line of Table 1 is the cost function proposed in this paper. Details

are given below. Our cost function is inspired by Sobolev norms and by the
5 5 Ž .least squares principle. The normalization with the sup-norm ? in 6 is

intended to reduce the differences in amplitudes of the curves when estimat-
ing the shift functions. This should prevent us from explaining amplitude
variability between curves in terms of dynamic variability. There are other
cost functions used in speech analysis. For example, a cost function defined in
terms of the linear predictive coding features sets of signals is used in Hohne,¨

Ž .Coker, Levinson and Rabiner 1983 .
For our purpose, where aligning maxima, minima, and inflection points of

curves is important, we incorporate derivatives of functions into the cost
function. Apart from heuristics, theoretical and simulation analysis lends

Žsupport to this idea. Incorporating higher order derivatives the second
.derivative in particular is possible in principle, but problems of estimating

higher order derivatives from noisy data might arise.
Now, we give details of the new cost function. Define a functional F of the

functions f , f 9, g, g 9, u and a real variable a by

2f t g u tŽ . Ž .Ž .
2F f , f 9, g , g 9, u , a t ' a yŽ . Ž . ž /5 5 5 5f g

6Ž .
2f 9 t g 9 u tŽ . Ž .Ž .2q 1 y a y .Ž . ž /5 5 5 5f 9 g 9

5 5Here f 9 is the derivative of f and f 9 is the supremum norm of f 9. Then the
cost function is defined by

1
7 C f , f 9, g , g 9, u , a ' F f , f 9, g , g 9, u , a t q f u9 t dt .Ž . Ž . Ž . Ž . Ž .Ž .H

0

The function f serves as a penalty function which plays a role similar to the
Ž . Ž .side conditions i ] v . It is specified as follows. Let M ) d ) 0 be constants

and define f to be a convex function satisfying the following conditions:
Ž . w x Ž q.f x s 0 for x g d q r, M y r with a small positive number r ; f d s
Ž y. Ž . Ž .c 4Ž .f M s `; f x s ` for x g d , M ; and f g C d , M . An example of
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such a f is given by
5

f t s c d q r y t I t r t y dŽ . Ž . Ž . Ž .Žd , dqr x

5q t y M q r I t r M y t , t g d , MŽ . Ž . Ž . Ž .w Myr , M .

Ž .for a constant c. Here I t is the indicator function of a set A.A
The best warping or shift function between two functions f and g is given

by the solution of the following variational problem

8 inf C f , f 9, g , g 9, u , a : u g C1 , a g R .� 4Ž . Ž .
Ž .The cost function 7 is motivated not only by the least squares principle.

For two important classes of models, true shift functions can be recovered by
using the cost function; compare Section 3. Simulations in Section 5 also show
its usefulness.

Ž .It is easy to verify via Euler’s equation that if the optimal solution u of 8
Ž . Ž .satisfies d q r - u9 t - M y r, t g 0, 1 , then any extrema of g is aligned to

a stationary point of f where f 9 s 0.
Ž .Note that we do not require u 0 s 0. This flexibility allows us to study

Ž .certain models in more detail Section 3 . In applications one usually has
Ž .u 0 s 0. This is the case in speech recognition, where the start and end

points of words or sentences are detected before time warping. It is also the
Ž .case when growth curves are analyzed. The case u 0 / 0 arises, for example,

when one signal has not been observed from the beginning.
The warping path in a discrete setting is in parametrized curve form

�Ž Ž . Ž .. 4i k , j k : k s 1, . . . , K , while the warping function u in our continuous
setting is not. The reason is that the warping path in a discrete setting is not
a one-to-one mapping. Note that the parametric form makes the variational
problem symmetric in the two functions being matched. Since we require that
the shift function is in C1 and that the optimal shift function is strictly
increasing, no parametrization in curve form is needed.

Ž .The variational problem 8 can be solved as follows. For a given a , use
dynamic programming to find an optimal u corresponding to this a . Then the

w x Ž .minimization in a can be restricted to 0, 1 see the proof of Lemma 4.1 and
can be done, say, by grid search.

Ž .2.2. Aligning m regression functions. We now go back to model 1 of m
regression functions and present a method for aligning all curves to their
average time scale based on aligning one function to another. Once this is
done, further statistical analysis such as structural averaging is then
straightforward.

Dynamic time warping produces a relative shift function between two
curves. To align a sample of curves to a common time scale, we need a
reference curve. Then all curves can be aligned to this reference curve, and
hence the average timing can be computed. It is assumed in this subsection
that all curves are observed continuously and are noise free. In applications a
further preliminary step of smoothing the data is required.
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The principle is simple. Let f be the chosen reference curve. Warp eache
Ž .curve f , i s 1, . . . , m, to f and denote the warping function by h t ,i e i

w xt g 0, 1 . Then
m1

h t ' h tŽ . Ž .Ý im is1

is the average timing with respect to f . Since each h is strictly increasing,e i
the function h is strictly increasing and it has an inverse hy1. Now it is clear
that

u t ' h hy1 tŽ . Ž .Ž .i i

is the correct shift function to transform f to the average time scale. Ai
� 4structural average of f : i s 1, . . . , m is then computed asi

m1
f t s f u t .Ž . Ž .Ž .Ý0 i im is1

The reference curve should be close to the typical pattern of the sample
curves and should have more or less the same features as most sample
curves. A consideration in choosing a reference curve is the trade-off between
accuracy and computational effort. Several possibilities are given here.

1. In principle one could choose a curve randomly from the sample as
reference curve, following the arguments given above. This is computation-
ally attractive even when m is large, but the statistical quality may suffer
if an atypical curve were selected. This would inevitably make it more
difficult to estimate the warping function well.

2. Take each f , i s 1, . . . , m, as reference curve. Warp every other curve to fi i
Žand compute the total cost i.e., the sum of the cost for warping f to f ,j i

.j / i . Now choose f to be the curve corresponding to the maximum totale
cost. The main problem with this procedure is that it can require pro-
hibitive computing time if m is large. Note that one would need to solve

Ž . Ž .the variational problem 8 m m y 1 r2 times.
Ž . Ž . m Ž .3. An iterative method can be used. First take f t s 1rm Ý f t , thee is1 i

cross-sectional average. Then compute a structural average based on f . Ine
the following steps, take the structural average computed in the previous
step as the reference curve of the next step and iterate. Computation is not
a problem since a few iterations are enough. This proposal shows good
statistical properties if the relative shifts among curves are small. If the
shifts are large, then the cross-sectional average might be too atypical to
start with, since structure gets lost.

� 44. For large m, one could select a random sample of size k from f . Assumei
k s 2 j. Partition this selected sample into 2 jy1 pairs and compute
a structural average for each pair by a single warping. Now we have
2 jy1 structural averages. Partition this group into 2 jy2 pairs and compute
a structural average for each pair. Repeat this procedure till only one
structural average is left. Take this one as the reference curve f .e
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Ž . Ž .Now the question arises as to which of proposals 1 ] 4 should be used in
Ž .practice. Our suggestion is the following. If m is small, 2 should be the

choice. If m is large but one has confidence that the relative shifts among
Ž .sample curves are small and that no outlier should be in the sample, 3

would be a good choice. Finally, if m is large and no prior information about
Ž .the quality of the sample is available, 4 is recommended. Another possibility

Ž . Ž . � 4would be to combine 2 and 4 : select a random sample of size k from fi
Ž .and perform 2 on this subsample to compute a reference curve. As men-

tioned before, analysis of the methods proposed in this subsection is not
considered in this paper.

3. Alignment for some semiparametric models. It has become clear
that dynamic time warping effects a nonparametric technique for the align-
ment of regression functions. The questions is now whether dynamic time
warping achieves its goal when some parametric or semiparametric model is
assumed to be known. In the following we study some semiparametric
models. Most of these models have been studied in recent years in the
statistical literature. We want to investigate whether dynamic time warping
identifies the right alignment in the absence of noise. Let us postulate a

Ž .functional model of the following form for the regression model 1 :

w x9 f t s s t , u , t g 0, 1 , i s 1, . . . , m.Ž . Ž . Ž .i i

Here s is some prespecified function with individual parameters u g Rd.i
When data for many functions are available, and when some general struc-
ture for s can be postulated, the semiparametric problem of estimating u ini
the presence of the infinite-dimensional nuisance parameter s can be success-

w Ž .xfully treated Kneip and Gasser 1988 , and no specific form for s needs to be
specified. In the context of this paper, it is interesting that most of the
semiparametric classes of models considered so far have amplitude and shift
variation as the basic structure. In the simplest case this variation is modeled

Ž .linearly, leading to the so-called shape-invariant model SIM :

t y bi
10 f t s a s q d .Ž . Ž .i i iž /ci

Estimating parameters a , b , c , d and the shape function s for such ai i i i
Ž .model has been studied in Lawton, Sylvestre and Maggo 1972 , Kneip and

Ž . Ž .Gasser 1988 , and Kneip and Engel 1995 . This class contains logistic,
Gompertz and other important nonlinear regression models. It is successful

wfor modeling human growth Stutzle, Gasser, Molinari, Largo, Prader and¨
Ž .xHuber 1980 by postulating two components for prepubertal and pubertal

growth, respectively.
It is easy to see that the optimal shift function between f and f is giveni j

Ž . Ž .by the solution u, a of 8 , where

u t , a s c t y b rc q b , 0 .Ž . Ž .Ž . Ž .j i i j
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Thus, the newly introduced cost function is able to identify linear shifts
within SIM correctly. To appreciate this, note that using other cost functions
in Table 1 will not lead to correct shift functions within this simple model.

Ž .For comparing two functions f and f , Hardle and Marron 1990 consid-¨1 2
ered a somewhat more general model with amplitude-phase modulation:

11 f t s Sy1 f Ty1 t ,Ž . Ž . Ž .2 u 1 u0 0

where S and T are invertible parametric transformations. For linear trans-u u

Ž .formations S and T this reduces to 10 . They proposed to estimate u byu u 0
minimizing the loss function

2L u s f t y S f T t r t dt ,Ž . Ž . Ž . Ž .H 1 u 2 u

with some nonnegative weight function r. None of the cost functions in
Table 1 is successful for identifying T in general, but a back-fitting methodu0w Ž .xsuch as the one proposed in Kneip and Gasser 1988 would work.

Ž .A more general nonlinear shift model NLSM allows a shift function u toi
be specified nonparametrically:

12 f t s a s u t ,Ž . Ž . Ž .Ž .i i i

where u g C1 is strictly increasing and a is a real and positive parameter.i i
Despite the great generality allowed for shifts, this model is still identifiable.
The optimal shift function from f to f can be obtained by dynamic timej i

Ž .warping with cost function 7 as

u t , a s uy1 u t , 1 .Ž . Ž .Ž . Ž .Ž .j i

Thus, shift functions can only be extracted in relative terms with respect to
Ž .some function chosen as reference f in this example . Again, other costi

functions in Table 1 are not successful for extracting the correct shift func-
tion.

An interesting generalization emerges when replacing the individual factor
Ž .a by some parametric function a t, b :i i i

13 f t s a t , b s u t q d .Ž . Ž . Ž . Ž .Ž .i i i i i

Here a is an a priori known function with individual parameter b g Rd,i i
and d is an unknown constant. Possibly, this quite general semiparametrici
model is also identifiable when requiring proper conditions for b , g , and d .i i i
In any case, recovering the shift function between two such functions would

Ž .require a more complicated cost function than 7 . It is plausible that a
Ž .back-fitting procedure}such as the one used in Kneip and Gasser 1988 }

could solve this problem. However, the general amplitude-phase modulated
model

f t s a t s u tŽ . Ž . Ž .Ž .i i i

is clearly not identifiable. This is true even when requiring obvious conditions
Ž . Ž .such as Ea t ' 1 and Eg t ' t. Nonetheless, simulations show that costi i

Ž .function 7 yields reasonable results even for this model.
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Ž .With the new cost function 7 , shift functions can be fully recovered by
Ž . Ž .dynamic time warping in models SIM and NLSM if data are noise free.

This seems to us an important achievement, since dynamic time warping is a
relatively easy, automatic method. It can be attributed to the inclusion of
derivatives in the cost function. For noisy data, some nonparametric function
fitting method like kernel estimators or local polynomial fitting allows the
estimation of the function itself and of its derivatives as a preliminary step.
The problem of estimating derivatives from noisy data might have prevented
their earlier use in a cost function.

4. Estimation and asymptotics. In practice, a regression function f is
� 4unobservable and has to be estimated from noisy data y , . . . , y , where1 n

Ž .y s f t q « . We use convolution-type kernel smoothing to estimate deriva-j j j
Ž .tives of order n G 0 of f. Specifically, let K be a kernal of order n , n q 2n

w Ž .xGasser, Muller and Mammitzsch 1985 for n s 0, 1. That is,¨
0, j F n and 0 F j F n q 1,¡

1 nj ~ y1 , j s n ,Ž .K t t dt sŽ .H n
y1 ¢b / 0 j s n q 2,j

w xand the support of K is y1, 1 . Note that optimal kernels are explicitlyn

Ž .known as polynomials of order n q 2 . Then we define
n s1 v y tj

f̂ t s y K dv,Ž . Ý Hj 0 ž /b bs0 0jy1js1

n s1 v y tj
f̂ 9 t s y K dv.Ž . Ý Hj 12 ž /bb s 11 jy1js1

Ž .Here s s t q t r2 for 1 F j F n, s s 0, and s s 1. Following asymp-j jy1 j 0 n
Ž y1r5. Ž y1r7.totic theory we take b s O n and b s O n . Other smoothing0 1

methods like local polynomial fitting or smoothing splines can be employed
here instead of kernel smoothing. It would not change the convergence rates
given in Theorem 4.1 below, since we assume a fixed design.

For any two functions f and g, the optimal shift function between f and g
is then estimated by the solution of

ˆ ˆ 1inf C f , f 9, g , g 9, u , a : u g C , a g R .ˆ ˆž /½ 5
Obviously some theoretical and practical questions need to be addressed.

Ž .Does the variational problem 8 have a solution? Is a solution unique? How
does dynamic time warping perform with noisy data? We address these
questions in this section. As stated before, the analysis focuses on the

Ž .alignment of two functions. First we prove the existence of a solution to 8 .

LEMMA 4.1. If f , g g C1, then there exists a solution of the variational
Ž .problem 8 .
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ˆ ˆA proof is given in the Appendix. Since f, g, f 9, g 9 are continuous, thisˆ ˆ
ˆ ˆŽ .lemma shows that 8 has a solution if one replaces f , g, f 9, g 9 by f , g, f 9, g 9.ˆ ˆ

Ž .It is easy to see that 8 has many solutions in some cases. An example is
Ž Ž .. Ž .g u t s cf t for some strictly increasing u and some constant c, where
Ž . Ž . w x Ž .f t s constant on some open interval a, b ; 0, 1 . Obviously u, 1 is a

Ž . Ž . Ž . Ž . Ž .solution of 8 . Now take a , b ; a, b and define v by v t s u t on1 1
w x Ž . Ž .0, 1 _ a , b and anything on a , b such that v is strictly increasing and1 1 1 1

1w x Ž . Ž .v g C 0, 1 . Then v, 1 is also a solution of 8 . To make the solution unique,
Ž .one can replace f in 8 by a strictly convex function with minimum at 1, but

Ž .this may drive the solution of 8 away from the optimal shift function, if the
Ž . Ž Ž ..identity u t s t is not the optimal shift function. Similarly, if g 9 u t s

Ž . Ž . Ž . w x Ž .cf 9 t and f 9 t s constant on a, b g 0, 1 , then 8 has many solutions.
Ž .Note that even though 8 has many solutions in each of these cases, the

alignment is unique. That is,

5 5 5 5g u y g v g 9 u y g 9 v s 0.Ž . Ž . Ž . Ž .2 2

5 5 2 w xHere ? stands for the L norm of square integrable functions on 0, 1 . We2
Ž .suspect that this equation is true in general if 8 has more than one solution,

but we could not prove it.
In data analysis, parametric linear function fitting is the approach most

often used. Here, as in other problems in nonparametric function fitting, a
linear regression function becomes a degenerate case. However, it is more a
theoretical than a practical problem, since linear or almost linear functions
can easily be spotted in an exploratory analysis. If both f and g are linear

5 5 5 5and if both their derivatives are positive or negative, then f 9r f 9 y g 9r g 9
w x Ž . Ž .' 0. Thus for any u defined on 0, 1 , the pair u, 0 is a solution of 8 . This

results in incorrect alignment in this case. There are two ways to get around
this problem. First, choose the penalty function f as a strictly convex

Ž . Ž . Ž .function with minimum f 1 s 0. Then the solution of 8 is u, 0 with
Ž . Ž .u t s t. As mentioned before, this may drive the solution of 8 away from

the optimal alignment between two functions in general. The second way is
Ž Ž .. Ž Ž .. Ž .the following. Observe that dg u t rdt s g 9 u t u9 t . It is therefore natu-

Ž . Ž . Ž .ral to replace g 9 u in 6 by g 9 u u9. When both f and g are linear, the
Ž . Ž Ž ..2second term of 6 becomes 1 y u9 t . The theoretical analysis will not

change much if this replacement is made, but computation becomes difficult
mainly because of the need to find a way of computing u9 in order that it is

Ž .still possible to solve the problem 8 by using dynamic programming.
Some notation is needed for statistical analysis. Let

A t ' A f , f 9, g , g 9, u , a tŽ . Ž .Ž .
F f , f 9, g , g 9, u , a F f , f 9, g , g 9, u , aŽ . Ž .uu uas .ž /F f , f 9, g , g 9, u , a F f , f 9, g , g 9, u , aŽ . Ž .ua a a

Ž . Ž Ž . Ž . Ž .We have used the notation F f , f 9, g, g 9, u, a for F f t , f 9 t , g t ,uu uu
Ž . Ž . . Ž . Ž .g 9 t , u t , a since t will be fixed. Here u, a is an optimal solution of 8 .

ˆ ˆŽ . Ž .Let u, a denote a solution of 8 with f, g, f 9, g 9 replaced by f, g, f 9, g 9.ˆ ˆ ˆ ˆ
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Recall that a s 0, 1 correspond to models where true shift functions can be
Ž̂k .Ž . Ž .recovered Section 3 . Below and in the remainder of this paper, let f t s

k ˆ kd frdt and similarly for the derivatives of kernels and other estimators. We
have the following theorem.

Ž . Ž .THEOREM 4.1. Assume conditions i ] iii .
4Ž . Ž .i f, g g C R and the optimal shift function u between f and g satisfies

Ž . w xd q r - u9 t - M y r, t g 0, 1 .
Ž . Ž . Ž .ii A t is invertible at some t g 0, 1 .
Ž . Ž y1r5. Ž y1r7.iii b s O n and b s O n .0 1

Then the following conclusions hold:

2 y1r2 y3r2 2O b qo n b log n , a/1,Ž .Ž . Ž .1 1Ž . Ž .Ž . Ž .Ž .a E u, a t y u, a t sˆ ˆ 2 y1r2 y1r2 2½ O b qo n b log n , as1.Ž .Ž . Ž .0 0

Ž .b If a / 1 then
y1 y15'nb u , a t y E u , a t « N 0, A t V a A tŽ . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ Ž .1

with N a multinormal distribution and
2f 9 t g 9 u tŽ . Ž .Ž . 12 2 y22 Ž1. 5 5V a s 4 1 y a s y K x dx diag g 9 , 0 .Ž . Ž . Ž . Ž .H 1ž /5 5 5 5f 9 g 9 y1

5Ž . wŽ .Ž . Ž .Ž .x'If V a s 0 then nb u, a t y E u, a t ª 0 in probability.ˆ ˆ ˆ ˆ1
Ž .c If a s 1 then

y1 y13'nb u , a t y E u , a t ª N 0, A t V A tŽ . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ Ž .0 1

with N a multinormal distribution and
2f t g u tŽ . Ž .Ž . 1 2 y22 Ž1. 5 5V s 4s y K x dx diag g , 0 .Ž . Ž .H1 0ž /5 5 5 5f g y1

3 wŽ .Ž . Ž .Ž .x'If V s 0 then nb u, a t y E u, a t ª 0 in probability.ˆ ˆ ˆ ˆ1 0

The proof is given in the Appendix. It shows that dynamic time warping
performs reasonably well with noisy data, though the convergence rate is not

y1r7 y1r5Ž .very fast n for a / 1 and n for a s 1 . We point out that these
results on bias and variance hold for any cost function with three continuous
Frechet derivatives. This will be clear from the proof. We make some remarks´
about this theorem.

Ž . Ž . y1REMARKS. a Condition i is not a restriction since d , r and M can be
as small as one wants.

Ž . 5 5b It would be nice to have a convergence rate for u y u . As a result ofˆ
Ž .the nonuniqueness of solutions 8 , it could, however, be complicated to show

5 5just that there exists an optimal solution u such that u y u ª 0.ˆ ˆ
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Ž . Ž .c Since u, a is an optimal solution, the second variation of the cost
Ž .function at u, a , given by

2 w xD C f , f 9, g , g 9, u , a u , a ; u , aŽ . 1 1 1 1

1 T 2Xs u , a A t u , a q f0 u9 u dt ,Ž . Ž . Ž . Ž . Ž .H 1 1 1 1 1
0

Ž .is nonnegative for any admissible u , a . See the proof in the Appendix for1 1
the definition of the second variation, or second Frechet derivative. Since u´

Ž . Ž . Ž . w xsatisfies i , f0 u9 ' 0. Hence A t is semipositive definite for all t g 0, 1 .
Ž . Ž . Ž .Since A t is continuous in t, condition ii implies that A t is positive

Ž .definite in a neighborhood of t. This makes the solution of 8 unique in a
neighborhood of t, and therefore makes it possible to prove the pointwise
result given in this theorem.

Ž . Ž .d One can check condition ii for some interesting models. SIM is an
easy example while the proof for NLSM is not so easy.

Ž . wŽ .e In the structural analysis proposed by Kneip and Gasser 1992 ,
xTheorem 3, page 1289 , the estimated shift function from noisy data con-

Ž y1r5.verges to the true shift function at a rate of O n . Here the rate
5 y1r7Ž .'nb s O n when a F 1 is slower because the second derivative of g isˆ1

Ž . Ž .involved when solving 8 see the proof given in the Appendix .

Ž .5. Simulations. We undertook a small scale simulation 100 runs to
evaluate the practical performance of dynamic time warping. Both the classi-
cal and our new cost function are evaluated. The evaluation is performed for
the basic problem of warping one function to a second one. The assumption
Ž .u 0 s 0, which is natural and useful in many applications, is not made in

this section.
Ž .The base function or shape function is shown in Figure 3 and is defined

by

¡s t q 4t sin 31.4 0.45 y t , t F 0.45,Ž . Ž .Ž .1~s t q 10 s t y s t 0.45 y t , 0.45 F t F 0.55,Ž . Ž . Ž . Ž .14 s t s Ž .Ž . Ž . 1 2 1¢s t q 4 1 y t sin 31.4 t y 0.55 , t G 0.55.Ž . Ž . Ž .Ž .2

with
2 2s t s0.25 ty5 y8 0.45yt , s t sy0.25 tq4 q8 ty0.55 .Ž . Ž . Ž . Ž . Ž . Ž .1 2

We consider the model

f t s a s h t q d , i s 1, 2,Ž . Ž .Ž .i i i i

where a and d are constants while h is a strictly increasing shift function.i i i
The base function s has 8 extremes, denoted by t , j s 1, . . . , 8. Let t sj i j

y1Ž .h t , j g K , be the corresponding extremes of f which are present on thei j i i
�Ž Ž .. w x4graph t, f t : t g 0, 1 . K is a set of indices. Note that t is present oni i i j

w xthe graph if and only if t g 0, 1 .i j
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FIG. 3. Shape function.

Under optimal shifting of the second function to the first one, the extreme
t should be shifted to t for j g K ' K l K . Let t be the image of tˆ2 j 1 j 1 2 1 j 2 j
under dynamic time warping for j g K. We use

1 2
15 r ' t y tŽ . ˆŽ .Ý 1 j 1 j< <K jgK

as an error measurement for aligning extremes. This choice is made for the
5 5following reasons. First, the norm u y u , with u and u estimated and trueˆ ˆ2

shift functions, respectively, is not very sensitive and thus not appropriate as
Ž .criterion a different standardization might, however, help . One could also

5 Ž . Ž Ž ..5compute the difference f ? y f u ? , but this is often not informative21 2
enough about the appropriate alignment.

5.1. Shape-invariant model. In this simulation we consider the shape-
invariant model; that is, the shift functions are

t y bi
h t s .Ž .i ci

For 100 runs, first 200 sample curves are generated and grouped into 100
pairs. Then we apply dynamic time warping with a prespecified cost function
to warp one curve in a pair to the other and compute the warping error by
Ž .15 . The bandwidth for kernel smoothing was chosen data adaptively via a

w Ž .xplug-in rule Gasser, Kneip and Kohler 1991 . The parameters in the sample¨
curves are generated as follows:

a s max 1 q 5s N 0, 1 , 0.5 , b s 0.1s N 0, 1 ,Ž . Ž .Ž .i i

c s 1 q s U 0, 1 y 0.5 , d s 20s N 0, 1 .Ž . Ž .Ž .i i

Ž . Ž .Here N 0, 1 stands for a standard normal variable and U 0, 1 for a uniform
Ž . Ž 2 .variable on 0, 1 . The noise is generated as « s N 0, s . The data are theni j «

formed as

y s f t q « .Ž .i j i i j i j
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TABLE 2
Simulation with SIM model

Cost function s Mean Variance«

Classical 0.1 1.81e-4 1.53e-7
New 0.1 8.77e-5 4.59e-9
Classical 0.2 9.71e-4 1.92e-6
New 0.2 2.74e-4 1.75e-7
Classical 0.4 3.28e-3 2.52e-5
New 0.4 1.59e-3 8.89e-6
Classical 0.6 3.95e-3 2.80e-5
New 0.6 2.80e-3 3.13e-5
Classical 1.0 2.87e-2 8.43e-3
New 1.0 2.80e-2 6.94e-3

The sample size for each curve is 100. We happen to take s s s in this and«

subsequent subsections, but there is no special reason for doing so.
Table 2 gives the results of 100 runs. Let r , i s 1, . . . , 100, be the errori

Ž . � 415 of the ith run. The column ‘‘Mean’’ is the sample means of r , while thei
� 4column ‘‘variance’’ is the sample variance of r , leading easily to standardi

errors of simulation. The rows starting with ‘‘Classical’’ give the results for
the classical quadratic cost function, and the rows starting with ‘‘New’’ give

Ž .the results for cost function 7 .
A typical run with s s s s 0.2 is shown in Figure 4. The error of aligning«

extremes using the classical cost function is 3.33e y 3, and the error using
the new cost function is 1.66e y 4. The true shift function is linear for the
SIM model.

The results are visually appealing, and even more so for the new cost
function.

5.2. Nonlinear shift model. We consider a nonlinear shift model for the
simulation. The shift function is modeled by

ai
h t s t q sin 2p b t q gŽ . Ž .Ž .i i i2p

and the model is again

f t s a s h t q d .Ž . Ž .Ž .i i i i

The parameters a , d are generated as in the last simulation, while a , b , gi i i i i
are generated as follows:

a s max y0.7, min 0.35N 0, 1 , 0.7 ,� 4� 4Ž .i

b s min 1 q 0.2 N 0, 1 , 1.4 , g s 0.5 U 0, 1 y 0.5 .� 4Ž . Ž .Ž .i i

< <Note that typically b F 1.4 and thereforei
U < <h t s 1 q a b cos 2p b t q g G 1 y a b ) 0.Ž . Ž .Ž .i i i i i i i

Thus we have strictly increasing shift functions.
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FIG. 4. Alignment for SIM model. Top left: two smoothed sample curves; top right: warping
result using the classical cost function; bottom left: warping result using the new cost function;

Žbottom right: two warping functions dotted line for classical cost function, solid line for new cost
.function .

The simulation is done as follows. First 100 shift functions are generated
and the data for 100 curves are formed as

y s f t q N 0, s .Ž .Ž .i j i i j «

Each curve is sampled at 100 points. After kernel smoothing, each curve is
Ž .aligned to the shape function s t and the error r is computed. Finally, wei

� 4compute the sample mean and variance of r . The results from 100 runs arei
given in the Table 3.

A typical run with s s s s 0.2 is shown in Figure 5. The error of aligning«

extremes using the classical cost function is 1.2e y 4, and the error using the
new cost function is 2.55e y 5. Evidently, dynamic time warping with the
classical cost function has difficulty in aligning the signals properly. This is
not due to noise but to the more complicated shift function. The new cost

Ž .function 7 performs much better.
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TABLE 3
Simulation with NLSM model

Cost function s Mean Variance«

Classical 0.1 1.44e-3 7.56e-6
New 0.1 8.08e-4 2.24e-6
Classical 0.2 2.16e-3 7.04e-6
New 0.2 1.10e-3 3.61e-6
Classical 0.4 2.32e-3 1.71e-5
New 0.4 8.75e-4 2.82e-6
Classical 0.6 2.01e-3 7.49e-6
New 0.6 1.01e-3 3.09e-6
Classical 1.0 2.75e-3 1.36e-5
New 1.0 1.79e-3 8.94e-6

5.3. Conclusions from simulations. Dynamic time warping is an appropri-
ate method for aligning two functions. The new cost function outperforms the
classical cost function, because of the use of derivatives. Furthermore, dy-
namic time warping with the new cost function produces smoother shift

Ž .functions and prevents the breakdown shown in Figure 5 top left graphics .
As expected, the performance of warping depends mainly on the amount of

true shifts}the difference between true shift functions and the identity
Ž .function see the simulation in Section 5.1 . The noise level does not affect the

Ž .warping results very much see the simulation in Section 5.2 since data are
smoothed before warping.

Ž . Ž .Compared to the structural analysis as described in steps 1 ] 4 in the
introduction, the advantage of dynamic time warping is that it automatically
aligns structural points of two functions. It needs thus less a priori knowledge
and less manpower, but structural analysis could still be preferable in
difficult situations.

APPENDIX A

Proofs.

w xA.1. Proof of Lemma 4.1. First note that we can restrict a g 0, 1 ,
w x c Ž . � Ž .because for any a g 0, 1 , C f , f 9, g, g 9, u, a G min C f , f 9, g, g 9, u, 0 ,

Ž .4 Ž .C f, f 9, g, g 9, u, 1 . Since C f , f 9, g, g 9, u, a is bounded from below, there
Ž .exists a feasible sequence u , a such thatn n

lim C f , f 9, g , g 9, u , a s C f , f 9, g , g 9, u , a .Ž . Ž .Ýn n
nª` u , a

Ž . � 1w x < Ž . < 4 Ž .Let I d , M s u g C 0, 1 : u 0 F M, a F u9 F M . Then I d , M is com-
< < � < Ž . < < Ž . < w x4 Ž .pact under the norm u s sup u t q u9 t : t g 0, 1 . Therefore I d , M =

w x � 40, 1 is compact and u , a has a subsequence which converges to a limitn n
Ž . Ž .uniformly. This limit is a solution to 8 because C is continuous in u, a . I
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FIG. 5. Alignment for NLSM model. Top left: two smoothed sample curves; top right: warping
result using the classical cost function; bottom left: warping result using the new cost function;

Žbottom right: warping functions dotted line for classical cost function, solid line for new cost
.function, dashed line for true shift function .

A.2. Proof of Theorem 4.1. The proof proceeds as follows. First, the
Ž . Ž .difference u, a y u, a can be represented as a linear functional of theˆ ˆ ˆ

basic statistics plus higher order error terms. These basic statistics are
ˆ Ž̂1. ˆ ˆ Ž1. ˆ ˆŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . 5 5 5 5 5 5 5 5f t y f t , f t y f 9 t , f 9 t y f 9 t , f 9 t y f 0 t , f q f , f 9 y f 9 ,

Ž1.ˆŽ . Ž Ž . Ž .and similar statistics with f t replaced by g u t . Note that f t is
ˆ Ž .different from f 9 t . To treat bias and variance asymptotically, we need only

to take care of these basic statistics. The bias of the linear functional is
simply the linear combination of the bias of those basic statistics, available in
the literature. To deal with the variance we note that the dominating terms

XŽ1. Ž1.ˆ Ž . Ž . Ž Ž ..are those involving second derivatives: f t y f 0 t and g 9 u t yˆ
Ž Ž ..g 0 u t . All other terms can be neglected as far as asymptotic variance is

concerned. Therefore the main issue is to develop such a representation,
which will be the first thing to do.
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4 Ž .Some more notation is needed. Since, f , g g C , C f , f 9, g, g 9, u, a has
Ž .three continuous Frechet derivatives with respect to u, a . Denote these´

derivatives by DC, D2C and D3C, respectively. That is,

w xDC f , f 9, g , g 9, u , a u , aŽ . 1 1

C f , f 9, g , g 9, u q d u , a q da y C f , f 9, g , g 9, u , aŽ . Ž .1 1s lim ,
ddª0

2 w xD C f , f 9, g , g 9, u , a u , a ; u , aŽ . 1 1 2 2

w xs lim DC f , f 9, g , g 9, u q d u , aqda u , aŽ .Ž 2 2 1 1
dª0

w x y1yDC f , f 9, g , g 9, u , a u , a d ,Ž . .1 1

and D3C is defined in the same way.
ˆ ˆ 9Ž . Ž . Ž .Since u, a is the minimizer of C f, f 9 g, g , u, a , for any u , a withˆ ˆ ˆ ˆ 1 1

1w xu g C 0, 1 ,1

ˆ ˆ w x0 s DC f , f 9, g , g 9, u , a u , aˆ ˆ ˆ ˆ 1 1ž /
w xs DC f , f 9, g , g 9, u , a u , aŽ .ˆ ˆ 1 1

ˆ ˆ w xqR f , f 9, g , g 9, f , f 9, g , g 9, u , a u , aˆ ˆ ˆ ˆ 1 1ž /
16Ž .

2s D C f , f 9, g , g 9, u , a u , a ; u y u , a y aŽ . ˆ ˆ1 1

2< <q O u y u , a y aŽ .ˆ ˆŽ .
ˆ ˆ w xqR f , f 9, g , g 9, f , f 9, g , g 9, u , a u , a .ˆ ˆ ˆ ˆ 1 1ž /

Ž .w xWe have used the fact that DC f , f 9, g, g 9, u, a u , a s 0. The O term1 1
equals

3D C f , f 9, g , g 9, c , c u , a ; u y u , a y a ; u y u , a y aŽ . ˆ ˆ ˆ ˆu a 1 1

Ž . Ž . Ž .for some c , c between u, a and u, a . The term R is simplyˆ ˆu a

ˆ ˆ w x w xDC f , f 9, g , g 9, u , a u , a y DC f , f 9, g , g 9, u , a u , a .Ž .ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1ž /
ˆ ˆSince f does not depend on f, f 9, g, g 9, f, f 9, g, g 9 and their derivatives, Rˆ ˆ

Ž .does not depend on f canceled out . Consequently

ˆ ˆ w xR f , f 9, g , g 9, f , f 9, g , g 9, u , a u , aˆ ˆ ˆ ˆ 1 1ž /
1 ˆ ˆs F f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , a uŽ .ˆ ˆ ˆ ˆ ˆ ˆH u u 1ž /ž /

0
17Ž .

ˆ ˆq F f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , a a dt .Ž .ˆ ˆ ˆ ˆ ˆ ˆa a 1ž /ž /
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Easy computations show that

2D C f , f 9, g , g 9, u , a u , a ; u y u , a y aŽ . ˆ ˆ1 1

T1 Xs u , a A t u y u , a y a q f0 u9 u u9 y u9 dt .Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆH 1 1 1
0

Ž . Ž . Ž . Ž .Since u , a can be chosen arbitrarily, it follows from 16 , 17 and f0 u91 1
' 0 that

T 2ˆ < <18 A t u y u , a y a s B t q O u y u , a y a ,Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆŽ .
with

ˆ ˆF f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , aŽ .ˆ ˆ ˆ ˆ ˆ ˆu už /
B̂ t s .Ž .

ˆ ˆ� 0F f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , aŽ .ˆ ˆ ˆ ˆ ˆ ˆa až /
Ž . y1One could also derive 18 from Euler equations. Since the inverse A exists

Ž .and since F , F are continuous, one immediately gets u y u, a y a ª 0 inˆ ˆu a
ˆ ˆ Ž̂1. Ž1. ˆ Ž1. XŽ1.Ž . Žprobability from the fact that f , f 9, g, g 9, f , g , f 9 , g y f, f 9, g, g 9,ˆ ˆ ˆ ˆ

.f 9, g 9, f 0, g 0 ª 0 in probability.
ˆWe now deal with B. First note the following two algebraic equalities

ˆ ˆ ˆ ˆ ˆ5 5 5 5 5 5 5 5f f f y f f f y f f y f f f
s q y y y ,

5 5 5 5 5 5 5 5 5 5 5 5ž /ˆ ˆf f f f f f5 5 5 5f f

Ž̂1. Ž̂1. ˆ ˆ Ž̂1.5 5 5 5 5 5 5 5f f 9 f y f 9 f 9 f y f f y f f f 9
s q y y y .

5 5 5 5 5 5 5 5 5 5 5 5ž /ˆ ˆf f f f f f5 5 5 5f f

ˆ Ž̂1. ˆ ˆ Ž1.The same relations hold if we replace, f, f 9, f , f by f 9, f 0, f 9, f 9 . For any
Ž . Ž . Ž Ž ..u, a , we simply write f for f t , g for g u t , and so on. Then it follows
from the two algebraic equalities that

ˆ ˆF f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , aŽ .ˆ ˆž /u u

Ž1.ˆg f g g f g 9ˆ ˆ
2s 2a y y yž /5 5 5 5 5 5 5 5 5 5ž /ˆg g g f g5 5ˆ ˆf

XŽ1.ˆg 9 f 9 g g 9 f 9 g 0ˆ ˆ2y 2 1 y a y y yŽ . ž /5 5 5 5 5 5 5 5 5 5ž /ˆg 9 g 9 g 9 f 9 g 95 5ˆ ˆf 9

22 ˆ ˆ< <s 2a G g , g , f , f , u , a q o G q 2 1 y a G g 9, g 9, f 9, f 9, u , aŽ .Ž .ˆ ˆŽ . Ž .1 1 2

< <qo G .Ž .2
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The G functionals are defined by

ˆG g , g , f , f , u , aˆŽ .1

ˆ5 5 5 5g 9 g y g g 9 g g y g g 9 f y fˆ ˆ
s y 2 y

5 5 5 5 5 5 5 5 5 5 5 5 5 5g g g g g g f

ˆ Ž1.5 5 5 5g f y f g f g y g 9ˆ
q 2 q y ,ž /5 5 5 5 5 5 5 5 5 5g f g f g

ˆG g 9, g 9, f 9, f 9, u , aˆŽ .2

ˆ5 5 5 5g 0 g 9 y g 9 g 0 g 9 g 9 y g 9 g 0 f 9 y f 9ˆ ˆ
s y 2 y

5 5 5 5 5 5 5 5 5 5 5 5 5 5g 9 g 9 g 9 g 9 q9 g 9 f 9

ˆ Ž1.5 5 5 5g 9 f 9 y f 9 g 9 f 9 g 9 y g 0ˆ
q 2 q y .ž /5 5 5 5 5 5 5 5 5 5g 9 f 9 g 9 f 9 g 9

F is treated in the same way and one getsa

ˆ ˆF f , f 9, g , g 9, u , a y F f , f 9, g , g 9, u , aŽ .ˆ ˆž /a a

ˆ ˆ < <s 4aH f , f , g , g , u , a y 4 1 y a H f 9, f 9, g , g 9, u , a q o H .Ž . Ž .ˆ ˜ ˆŽ . ž /
The H functional is defined by

ˆH f , f , g , g , u , aˆŽ .
ˆ ˆ5 5 5 5 5 5 5 5f g f y f f f y f g y g g g y gˆ ˆ

s y y y q ,ž /5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5ž /f g f f f g g g

and the o term is

ˆ ˆ< < < < < <o H s o H f , f , g , g , u , a q o H f 9, f 9, g , g 9, u , a .Ž . ˆ ˜ ˆŽ . ž /ž / ž /
Combining all the above considerations, we have shown that

ˆ ˆB t s B t q higher order error termsŽ . Ž .0

with

22 ˆ ˆ2a G g , g , f , f , u , a q 2 1 y a G g 9, g 9, f 9, f 9, u , aŽ .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆž / ž /1 2
B̂ t s .Ž .0 ˆ ˆ� 04aH f , f , g , g , u , a y 4 1 y a H f 9, f 9, g 9, g 9, u , aŽ .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆž / ž /

Ž . Ž .Let us make one more observation here. If we replace u, a by u, a inˆ ˆ
ˆ Ž . Ž Ž . Ž ..Ž .B t , the error terms are those like g j y g j u y u , with some jˆ ˆ0
between u and u, by a first order Taylor expansion. Therefore,ˆ

ˆ ˆB t s B t q higher order error terms,Ž . Ž .1
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ˆ ˆŽ . Ž . Ž . Ž . Ž .where B t is obtained from B t by replacing u, a with u, a . Now 18ˆ ˆ1 0
becomes

T y1 ˆ19 u y u , a y a s A t B t q higher order error terms.Ž . Ž . Ž .Ž .ˆ ˆ 1

We are ready to complete the proof of Theorem 4.1.

Ž . Ž .PROOF OF a . This part follows from 19 and the lemma of Kneip and
wŽ . xGasser 1992 , pages 1291 and 1292 , which shows that

ˆ 2 Ž̂1. 2E f y f s O b , E f y f 9 s O b ,Ž . Ž .Ž . Ž .0 0

ˆ 2 ˆ Ž1. 2E f 9 y f 9 s O b , E f 9 y f 0 s O b .Ž . Ž .Ž . Ž .1 1

Also,

2log nŽ .
2ˆ ˆ ˆ ˆ5 5 5 5 5 5 5 5E f y f F E f y Ef q Ef y f s o q O b ,Ž .0ž /nb' 0

2log nŽ .
2ˆ ˆ ˆ ˆ5 5 5 5 5 5 5 5E f 9 y f 9 F E f 9 y Ef 9 q Ef 9 y f 9 s o q O b .Ž .13ž /'nb1

Ž y1r5. Ž y1r7.The same is true for g. With b s O n and b s O n , we have0 1

y1y12 2 3O b s o b , nb s o nb .Ž .Ž . Ž . Ž .ž /0 1 0 1

Ž .Part a follows.

Ž1.ˆŽ . Ž . Ž .PROOF OF b . If a / 1 then B t depends on g 9 . It follows from b ofˆ1
ˆ Ž̂g 0 .Ž .the Lemma of Kneip and Gasser 1992 that the variances of f 9, g 9, f andˆ

g Žg 0 . are dominated by the variance of g 9Ž1. if g s 0, 1. We need also that theˆ ˆ 0
ˆ ˆ Ž1.5 5 5 5 5 5 5 5variances of f 9 , g 9 , f and g are dominated by that of g 9 . This can beˆ ˆ ˆ

ˆ5 5seen, for example, for f 9 , as follows:

22ˆ ˆ ˆ ˆ ˆ ˆ5 5 5 5 5 5 5 5 5 5 5E f 9 y E f 9 s E f 9 y Ef 9 q Ef 9 y E f 9Ž . ž /
2 2ˆ ˆ ˆ ˆ5 5 5 5 5 5 5 5F 2 E f 9 y Ef 9 q 2 Ef 9 y E f 9Ž . Ž .

log4 nŽ .2ˆ ˆ5 5F 4E f 9 y Ef 9 s o 3ž /nb1

2y1 y5 Ž1. Ž1.s o n b s o E g 9 y Eg 9 .ˆ ˆŽ .Ž . ž /1

ˆ Ž .Now it is clear that the covariance of any two different terms in B t is an1
Ž . Ž Ž1.. < Ž . < Ž Ž . Ž ..y1r2o ? term of Var g 9 because Cov X, Y F Var X Var Y for any Xˆ

and Y.
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Ž . Ž . wPart b now follows from 19 and the fact that cf. the lemma of Kneip and
Ž .xGasser 1992

s 2 11 2Ž1. Ž1.Var g 9 s K x dx q oŽ .Ž .ˆ H 15 5ž /nb nby11 1

Ž1.Ž . Ž1.Ž .and that g 9 t y Eg 9 t converges to a normal variable if properly scaled;ˆ ˆ
Ž .compare Gasser and Muller 1984 .¨

Ž1.ˆ ˆŽ . Ž .PROOF OF c . If a s 1, then B t does not depend on f 9, g 9 and g 9 . Theˆ ˆ1
dominating term is then the term involving g Ž1., as far as asymptoticˆ
variance-covariance is concerned. Again the covariance of any two terms in
ˆ Ž1.Ž . Ž . Ž .B t is an o ? term of Var g . Note thatˆ1

s 2 11 2Ž1. Ž1.Var g s K x dx q o .Ž .Ž .ˆ H 03 3ž /nb nby10 0

Ž . Ž .The rest of the proof for c is the same as in the proof of b . I
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