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Let X,,..., X, be independent identically distributed observations
from an unknown probability density f(-). Consider the problem of esti-
mating the level set G = G;(\) = {x € R®: f(x) > A} from the sample
Xi,..., X, under the assumption that the boundary of G has a certain
smoothness. We propose piecewise-polynomial estimators of G based on
the maximization of local empirical excess masses. We show that the
estimators have optimal rates of convergence in the asymptotically mini-
max sense within the studied classes of densities. We find also the optimal
convergence rates for estimation of convex level sets. A generalization to
the N-dimensional case, where N > 2, is given.

1. Problem statement. Let X,,..., X, be independent identically dis-
tributed observations from an unknown probability density f(x), x € RY,
and let A > 0 be a fixed number. Consider the A-level set of the density f:

G =G(A) =[x €RY: f(x) = A}

The problem is to estimate G = Gf()}) given X,,..., X,,. By an estimator of
G we mean an arbitrary closed set G, in RY, measurable with respect to
XX,

Estimation of level sets is useful in various situations. For example, the
problem of cluster analysis may be reduced to that of estimation of density
level sets [Hartigan (1975)]. The approach based on level sets can be applied
to define tests of multimodality, as proposed by Miller and Sawitzki (1991)
[see also Miiller (1993) and Polonik (1995)]. Another interesting field, where
the level sets estimation may be implemented, is nonlinear extension of
principal component analysis. By comparing the shapes of a suitable number
of level sets, related to different levels, one can look for a hidden common
structure in them, which could be interpreted in terms of nonlinear (in
general) “principal” curves. Estimation of support of a density f (the “0-level”
set of f) has been suggested in certain statistical problems as well. Devroye
and Wise (1980), Grenander (1981), Cuevas (1990), Cuevas and Fraiman
(1993) used density support estimation for pattern recognition and for detec-
tion of the abnormal behavior of a system. Also in econometrics one finds
some interesting connections to support estimation [see Korostelev and Tsy-
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bakov (1993b), Chapter 7 for further references and discussion]. In all these
examples the estimators of general level sets are of interest as well. In fact,
one looks for sets with high concentration of sample points, and it is some-
times better to define them as level sets (and not as supports), to avoid the
effect of possible outliers. )

Assume that an estimator f,(x) of the density f(x) is available. Then a
straightforward estimator of level set Gf()\) is G, ={x € RY: f(x) > A}, the
plug-in estimator. If the density f has no “flat parts” at the level A (for
example, |Vf| is bounded away from O around the level A, where Vf is the
gradient of f), then G, is a consistent estimator of G, and it inherits in a
certain sense the convergence rate of f, [Molchanov (1990, 1993), Cuevas
and Fraiman (1993)]. Thus, the plug-in approach relates the properties of
level set estimators to the smoothness of density f, and does not care about a
specific shape of a level set. However, it is sometimes convenient to introduce
certain restrictions on level sets directly. For example, one could be interested
in estimating ellipsoidal level sets [Nolan (1991)], or convex level sets
[Hartigan (1987)], or the level sets satisfying certain smoothness conditions
on the boundary [Polonik (1995)]. In these examples the behavior of the
density f is not very important; it may be even discontinuous, and the plug-in
approach does not work. Hartigan (1987) and Miller and Sawitzki (1991)
proposed another approach to level set estimation based on excess mass. By
definition, the excess mass of a measurable set G in RY is the value
M(G) = [;f(x) dx — A mes(G), where mes(G) denotes the Lebesgue measure
of G. It is clear that M(G/(1)) = M(G) for any G. The empirical excess mass
is defined as M, (G) = 1/n)L’ X, € G} — Ames(G). A natural estimator
of G;()) is the maximizer of M, (G) over a given class of level sets G. Such
estimators, for different classes of level sets, were studied by Hartigan (1987),
Miiller and Sawitzki (1991), Nolan (1991), Miller (1993) and Polonik (1995),
who proved consistency and found certain rates of convergence of the estima-
tors. An interesting question is whether the excess mass approach gives
estimators with optimal convergence rates. In this paper we show that in
some cases the answer to this question is positive. However, to get results on
optimal rates in more generality, we need to introduce a new class of
estimators, based on maximization of local empirical excess masses, instead
of the usual global maximizers. These estimators have a piecewise-poly-
nomial structure, and they are studied by a technique related to that of
Korostelev and Tsybakov (1993b).

Let us introduce some notation. Let w(¢) be a loss function, that is, the
function defined for nonnegative ¢ and having the following properties: w(¢)
is nonnegative, nondecreasing, w(¢) # 0, w(0) = 0, and

w(t) <1+1t9, t>0,

for some ¢ > 0. .
Define the risk of any estimator G, as

ra(GH(0), Gy ) = By [w(971d(G,(1), G,
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where d is a distance between G and én, E () denotes the expectation with
respect to the probability measure P, of X,..., X, when the underlying
density is f and ¢, is a normalizing sequence of positive numbers.

We use the following two distances between closed sets G,, G,: Lebesgue
measure of symmetric difference d = d,, with

d(G,,G,) = mes(G,AG,),
and the Hausdorff metric d = d,,, with

d.(Gy,G,) = max{ max p(,G,); maxp(x,Gy) ),
xe 1 xe 2

where p(x,G) = min, . lx — y| is the Euclidean distance between a point x
and a closed set G.

We study the problem of estimating the level set Gf( A) in the nonparamet-
ric minimax setting, in the spirit of Ibragimov and Khasminskii (1981) and
Stone (1980). Namely, we introduce a class .# of densities f such that their
level sets belong to some class of sets £. We consider the maximal risk of G,
over a class F:

A

<%n(qua Gna din) = Suprn(Gf(/\)7GAn’ d’n)
fes

Our aim is to find an estimator G that converges to G as n — o with the
best possible rate, that is, the estimator G satisfying
(1) limsup Z,(7, G, ,) <,

n— o

where the sequence ¢, = ,(Z, d) is such that

(2) liminf inf %, (7, G, , ¥,) > 0

n— o
Gn

(infs denotes the infimum over all estimators).

If (1) and (2) hold, we call ¢, the optimal rate of convergence, and we say
that G* has optimal rate of convergence on the class of densities & (in
d-metric).

In this paper we find the optimal rates of convergence in d; and d_-metrics
and the optimal level set estimators G for certain classes of densities 7. We
mainly consider the case N = 2, since the proofs for N > 2 are quite similar,
but they require more notation. The results for general N are stated in
Section 5; elsewhere we assume that N = 2.

2. Classes of sets and classes of densities. Let N = 2, and let y and
L be positive constants. Denote by 3(y, L) the class of functions g(¢), t € R,
such that the derivatives of g up to the order % exist, are 27-periodic, and
the kth derivative satisfies the Holder condition

lg®(t) —g® ()| <Lt —¢1"" Vit eR,
where & = |y] (i.e., k is the largest integer which is strictly less than ).
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We call the set G C R? star-shaped about the origin if in polar coordinates
(r,o),with 0 <r <o, 0 < ¢ < 27, it has the form

(3) G={x=(r,¢):0<r<g(¢),0<e¢<2m},
where g(-) is a 2m-periodic continuous function on R! called the shape
function.

Denote by £(v, L, h) the class of all star-shaped sets of the form (3) such
that g € 3(y, L) and g(¢) > h, V ¢ € [0,27), where 2 > 0 is a given num-
ber. We assume that the level set G;(A) belongs to the class Z(y, L, h), and
denote by g,(¢) the shape function that corresponds to G(A).

Let f be a probability density, with a star-shaped level set Gf( A), and let
0 < a < =, For a > 0, we say that the density f is a-regular around the level
A, if there exist constants b, > b; > 0, §, > 0 such that

[£(x) =l
T r—ale)

for all x = (r, ¢) such that [f(x) — Al < §,. If the set {x: |f(x) — Al < §,} is
empty, we put a« = 0, and we say that f is 0-regular around the level A. This
corresponds to the case where the density f has a jump around the level A. In
general, condition (4) excludes the possibility for a density f to have flat parts
at level A. The behavior of the usual densities, such as the Gaussian one,
corresponds to a = 1. If condition (4) holds only with « > 1, it may indicate
that there is a local extremum or inflexion point at the level A.

Fix positive numbers vy, L, h, A, b1, 8, and by > by, fiax > A, @ = 0. De-
note by .7, , the class of all probability densities f on R? satisfying simulta-
neously the following conditions:

C1. f is uniformly bounded by £, ., on R?;
C2. f is a-regular around the level A;

C3. the level set G,(\) € £(v, L, h).
For brevity, the dependence of 7, , on A, L, A, f,

(4) b

29

nax> 015 g, 8y 1is not shown
explicitly in the notation (these parameters do not influence the optimal rate
of convergence i,). It will be always assumed that §, is sufficiently small (at
least, 8, < A, 8, < fnax — A), Without specifying explicitly how small it is. One
can easﬂy derlve the necessary restrictions on §, in terms of A, &, «, by, by
and f,.., but they are cumbersome and of no interest for the results.
REMARK 1. There exists R > 0 that depends only on vy, L and A, such that
G/(M) cB(O,R),V f€Z, ,, where B(0, R) is the circle of radius R centered

at 0. In fact, since f is a density, we have

1> Ames(G(A)) = Afzwfg*(q))rdrdgo = (A/2)f2ﬂgf(¢) de.

Thus, g, is bounded in L,[0, 27 ], uniformly over.Z, ,.Since also g, € X(y, L),
it follows that there exists a constant R = R(vy, L /\) such that sup, g,(¢) <
R.
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ExaMPLE 1 (A family of densities that belong to % ;). This example
describes densities that have homothetic star-shaped level sets for all levels.
As a particular case, one gets elliptically contoured densities, such as the
multivariate normal.

Take a monotone decreasing differentiable function f: [0,%) — [0, ) and
a shape function g, € £(y, L, h). Define the bivariate density (in polar
coordinates):

f(r, 4’) = Kf*(r/g*(QD))a

where the constant k > 0 is chosen so that f(r, ¢) integrates to 1 over R2. Let
A < kf4(0) be given. Denote by ¢, the positive number such that «f,(¢,) = A.
Clearly, the shape function of the A-level set of f(r, ¢)is g,(¢) = t,8. (). As
ki (¢,) # 0, there exist positive constants b}, b}, such that

|Kf>k(t) - )\l
|t_t)\|

!
1=

!

2

for all ¢ such that |«f,(¢) — Al is small enough. Substituting here ¢ =
r/g«(¢), g\(¢) = t,g.(¢), one obtains (4) with « = 1. Hence, f € 7, ;
Along with 7 , consider a class of densities with convex level sets. Denote
Z,

conv

= <G C B(0, R): G is a closed convex set, G DB(O (,uo/q-r)l/z)}

where 0 < u, < A~' and R > (p,/7)"? are fixed constants. Clearly, any set
G € Z,,,, is star-shaped about the origin.

Define .7, as the class of all probability densities f on R? that satisfy
C1, C2 and the following condition.

C4. The level set Gf()\) ez

Again, we keep in the notation only the dependence of & on «, since the
values of A, wg, fmax> 01, 02, 8, do not influence the optimal rate of conver-
gence.

conv*

ax?’

3. Level set estimators for 7, ,. In this section we define the estima-
tors of level sets G;(A) that have optimal convergence rates on the classes of
densities %, , in d-metrics, with d = d, or d = d.. The definition of the
estimator depends on y, a and on d.

Let

(1/n)1/((2a+1)'y+1)’ if d = dl’
(log n/n)l/((2a+l)y+l)’ ifd = dw.

Denote M = M, = 1/6, and assume without loss of generality that M is an
integer. Put ¢, = 27l6,, 1 = 0,1,..., M, and define the sectors

S, ={(r,¢):0<r<R,¢,_;<¢<q}, l=1,...,M.
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In each sector S;, define the parametric family of subsets

B,(0) = {(’"’ @) €8,:0<r <0+ 0,(¢—¢ 1)+ +0,(¢— ¢1—1)k}’
where k& = |y], and 0 = (6,,..., 0,) is a vector of real parameters. Denote
O ={0:h <0+ 0,(¢— ¢ 1)+ +0(e— ¢ 1) <R,

Voo 1 <¢< @z},

where R is the radius of the circle containing the level sets (see Remark 1).
The condition 6 € ®* guarantees that B;(6)  S,. Note that ©®* does not
depend on /. Consider the following discrete subset of ®*:

0, ={0=(my8),my87",...,m, 87 %)} n ©F,
where m = (m,, my,..., m,) is a (k + Dtuple of integers.
Define the piecewise-polynomial estimator of the shape function g,(¢):

A A A A B
E(p) =00, + 0(¢—@_q) + - +0,(0—¢_1)",
o1 <e<e¢,l=1,....,M,

where the vector (6, ..., 6,,) = 6, € @, is a solution of the following maxi-
mization problem:

A

0, = argmaxdJ,(0),
1 ggé@ﬂ 1(9)

where J;(6) is the empirical excess mass corresponding to the parametric set
B,(0); that is,

S| =

Jy(0) = — X I{X, € B)(0)} — Ames(B,(0)).
i=1

The set {(r, ¢): 0 <r < 8(¢), 0 < ¢ < 27} is not necessarily closed. Let us
take as an estimator of G = G,()) the closure of this set:

(5) G =Cl(r,¢):0<r<g(¢),0<e¢<2m}.

THEOREM 1. For any loss function w the A-level set estimator G has
optimal rate of convergence on the class of densities 7, , in d,- and d.-metrics
respectively, depending on the choice of 8,. The optimal rate has the following
form:

VA
(rlln( v, a? doc) = (n/log n)*v/((2a+1)y+1)‘

- 2a+1)y+1
(/o_y’a,dl) = pn v/ @at+Dy+ ),
F

(6)
The proof of Theorem 1 is given in Section 6.

REMARK 2. For the typical case where a = 1, one gets the optimal rate of
convergence n~?/®*1D in d,, and by a log-factor worse rate in d,. For the
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extremal case a = 0, Theorem 1 gives the optimal rate n="/* 1, the same as
for estimation of support of a uniform density [Korostelev and Tsybakov
(1993a, b)]. This coincidence is natural, since in both situations one deals
with the jump behavior of a density at the contour representing the boundary
of either a level set or of a support.

REMARK 3. To prove that (6) gives optimal rates of convergence, one needs
to show the relation (1) (called upper bound) and (2) (called lower bound).
Here we prove that the upper bound is attained by the estimator (5). In the
special case d = d,, ¥ > 1 the correct upper bound of order n~*/(@e*Dy+1D jg
attained also on global excess mass estimates [Polonik (1995)].

4. Estimators of convex level sets. In this section we show that
certain estimators of convex level sets have optimal rates of convergence. We
consider the classes of densities 7, ,. The case of convex level sets appears
to be quite different from that studied in Section 3. For the estimation of
convex sets, the dependence of optimal rates ¢, on the metric d is more
important: one loses a polynomial factor rather than a logarithmic one when
passing from d;- to d.-metric.

Hartigan (1987) introduced the following estimator of convex level sets
based on the maximization of the empirical excess mass:

n
G = argmax ! Y I{X;, € G} — Ames(G)|.
G convex | It i=1
He proposed a computational algorithm for GF and conjectured that GZ
converges to Gy(A) with the rate (n/logn) ?/7 in the Hausdorff metric
d.. We will show that this conjecture is not true for general convex level
sets G.(A). But first we consider the behavior of G}’ with respect to the dis-
tance d;.

THEOREM 2. For any loss function w the \-level set estimator GE has
optimal rate of convergence on the class of densities 7, , in d,-metric. The
optimal rate is

(7) lpn('%onv,a, dl) = n_2/(4u(+3).

The proof of Theorem 2 is given in Section 6. In fact, we will prove only the
lower bound for the maximal risks. Proof of the upper bound, that is, of the
fact that G attains the rate (7), is an easy consequence of a result of Polonik
(1995), and it is therefore omitted.

Note that for the typical case a = 1, Hartigan’s estimator G¥ converges
with the rate n~2/7 in d,-metric, and this is the optimal rate. On the other
hand, in the extreme case a = 0 (the density f has a jump at the level ),
Theorem 2 gives ¢, = n~2/3, which is shown by Mammen and Tsybakov
(1995) to be the optimal rate in estimation of a convex support of a uniform
density in R? (cf. Remark 2 in Section 3).
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The behavior of convex level sets estimators in the Hausdorff metric is
substantially worse, which is shown by the following lower bound.

THEOREM 3. Let s, = n~/@**? qnd let d = d... Then for any loss func-
tion w the following lower bound holds:

(8) Hm inf inf 2, (Foone, o> G ¥1,) > 0.
n—o G

The proof of Theorem 3 is given in Section 6.

The rate , = n~'/®**? is optimal for %, , in d.-metric, up to a
log-factor. This follows from Theorems 1 and 3. In fact, if f€.7,,, ,, then
f € 71 ., since the boundary of a convex set is Lipschitz (it is not hard to find
the expression for the Lipschitz constant L in terms of w,). Hence, one can
use the estimator G} with §, = (n/log n)~'/@**® (corresponding to 7, ,
and d = d,), and apply the upper bound of Theorem 1. We find that G* has
the convergence rate (n/log n)~'/#**2, (Note, however, that G, which is
thus used to estimate a convex level set, is not a convex set itself.) This
argument and Theorem 3 lead to the following corollary.

COROLLARY. For any loss function w the optimal convergence rate on the
class of densities 7, , in d.-metric satisfies

n—l/(2a+2) < lpn(% dw) < (n/log n)—l/(2a+2)‘

Comparing this with Theorems 1 and 2, we find that, qualitatively, the
behavior of the best convex level set estimators in d;-metric is similar to
those of smooth level sets, with smoothness y = 2, while the behavior in
d_.-metric corresponds roughly to smoothness y = 1. This effect is analogous
to that discovered by Korostelev and Tsybakov (1995) in the problem of
estimating the convex support of a uniform density. Seemingly, these results
are particular cases of a general breakdown effect in optimal convergence
rates [cf. Nemirovskii (1985), Donoho, Johnstone, Kerkyacharian and Picard
(1995), who discuss similar phenomena in the classical nonparametric regres-
sion and density estimation problems].

5. Extensions. Let us mention some extensions of the results of Sections
3 and 4.

E1l. Condition (4) can be given in a slightly different form (which is easier
to interpret, but harder to handle analytically):

|f(x) = Al B
T op(x,0G(N)" T

where dG(A) denotes the boundary of G;(A). All the results remain valid if
(4') is replaced by (4). This condition can be weakened even further if one is

(4)

2
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interested in the rates of convergence in d;-metric only. In fact, for getting
the correct upper bounds on the risks in d;-metric (up to a log-factor) one can
apply the method of Polonik (1995) that works under the following condition:

mes{x: |f(x) — A| <8} <b8Y*,  0<8<38,,

where b > 0, 6, > 0 and a > 0 are constants. This condition is a weaker
analog of the left inequalities in (4) and (4').

E2. The results can be made uniform in A (i.e., one can add sup, . , in the
definition of the maximal risk %), if it is assumed that (4) or (4') holds
uniformly in A € A, where A is a compact interval.

E3. Theorem 1 can be extended to the dimension N > 2 in the following
way. Let 35(y, L) be the Holder class of functions on the unit sphere in RY,
and let (7, ®) be the polar coordinates in RY, where ® is an (N — 1)-vector of
polar angles. Denote by &y (v, L, h) the class of all star-shaped sets of the
form G ={x = (r,®): 0 < r < g(®), ® €[0,27)V" 1}, such that g € 3 (y, L)
and g(®) > h, h > 0.

Define the class &, , y of all probability densities f on RY bounded by
fmax» satisfying (4) and such that G/(A) € £y(y, L, h). As in the two-dimen-
sional case, there exists R > 0 such that G;(A) < B(0, R), where B(0, R) is a
Euclidean ball of radius R centered at 0 (cf. Remark 1).

Consider the partition of [0,27)Y " ! into M = s¥ ! cubes Q,, ..., @,, with
equal edges of length 27/s,, where

[nl/((2a+1)y+N71)] , lf d — dl’
Sp = [(n/log n)l/((2a+1)y+N71)], ifd=d..
Let p(®) be a polynomial (in dimension N — 1) of order 2 = |y], and let 6 be

the vector of its coefficients. We write then p(®) = p(®; 0). Denote by %, a
minimal s, ?-net in Euclidean metric on the set of coefficients

{6:h <p(P;0) <R,V DeQ]
Let JJ,(6) be the empirical excess mass of the set
B/(0) ={x=(r,®):0<r <p(P;0),P € Q},

and let §, = argmax, w,, J1(0). The estimator G; y (N-dimensional analog
to G¥) is defined as

M
Fy=CL(r,@):0<r< ¥ p(P;0,){P e}
=1
The following result is the N-dimensional analog to Theorem 1.
THEOREM 4. For any loss function w the A-level set estimator G y has

optimal rate of convergence on the class of densities 7, , y in d,- and
d.-metrics, respectively, depending on the choice of s,. The optimal rate has
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the following form:

lpn(gy,a,N? dl) = n_Y/((2a+1)‘Y+N—1),
l/jn(‘%;,oz,N, dx) = (n/log n)*v/((2a+1)y+N71).

Theorems 2 and 3 are generalized to the N-dimensional case similarly.
In particular, ¢,(Z, d) =n 2/@tNTD - and (up to a log-factor)

onv, a, N
U (Foony, a.n>d) =07 @atN) “where is the N-dimensional analog

conv, a, N
to Zonv, a*

E4. In this paper we assume that A > 0. As A — 0, we get the problem of
density support estimation which is quite different. In fact, let, by definition,
G,(0) = Cl{x € RY: f(x) > 0}, and assume that G,(0) € Zy(y, L, h) and C1
and C2 of Section 3 hold, with the necessary modifications [ a-regularity
around the level 0 means that (4') is satisfied, with A = 0 for x € G(0) such
that |f(x)| < 8,]. Then there exist estimators of G;(0) that have the d, rate of
convergence n~ ¥/t DY*N=D if N > 9: this rate is optimal [Hardle, Park and
Tsybakov (1995)]. We see that, except for the case o = 0 (which corresponds
to the jump behavior of a density near the boundary of its support or level
set), the estimators of support converge faster than the estimators of level
sets. This fact is easy to understand by comparing the likelihood ratios (or
Hellinger distances) for the “worst hypotheses” appearing in the lower bounds.
If A > 0, the squared Hellinger distance between a density and its pertur-
bation by a “small” function f>= 0 around the level A is roughly [[(A +
f(x)/? — A/2]2dx ~ [ f*(x) dx, while for A = 0 this distance is proportional
to [f(x) dx. Thus, if A = 0, the perturbations of smaller order than for A > 0
can be distinguished with the same accuracy.

6. Proofs.

Proor or THEOREM 1. We introduce some notation. By definition, there is
a one-to-one correspondence between the vectors 6 = (6,,...,6,) € 0, and
the vectors of integers m = (m,,..., m;). It is therefore convenient to write
6 = 6(m).

DEFINITION 1. Denote by 77, the vector of integers such that 6, = 6(77,).

DEFINITION 2 (Intersection of the slice S; with the level set G())).
D,=GnS§S, l=1,...,M.
For brevity we write
g(¢) =&.(e).
DEFINITION 3 (The Taylor approximation of the set D,).
B{® ={(r,¢) €8,:0<r<g”(¢)},

where g0(¢) = 00 + 00 — g+ +00(p — ¢, 00 =m0y
m®) =[gW(g,_)/(j18Y )], j=0,..., k. Here[-] is the integer part of a real
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number. Denote
0 0,0) (0,1 0,k
m® = (m®0, mOb, . Ok,
For any vector of integers m = (m,..., m;) set

Imll = max |m|.
0<j<k

Since g € 3(v, L), we have

(9) lg(e) —&(¢)| < SIL/k!+(k + 1)8) =c,8!, ¢ 1<e<q,

where the summand (% + 1)5) is due to the discretization, and c, =
L/k'+(k + 1).

LEMMA 1. For any Lebesgue measurable set B C S; we have
J (f(x) = ) I{x € B} dx
= f(f(x) ~ N)I{x €D, dx - [ | f(x) — A|I{x € BAD,} dx.
Proor.

J(f(x) =N Hx eB}dx — [ (f(x) = N {x €D} dx

J (f(x) =N H{xeB\D}dx — [ (f(x) = )I{x € D,\ B} dx

~ [1£(x) = All{x € BAD,} dx. -

LEMMA 2. There exist positive constants ¢, and c,, such that for any vector
of integers m with 6(m) € O, we have

(10) mes(D,AB”) < ¢,87"",
(11) ¢y 87 Im — mP|l < mes(B,;(6(m))AB[”) < ¢;87"lm — m{Pl,
(12)  mes(B,(6(m))AD;) = 87 H(cyllm — mPll —¢c;), 1=1,...,M.

The constants ¢, and cy do not depend on I, m or on the density f € 7,

Y, ar

Proor. Using (9) and the inequality g(¢) < R, we get

0)
mes(D;AB") ff o1 max(g, gf”) rdrdo
¢;-1 min(g, g{*)

<(R+ 0*5,:/)/ lg(¢) —g(¢)|de < ¢, 87+,

Pr-1
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which gives (10). Similarly, if 6(m) € 0,
mes(B,(6(m))AB{”)

¢ ~ j
<(R+ c*Sg)f l 8N Y (mj - m(o’J))((QD —¢,-1)/8,) |de
Pr-1 Jj=0
=(R+c,8)8" 7,
where
1| & N
/=f Y (m; —m®)yI|dy
0 |j=0
and

mes(B;(0(m))AB”) = (h — ¢, 8))8)" 7.
Since all the norms in the space of polynomials of order £ are equivalent, the
integral _# is bounded from above and from below by the expressions of the
form C|m — m{”|, where C > 0 is a constant depending on % only. This
proves (11). Now, (12) follows from (10) and (11) by use of the triangle
inequality. O

Denote
&y = I{X; € B)(0(m))} - I{X; € B{”} — A[mes(B,(6(m))) — mes(B[”)].
LEMMA 3. There exist positive constants cg and c,, such that for any vector

of integers m with 6(m) € 0, we have
Ep(&y) < =887V (egllm — mPll = ¢),

Var,({y,) = Ef([Ef( {u) — 511]2) < ¢, 87 Im — m{P, l=1,...,M,

where 8, > 0 is the constant used in the definition (4) of a-regularity, and the
constants ¢y and c, do not depend on l, m or on the density f € 7,

a*

PrROOF. Denote for brevity B = B,(6(m))), B® = B{®. Using Lemma 1 we
get

E:({n) =f(f(x) - A)I{x € B} dx—f(f(x) — A)I{x € B} dx
(13)
=flf(x) — A{I{x € B°AD,} - I{x € BAD,}} dx.

By virtue of (4), (9) and (10) we have

J1£(x) = AlI{x € B°AD,} dx < mes(B°AD;)  sup  |f(x) = Al
x=(r, o)
(14) lr—g(e)l<c, 67

< CleCi 8’2/(04-*— H+1
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if n is large enough. Let 8, > 0 be the constant used in the definition (4) of
a-regularity. For any Lebesgue measurable set A C S,

[ 1£(x) = AlI{x € A} dx

(15) > [1f(x) = MH{x €A, | f(x) = Al = 3,87} dx

> 8,82 mes{A N {x €S;:|f(x) — Al > 8,82}}

> 508n“7(mes( A) —mes{x € S;: | f(x) — Al < 805n”‘“/}).
Let a > 0. Then, in view of (4),
mes{x € S;: [ f(x) — Al < 8,827} < mes{(r, @) € S,: b,|r —g(¢)|" < 8,877}

< 47R(8,/b,)" 87" 1.
Thus, the last expression in (15) is bounded from below by
8,87 (mes( A) — 4mR(8,/by)"/ 87" 1).

If a« =0, then by the definition of a-regularity (see Section 2) the set {x:
|f(x) — Al < §,} is empty. Using this, we get

mes{x € S;: |[f(x) — Al < 8,62} =0,
and thus, if a = 0, the last expression in (15) is bounded from below by
8,6, mes(A). Hence,

f|f(x) — MH{x € A} dx > 5,58 (mes(A) — b8)"1),

where b = 47R(8,/b,)"/ *{a > 0}. Now, set A = BAD,, and use the last
inequality and (12). We get

f|f(x) — MH{x € BAD)} dx > 8,87V (¢cyllm — mP|l = ¢; = b),

which, together with (13) and (14), yields the first inequality of Lemma 3.
To prove the second inequality, note that

Var,({,;) = Var,(I{ X, € B} - I{X, € B°})
< B[(1(X, < B) ~ 1{x, = B)Y]

= E.[I{X, € BAB®}] mes(BAB")

S max

= max clér?,Jrl”m - m(lo)”a

where we used (11). O
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_ PROOF OF THE UPPER BOUND OF THEOREM 1. For any ¢ > 0, by definition of
6, in Section 3 and Definition 1 of 7%2; in terms of 6,, we have

Pl = mPll > ¢) < Py max  (F,(0(m)) = T,(6(mi?)) > 0]

llm —m®||>¢

IA

16 L py( max ((0(m) ~(0(mi")) > 0

m
© 1 n
Y. card #(r) max Pf(— Y 4> 0
r=1 meZ(r) ni-1
where Z(r) is the following set of vectors m with integer coordinates:
Z(r) ={m:tr <llm —m®| < t(r + 1)} n{m:6(m) €0,}, r=1,2,...,

and m{” is introduced in Definition 3.

Assume that ¢ > 2c;/c,. Consequently, c,llm — m{®l — c; > c,llm —
m®P)/2, for m € Z(r), r = 1. Note that, for [ fixed, ¢, are ii.d. bounded
random variables |;;| < 2(1 + mR?) = c;. Using the Bernstein inequality and
Lemma 3, we find

1 n
Pf(; 28>0
i=1

IA

b

1 n
= Pf(; )y (gi —E( 511)) > 8,87 DT e, llm — m(lo)||/2)

i=1
2
(A1) gexp| - Bodl T esllm — miPl/2]
- 2Var,({y;) + 1587 D e, Ilm — m{O||
a 2
[ mB T m — mPley/2)
= p 26,871 + Lo o1er DH g

< 2exp(—cgndy® O 1rt),

for all m € Z(r), where ¢4 > 0 is a constant.
The definition of #(r) implies card #(r) < c,t"**'r*, where ¢, > 0 de-
pends only on k. Using this and (16), (17), we obtain

Po(llm, — mPl > t) < 2¢; 2 " 'r* exp(—cend)®" D" 1rt)
(18) r=1
< cgexp(—condY® V1) for t > 2¢y/c,,

where the constants cg, cg > 0 do not depend on f, / and n.
If d =d,, then §, = n~1/0@e*D+D and (18) reads as

(19) Pr(§>t) <cgexp(—cot), &> 2c3/cy,

where ¢, = [, — m?|l. Next, if d =d,, then §, = (n/log n)~1/(@etD+D,
and (18) reads as

(20) Pi(&>1t) <cgn ',  t>2cy3/cy.
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Using (19) and (20) and arguing in a standard way [see, e.g., pages 115-117
of Korostelev and Tsybakov (1993b)], one gets, both for d = d; and d = d.,

(21) sup E/(|8,7d(G,G)[") <» Vg>0,
feZ, .

which proves the upper bound (1) in Theorem 1.

PROOF OF THE LOWER BOUND OF THEOREM 1. Consider only the case where
a > 0, since for a = 0 the lower bound is proved in the same way as in the
problem of estimating the support of a uniform density [Korostelev and
Tsybakov (1993b), Chapter 7].

We will estimate from below the maximal risk over the class of densities
Z, o by the maximal risk over a finite family./’C.%, ,, and then apply the
Fano lemma. This approach is due to Ibragimov and Khasminskii (1981) [see
also Birgé (1983)]. To derive the results in the shortest way we use Lemma
A.1 of Tsybakov (1982) which we state below for convenience, in the form
adapted to our purposes.

LEMMA 4. Let d be a pseudometric. Assume that there exists a subset
N CF and numbers £ > 0,0 < 6 < 1, such that

(22) 2 <card(/#) =s < x, d(Gf()\),Gh(/\))ZS Vi het,f+h,

and
23 I(P,,P,)/(1 <1/2,
(23) fr’rllfgy( ', Py)/(logs) <1/

where I(P;, P,) is the Kullback information of P; with respect to P;,. Then, for
any loss function w, we have

ud(G,(7), G,
inf supE, w(M)
g &

G, feF

u

> vw(—) Yu>0,
2

where v > 0 is an absolute constant.

Since w is a loss function, there exists u > 0 such that w(u/2) > 0. Thus,
to prove the lower bound we need to construct a family.#'C &, ,, such that
(22) and (23) are satisfied, with ¢ ~ ¢,(Z, ,, d), for n large enough.

CONSTRUCTION OF THE FAMILY .#. Let n(#) be an infinitely many times
differentiable function on R!, such that suppn = (-, 7), n(t) > 0, and
max,n(t) = 1. Let M be an integer, and let 0 < 7 < 1,

vz 28,
by + b,

1/«

b

2
Note that A < (772)7! < fiax
Consider the function

b, + b,
fO(x)=)\maxI{rsr0_A} +(A_

lr — rol® sign(r — ro))

XI{—A<r—r,<A}, x=(r,e),
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where A, is a positive constant chosen so that f; is a probability density
and f, €%, .. This is possible if §, is small enough. In fact, the equality
[fo(x)dx = 1 reads as A,,, = (7r2)~! + O(A), and thus A < A_,, < finax fOT
8, small enough. Therefore, Gfo()t) = B(0,ry), g,(¢) =ry, and, if |[f(x) — Al
< 8,, we have

b, + b,
2

b, + b,
2

|fo(x) - ’\l =

Ir —rol* =

|’"_gA(‘P)|a'
For j=0,1,..., M, denote ¢ =2mj/M,
ni(¢) =M "m(M(¢ — (2j — 1)m/M)),
(26,)""
(2b,)"" = (by + by)/
(2b,)""
(by +by)" " = (2b))""

’"*j(‘P) =Ty — TIj(q’)

ri(e) =ro+ (o)

We assume that 7 is small enough to guarantee that r, — A <r, (o),

ri(e) <ry+ A. Let o =(wy,...,wy) be a vector with binary entries o, €
{0, 1}. Define the function

M o« b+ by .
fi(x, w) = ij{(62|r—r0+nj(go)| —Tlr—rol )
j=1

XI{r*j(go) <r<ro—mi(e¢), 91 <¢< goj}

b, + b, . . N
+( 5| = rol*sign(r = ro) = by|r —ro + ()|

><I{r0 — (@) <r<ri(¢), 91 <¢< goj}},
where x = (r, ¢). Clearly, fi(x, ) <0,V x, . Let
A={x=(r,e)iry(e) <r<ri(e), ¢ 1< ¢<¢}

LEmMMA 5. The function f|(x, w) and the set A; satisfy

(24) max| f1(x, o)| = max man| fi(x, ©)|=O0(reM~ "),
X, w w XEA;
(25) mes(Aj) =mes(A;) = O(tM "1,
M
(26) [Fix, @) dx = —Cr ' X oM,
j=1

where the constant C, > 0 depends only on n(-).
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ProoF. The definition of 7, (¢) and r;(¢) implies

max max | f;(x, ®)|
) A

by + b, . )
< 2 <p,-,12%px<<pj(|r*j(¢)_r0| +|rj(go)—r0+nj(¢)| )

- o(m§x|nj(¢)|“) = O(r°M~ ).

Next, mes(A;) < 27M ™' max, n,(¢) = O(rM~"~"). Combining (24) and (25),
we get [fi(x, @) dx = O(r** L)) 0, M~ ("7~ 1) and it is easy to show that
the constant in the O(-) depends on 7(-) only. O

For any vector o consider the function f(x,w) = fy(x) + fi(x, @) +
fo(x, w), where

1 M
fox,0) = ———=C, 7" Y} oM~ "D I{r <ry — A}
m(ro — A) j=1

Since [(f; +f;) =0, V o, the function f(x, w) is a probability density.
Moreover, for M large enough, max, f(x) < f,,.., and the A-level set of f is
that of f, + f,, that is, the set

ax?’

M
Gi.o( M) =({x=(r,0):0<r=<r,— Y om(e);.
Jj=1

For 7 small enough the shape function g(¢) =r, — Z;-”:l wm(e) € 2y, L),
and hence Gy. ,(A) € Z(y, L, h). The definition of f, and f,; implies that
fo + f1 is a-regular around the level A, and thus f is a-regular.

We conclude that f(-, w) €.7, , for any w. Define

A ={f(x,w): o€ Q},

where () is an appropriately chosen set of binary vectors. The definition of
this set is different for d = d, and d = d...

PROOF OF THE LOWER BOUND FOR THE CASE d = d;. Set M =
[nl/(@a+DFD] 4 1 A well-known combinatorial result [see, e.g., Korostelev
and Tsybakov (1993b), Lemma 2.7.4] guarantees the existence of at least
s = [2M/8] binary vectors w!,..., w* of length M such that

M
(27) Yol — ot >M/16, 1<l k<s k+#l,
=1

j=

where o' = (o},..., w},), that is, o! is the jth component of '.

Choose ./ as the set of densities f(x, w), with Q = {w?,..., »*} such that
(27) holds. The condition (22) for the set ./ is satisfied with & =
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(ro7m/m/32)M ™7, since, in view of (27),

dy(Gye., (V) G wiy(N)) = le ~fI[" e[ rdr

®i_1 ro—1(¢)

Y

(M/lG)(rOTM_V_I/n(u) du + O(M~271)

> (7‘07’/ n/32)M7,
for M large enough.

Now, for every pair of probability measures P! = Pf( oy PP =Py i,
I(Pl,Pk):/log de flog f(x w') dx

fo(x) + fi(x) .
flog (o) + ]Ek(x) (fo(x) + fl(x)) dx

where f,(x) = fi(x, ') + f,(x, ®'), for brevity. Since f, + f;, f, + f, are uni-
formly bounded from below by A — §, > 0 on their support, it is clear that

fo + £, 1 - L o2
St fo+fk(fl fi)| < eulfi =A)

where ¢;5 > 0. Since also [f,(x)dx = [f,(x) dx = 0, we get, with some ¢, >
0,

I(P', P*) < cl4nf(f~l(x) —}Fk(x))2 dx

(28)

M
< cMn( Y lo! — wFimes(A;)max| fi( x, w)[*
x, ®

Jj=1

(29)

2
1
+C§7_2(oz+1) ( Z |(,L) _ (,L) ) M—2(a+1)‘y—2))
7(ry — A)°
— O(n(TM—y)(2a+l)),
where we used Lemma 5. Since s = [2¥/8], we find
I(Pl, Pk)/(log .S') — O(n72a+1M77(2a+1)71) < 01572a+1'

Here c¢;; > 0 does not depend on % and /, and as 7 can be chosen arbitrarily
small, (23) is satisfied. This proves the lower bound if d = d;. O

PROOF OF THE LOWER BOUND FOR THE CASE d =d, Set M =
[(n/log n)Y/(@atD+D] 4 1 We use again Lemma 4, but we choose a different
set ) in the definition of the family.#: Q = {0, ..., ®™}, where »' is the
binary vector of length M whose jth component is 1 and other components
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are 0. The condition (22) for this family .7 is satisfied with ¢ = TM ™7, since
d Gy, (A, Gy () = MY max, n(t) = M. To check (23) we act
similarly to the case of d =d,. Denote P =P, o), f[(x) = fi(x, o) +
fo(x, D). Note that f,(x, ©®) = f,(x, ). As in (29),

10, P = e (7C5) o))

= cyn [ (f2(x, o) + f2(x, 0M)) dx
< 2¢yynmes(A;)max| fi(x, ») I

— O(n72a+1M—y(2a+1)—1) — 0(7_2a+1 log n)

Since s = M, (23) is satisfied for 7 small enough. O

PrOOF OF THEOREM 2. As noted in Section 4, we need to show only the
lower bound. Also, it suffices to consider the case « > 0, since for a« = 0 the
proof of the lower bound follows the same lines as in Mammen and Tsybakov
(1995).

To prove the lower bound of Theorem 2, we use the argument of Theorem 1
(case d = d,). The only difference is in the choice of the functions 7, We
choose them so that the level sets are convex, namely

cos(m/M)
cos(¢ — (2j — D)w/M) |’

Then the shape function g(¢) = r, — ZjM=1 w,;n;(¢) bounds a convex set, and
the function f(x, ) belongs to 7, ., , for every o € Q. It is easy to show
that, as M — «, one has

ni(@) =M *n(M(¢— (2j — 1)m/M)) +o(M™?),

where n(w) = ro(m? — u®>)Klu| < 7}, and o(-) is uniform in ¢. Thus, all the
calculations are carried out similarly to the proof of the lower bound in
Theorem 1, with y = 2. However, since now 7 = 1, we have to choose M in a
slightly different form: M = [7,n'/“**3] + 1, where the factor 7, > 0 is large
enough to guarantee that the left-hand side of (29) is less than 1/2. O

(@) =ro[1 - i1 < ¢ < g

Proor oF THEOREM 3. We use Lemma 4, with s = 2. Thus, it suffices to
define two densities, f, and f}, belonging to 7, ,, such that

(30) d(G7(N),Gr(N) = &,
(31) I(P;,, P;,) < (log2)/2,

where & ~ n~1/Ca*2)

Choose r, = (2/7m(A + 1/uy)"? Then 7rZ > u,. Let A> 0 be small
enough that 7(r, — A)*> > u,. Define & = 2arccos(r,/(r, + A)), and define
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the shape function

2(0) - roleos(9/2 — 19/2 — ¢))] ', 0<e< 9,
&le To» U< (PS27T

Let
fo(%) = Ay I{r <E(e) — A)

b, + b,
+[A -
-7

XH{-A<r—-g(¢) <A},

where x = (r, ¢) and )\max is a positive constant chosen so that f, is a
probability density, fo is a-regular around the level A and fo(x) < finax-
Arguing as in the case of f, (see the proof of lower bounds in Theorem 1), one
easily shows that this is possible if §, and A are small enough (but fixed).
Now, the level set Gy, (/\) is convex since it is defined by the shape function g.
Also, mes(G; (1) > wri > p,. Hence f, € 7,

Let us define f,. Denote M = [r,n'/ Gt Y 1, where 7, > 0. Introduce
the function

() = ro([cos(f}/Z —19/2 — )] ! = [cos(9/2 — W/M)]_l)
X I{|9/2 — ¢l < m/M}.
Clearly, g(¢) — m(¢) is the shape function of the convex set Gf()\) N B0, 7),
where 7 = ry[cos(9/2 — m/M)] "', whose Lebesgue measure is greater than
o for M large. As M — o, one has
T(¢) =M In(M(¢— 8/2)) +o(M™),
where n(u) = cig(m — luDHlul < 7}, ¢16 > 0 and o() is uniform in ¢. Now,

|r —8(¢)|" sign(r — g(¢))

one can define £, similarly to f,(x, ). Set
(2b,)""
(2b5)"“ = (by + by)""
(26,)""
(by +by)" " = (2b))"
assuming that M 1is large enough to guarantee that g(¢) — A <r.(¢),
r*(p) < g(e) + A, and let

f1,1(x) =

r«(@) =8(¢) —n(e)

b

r*(¢) =8(¢) + ()

bylr —&(¢) + 1(@)|" -

g

XIr.(¢) <r<g(e) —n(e)}

(b +b
+

xI{g(e) —m(e) <r<r*(e)}, x=(r,¢).

21r (o) — bilr — 8(9) +7;(qo)|“)
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As for fi(x, ), one proves that f1 1 is a-regular around the level A. Also
define the function fl 9 proportmnal to {r < g(¢) — A} and such that f1 1
f.. integrates to 0. In particular, max, f; ,(x) = O(M *~2). Finally, put
fi = fo + fi1 + fio- Note that f; is a- regular around the level A and G7(\) =
G; (M N B(0, 7) for M large enough. Thus, fl conv , for M large enough.

By the construction, d.(G;(M),G;(N) = “15(0) = ciemM 11 + 0(1)),
which gives the desired value of £ in (30). Next, as in (29),

I(P;,, Py)

014’1//;12(95) dx = cl4nf(f12’1(x) +f122(x)) dx

IA

IA

2ciin(mes((r, 9): 7. (¢) <r<r*(e)y max|fy () [ + O(M-2e2)
= O0(nM~2%"2),
and choosing 7, large enough, we get (31). O
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