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PROOF OF THE CONJECTURES OF H. UHLIG ON THE
SINGULAR MULTIVARIATE BETA AND THE JACOBIAN

OF A CERTAIN MATRIX TRANSFORMATION

BY JOSE A. DIAZ-GARCIA1 AND RAMON GUTIERREZ JAIMEZ´ ´ ´ ´ ´ ´
Universidad Autonoma Agraria Antonio Narro´

and University of Granada

Uhlig proposes two conjectures. The first concerns the Jacobian of the
transformation Y s B = BX where B is the matrix m = m and m and X,
Y belong to the class of positive semidefinite matrices of the order of
m = m of rank n - m, Sq . The second is concerned with the singularm , n
multivariate Beta distribution. This article seeks to prove the two conjec-
tures. The latter result is then extended to the case of the singular
multivariate F distribution, and the respective density functions are
located for the nonzero positive eigenvalues of the singular Beta and F
matrices.

1. Introduction. Let

Y X
1
XY2

Y s ...� 0XYn

Ž .be a matrix of the order n = m n G m , in which the rows are independent
Ž .and identically distributed NN 0, S where S is m = m positive definite.m

Then, X s Ýn Y Y X has a Wishart distribution with n degrees of freedom,is1 i i
Ž .denoted as WW n, S . If n - m, this distribution is called pseudo-Wishart orm

Žw x w x . Ž . Ž .singular Wishart 4 , 3 , page 72 . Now let B ; WW r, S , A ; WW n, S andm m
A q B s T XT, where T is an upper-triangular matrix with positive diagonal
elements. Then the matrix U s T Xy1ATy1 of the order m = m and rank
n - m has a singular multivariate Beta distribution.

w xUhlig 4 found the density function of U on the manifold of positive
semidefinite matrices of the order m = m with n nonzero eigenvalues, SS q ,m , n
when n s 1. Furthermore, he presented as an open problem the case in
which 1 - n - m, giving as a conjecture an expression for the density func-
tion in this case. Additionally, given the matrices X, Y g SS q and them , n

w xnonsingular B matrix of the order m = m, Uhlig 4 calculated the Jacobian
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of the transformation X s BYBX when n s 1, and conjectured about the
result when 1 - n - m.

This article proves both conjectures in the general case, that is, when
1 F n F m. The proof of the singular multivariate Beta density is given as a

Ž .consequence of the proof of the conjecture of the Jacobian see Theorem 2 .
The proof presented in the calculation of the Jacobian of the transformation

X Ž . Ž .X s BYB is given indirectly: two densities, f X and g Y , are proposedX Y
for SS q , such that these are related by the transformation X s BYBX, andm , n
thus, by using the variable change theorem, the Jacobian of the transforma-

Ž .tion is determined see Theorem 1 . Finally, these results are applied to the
definition of the multivariate F singular distribution, called by some authors

Ž .Type II Beta distribution see Theorem 3 , and to the determination of the
densities of the positive nonzero eigenvalues of the singular Beta and F

Ž .matrices see Theorem 4 .

2. Results. Let SS be a matrix of the order m = m such that SS ;
Ž .WW n, S , S ) 0 positive definite and n F m. Then if B is a nonsingularm

X Ž X.matrix of the order m = m, BSB ; WW n, BSB ; note that this is still validm
Žw x .whether B is rectangular or singular, 1 page 303 . In this light, let us

consider Uhlig’s first conjecture.

THEOREM 1. Let X, Y g SS q be related by X s BYBX, where B is m = m ofm , n
full rank. Form the representations X s G KGX , Y s H LH X , where G H g1 1 1 1 1 1
V the Stiefel manifold of m = n matrices H with orthogonal columns,n, m 1

X Ž .H H s I and K, L are n = n diagonals, L s diag l , . . . , l and K s1 1 n 1 n
Ž .diag k , . . . , k with l ) ??? ) l ) 0 and k ) ??? ) k ) 0. Then1 n 1 n 1 n

< X < mq 1yn < < n < X X < mq 1yn < < ndX s G BH B dY s H B G B dYŽ . Ž . Ž .1 1 1 1

< < Žmq1yn.r2 < < Žmq1yn.r2 < < ns K L B dY .Ž .

Ž . Ž . XPROOF. Suppose that Y ; WW n, S . Then X ; WW n, J with J s BSBm m
and thus the density functions are given, respectively, by

yŽ m nyn2 .r2 < < Žnymy1.r2p K 1
y1f X s etr y J XŽ .X n r21m n r2 ž /2< <2 G n Jn 2

and

yŽ m nyn2 .r2 < < Žnymy1.r2p L 1
y1g Y s etr y S YŽ .Y n r21m n r2 ž /2< <2 G n Sn 2

X X w x Ž . Ž Ž ..with X s G KG , Y s H LH 4 and etr ? denotes exp tr ? . The Jacobian1 1 1 1
X Ž . < Ž . <Ž .of the transformation X s BYB is written as dX s J X ª Y dY . From
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Žw x .the variable change theorem, it is known 1 , page 166 that
X < <g Y s f BYB J X ª YŽ . Ž . Ž .Y X

yŽ m nyn2 .r2 < < Žnymy1.r2p K
s n r21m n r2 < <2 G n Jn 2

=
1

y1 X< < <etr y J X J X ª YŽ .XsBY Bž /21Ž .
yŽ m nyn2 .r2 < X X < Žnymy1.r2p G BYB G1 1s n r21m n r2 < <2 G n Jn 2

=
1

Xy1 < <etr y J BYB J X ª Y .Ž .ž /2

This follows because

< X X < < X < < <2 G BYB G s G XG s K .Ž . 1 1 1 1

We also have

< X X < < X < 2 < <3 G BYB G s G BH L .Ž . 1 1 1 1

Furthermore, given that J s BSBX,

4 trJy1BYBX s tr Sy1 YŽ .
and

< < < X < < < 2 < <5 J s BSB s B S .Ž .
Ž . Ž . Ž . Ž .Substituting 3 , 4 and 5 in 1 , we have

< X < nymy1 < <G BH J X ª YŽ .1 1
g Y s g YŽ . Ž . nY Y < <B

and therefore

< X < my nq1 < < ndX s G BH B dY .Ž . Ž .1 1

Ž . Ž . Ž .Finally, the other two expressions for dX are obtained from 2 and 3 and
< < < X <from the fact that A s A . I

An alternative proof to that given in Theorem 1 may be developed by
assuming that the conjecture is true; from the density of X, and employing
this Jacobian, we then find the density of Y, and the desired result is then
found by the variable change theorem

w xThe following theorem proves the second conjective proposed by Uhlig 4
in his Theorem 7.

THEOREM 2. Let m ) 1 be an integer and let p G m and n - m. Let A and
Ž . Ž . XB be independent, where A ; WW n, S and B ; WW p, S . Put A q B s T T,m m



PROOF OF THE CONJECTURES OF H. UHLIG 2021

where T is an upper-triangular m = m matrix with positive diagonal ele-
ments. Let U be the m = m symmetric matrix defined by

U s T Xy1ATy1

Ž .Then A q B and U are independent; A q B ; WW p q n, S and the densitym
q Ž .of U on the space SS with respect to the volume element dU on this spacem , p

is
1G n q pŽ .2 m 2 Žnymy1.r2 Ž pymy1.r2Žym nqn .r2 < < < <f U s p L I y U ,Ž .U m1 1G n G pn m2 2

X Ž .where U s H LH , H g V , L s diag l , . . . , l , 1 ) l ) l ) ??? ) l ) 01 1 1 n, m 1 n 1 2 n
and

n n n
Xyn myndU s 2 l l y l H dH n dl ;Ž . Ž .Ž .Ł Ł Hi i j 1 1 i

is1 i-j is1

w x Ž .see 4 , Theorem 2. This will be denoted as U ; BB nr2, pr2 .m

Taking into account Theorem 1, the proof is identical to that given for
w xTheorem 7 4 .

One consequence of the above result is the F singular density function,
w xalso called Beta Type II; 3 page 92.

THEOREM 3. Let m ) 1 be an integer and let p F m and n - m. Let A and
Ž . Ž . XB be independent, where A ; WW n, I and B ; WW p, I . Put B s T T,m m m m

where T is an upper-triangular m = m matrix with positive diagonal ele-
ments. Let F be the m = m symmetric matrix defined by

F s Ty1AT Xy1 .
q Ž .Then the density of F on the SS with respect to the volume element dF onm , p

this space defined above is
1G n q pŽ .2 m 2 Žnymy1.r2 yŽ pqn.r2Žym nqn .r2 < < < <h F s p Q I q F ,Ž .F m1 1G n G pn m2 2

X Ž .where F s H QH , H g V , Q s diag q , . . . , q , q ) q ) ??? q ) 0.1 1 1 n, m 1 n 1 2 n
Ž .This will be denoted as F ; FF nr2, pr2 .m

PROOF. Find the factorization A s G KGX , where G g V and K s1 1 1 n, m
Ž .diag k k , . . . , k , k ) k ) ??? ) k ) 0. Then the joint density of A and1 2 n 1 2 n

B is
Ž pymy1.r2 Žnymy1.r2 1< < < <d n , m , p B K etr y A q B dA n dB ,Ž . Ž . Ž . Ž .Ž .2

where

p Žym nqn2 .r2

d n , m, p s .Ž . 1 1mŽ pqn.r22 G n G pn m2 2
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Now let B s T XT, there T is an upper-triangular matrix with positive
diagonal elements and A s TFT X. Find the factorization F s H QH X , H g1 1 1

Ž .V , Q s diag q q , . . . , q , q ) q ) ??? ) q ) 0. Then, from Theorem 1,n, m 1 2 n 1 2 n

< < Žmq1yn.r2 < <yŽ mq1yn.r2 < < ndA n dB s K Q T dF n dB ;Ž . Ž . Ž . Ž .
remembering that T is a function of B, the joint density of B and F is given
by

Žnymy1.r2 Žnqpymy1.r2 1< < < <d n , m , p Q B etr y I q F B dF n dB .Ž . Ž . Ž . Ž .Ž .2

Ž w xThe result follows from integrating with respect to B ) 0 see 2 , page 61,
.Theorem 2.1.11 .

Finally, we find the density functions of the nonzero eigenvalues of the
Beta and F matrices.

Ž . Ž .THEOREM 4. i Suppose that U ; BB nr2, pr2 , n - m. Thenm
2 1n r2p G n q pŽ .m 2

f l , . . . , l sŽ .1 n 1 1 1G p G n G nm n m2 2 2

=
n n n

Ž .pymy1 r2Žmyny1.r2l 1 y l l y l .Ž . Ž .Ł Ł Ł1 i i j
is1 is1 i-j

Ž . Ž .ii Let F ; FF nr2, pr2 , n - m. Thenm
2 1n r2p G n q pŽ .m 2

f d , . . . , d sŽ .1 n 1 1 1G p G n G nm n m2 2 2

=
n n n

Ž .y nqp r2Žmyny1.r2d 1 q d d y d ,Ž . Ž .Ł Ł Łi i i j
is1 is1 i-j

where l , d , i s 1, . . . , n, are the nonzero eigenvalues of U and F, respectively.1 i

Ž .PROOF. i From Theorem 2, note that L is a diagonal matrix; moreover,
l s l , l the ith nonzero eigenvalue of U, i s 1, . . . , n from whichi i i

n
X< < < < < <I y U s I y H LH s I y L s 1 y l ,Ž .Łm m 1 1 n i

is1
X < < ngiven that U s H LH , with H g V . Furthermore L s Ł l and from1 1 1 n, m is1 i

Theorem 2,
n n n

Xyn myndU s 2 l l y l H dH n dl .Ž . Ž .Ž .Ł Ł Hi i j 1 1 i
is1 i-j is1

Substituting these results in the density of U and given that

X 1n m n r2H dH s 2 p rG n ,Ž .H 1 1 m 2
H gV1 n , m

Ž w x .see 2 , page 70, Theorem 2.1.15 the joint density of l , . . . , l is obtained.1 m
Ž . Ž .ii The proof is analagous to that of the above part i . I
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