
The Annals of Statistics
1996, Vol. 24, No. 5, 2215]2232

OPTIMAL STOPPING OF SEQUENTIAL
SIZE-DEPENDENT SEARCH

BY ISSA FAKHRE-ZAKERI AND ERIC SLUD1

University of North Carolina, Chapel Hill
and University of Maryland

In many areas of application, one searches within finite populations
for items of interest, where the probability of sampling an item is pro-
portional to a random size attribute from an i.i.d. superpopulation of
attributes which may or may not be observable upon discovery. Here
we treat the problem of asymptotically optimal stopping rules for size-
dependent searches of this type, as the size of the underlying population
grows, where the loss function includes an asymptotically smooth time-
dependent cost, a constant cost per item sampled and a cost per undiscov-
ered item which may depend on the size attribute of the undiscovered
item. Under some regularity and convexity conditions related to the
asymptotic expected loss, we characterize asymptotically optimal rules
even when the initial population size and the distribution of size at-
tributes are unknown. We direct especial attention to applications in

Ž .software reliability, where the items of interest are software faults ‘‘bugs’’ .
In this setting, the size attributes will not be observable when faults are
found, and, in addition, our search model allows new bugs to be intro-

Ž .duced into the software when faults are detected ‘‘imperfect debugging’’ .
Our results extend those of Dalal and Mallows and Kramer and Starr, and
are illustrated in the perfect-debugging case on a previously analyzed
dataset of Musa.

1. Introduction. There are many problem areas in which scientific in-
vestigators search for items within an unknown finite population and have
greater chance of detecting items for which some specified size attribute is
large. For example, in the search for oil and gas pools, the larger pools are

w Ž .xeasier to detect Barouch and Kaufman 1976 . In wildlife management, it
may be easier to catch and tag larger rather than smaller birds or fish, and,
at a higher level of aggregation, it is certainly true that larger schools of fish
are easier to detect, and that species with many members will be earliest

w Ž . xdocumented Seber 1992 and references therein . Similarly, large pottery
fragments at an archaeological site are found more often than smaller ones
w Ž .xKramer and Starr 1987 ; and in software reliability testing, the software

Ž .faults ‘‘bugs’’ which most often cause software failure when run on inputs
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wrandomly chosen from some ensemble, will be the soonest detected Miller
Ž . Ž . Ž .1986 , Dalal and Mallows 1988 , Littlewood 1980, 1981, 1989 and Fakhre-

Ž .xZakeri and Slud 1995 . A common feature of these applications is that, after
appropriately defining the size attribute, one may model the data-sampling

Ž .mechanism as ‘‘sampling proportional to size’’ without replacement . Specif-
ically, if undetected items are assumed initially to have size attributes
L , . . . , L sampled independently from a superpopulation with distribution1 n0

G, then at a time prior to which items with attributes L , . . . , L have beeni i1 k

sampled without replacement, the conditional probability that the next item
Ž � 4.selected has attribute L where j f i , . . . , i can be modeled asj 1 k

n0

L L y L y ??? yL .Ýj i i i1 kž /
is1

This modeling assumption has been studied from a general perspective by
Ž .Kramer and Starr 1987 , who characterized it qualitatively. Such models

have also been treated as variants of ‘‘coupon-collector’s problems’’ by Rosen´
Ž . w Ž .1972 and in the literature on ‘‘successive sampling’’ Gordon 1983 , Vardi
Ž . Ž . Ž .1982 , Andreatta and Kaufman 1986 , Bickel, Nair and Wang 1992 and

xmany other references .
Further common features of these sampling mechanisms are that the total

number of items to discover is finite but unknown, that data arrive sequen-
tially and that a natural question concerning the best use of investigative
resources is when to stop sampling. In all four examples, one would like at
the end to estimate the number of undiscovered items. In the oil-and-gas and
software examples, economic interest naturally centers on the time required
for the search. A special feature of software testing is that, upon discovery of

Ž .a bug, its size attribute frequency of causing failures will still not be
Ž .observable. Also Bickel, Nair and Wang 1992 remark that pool size may also

be only partially observable in oil-and-gas discovery; in the search for disease,
cases due to environmental contamination, in which the ‘‘items’’ are cases
and the size attribute is individual exposure to the contaminant, the latter
will only be partially observable.

In this paper, we are interested in optimal stopping of such sequential
size-biased searches. In specifying appropriate loss functions, there are sev-
eral costs to be taken into account, all of which may arise in the same
application: the overhead of the search itself, costs associated with each item
found, opportunity costs due to deferring final decisions based on study

Ž .results and especially in the oil-and-gas and software settings the losses due
Žto items not discovered e.g., finding software failures after the software has

been released for commercial use, as well as customer losses due to recurring
.failures . In applications, the relative importance of these costs must be

weighed carefully in specifying the loss function. Losses for items not found
can be more or less serious according to the value of the parameter L . Thus ai
general loss function would have the form

1.1 L t s L t s f t q aN t q r t h L ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ýn n i i
iFn0
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Ž . Ž .where f ? is a nonrandom time-dependent loss such that f t rn is assumedn n
w xto converge uniformly on the bounded time horizon 0, t to a twice-max

Ž . Ž .differentiable function f ? , N t denotes the total number of items which
have been found up to time t, n is a known order-of-magnitude parameter
such that the unknown number n of items satisfies n rn ' q ª q for an0 0 n

Ž .unknown positive parameter q as n becomes large, r t is the indicator thati
the ith item remains undiscovered as of time on test t and h is a nondecreas-
ing positive function expressing the relationship between size attributes and
costs of undiscovered items. Since both the second and third terms of L inn
Ž .1.1 satisfy a law of large numbers with denominator n, it turns out that,
under appropriate conditions on the limiting function f for f rn, only then
order-n behavior of f affects the asymptotics of optimal stopping rules. Noten
also that we do not assume that f itself is either convex or increasing: then
only assumptions needed are on the limiting f , and even it may be highly

wnonconvex for moderate t, depending on the behavior of h. See conditions
Ž . Ž . x2.3 and 3.2 in the theorems below. This accommodates applications where

Ž .time-dependent but irregular or highly nonconvex opportunity costs might
enter f but scale sublinearly as the parameter n becomes large. Since it isn
natural to scale the loss by n, we define for future reference

L t 1 a 1Ž .n
1.2 L t ' s f t q N t q r t h L .Ž . Ž . Ž . Ž . Ž . Ž .Ýn n i in n n n iFn0

Such rescaling, including the assumptions on f and n mentioned above,n 0
has the effect of converting the asymptotic-optimality criterion of choosing t

Ž Ž .. Ž Ž ..to minimize the ratio of E L t rE L s for competing stopping rules sn n
into the asymptotically equivalent criterion of minimizing the difference
Ž Ž .. Ž Ž ..E L t y E L s .n n
Sequential finite-population search problems of this sort have been treated

Ž . Ž .in Kramer and Starr 1987, 1990 and Dalal and Mallows 1988 . The loss
Ž . Ž . Žfunction in Kramer and Starr 1990 had the form 1.1 except for a random

.constant unaffected by the number of previously discovered items with
Ž .a s 0. In Dalal and Mallows 1988 , the loss function for stopping software

Ž . Ž .testing as of time t was 1.1 with h ? ' b constant, but the number n was0
Ž .taken to be random Poisson-distributed and G was given a parametric

Ž . ŽGamma form. In the settings just described, Kramer and Starr 1990 with
. Ž .n assumed known and Dalal and Mallows 1988 found optimal stopping0

rules for known G. For related results of Dalal and Mallows on asymptoti-
cally optimal rules, see Remark 2.2 following Theorem 2.1.

In the next sections, we investigate asymptotically optimal rules based on
Ž .the loss function 1.1 }modified for software reliability applications as in

Theorem 3.1}and show under some regularity conditions that the ‘‘myopic’’
Ž .stopping rule i.e., the rule with smallest current expected loss is asymptoti-

cally optimal as n ª `, in the sense described below. This extends the work
Ž . Ž .of Dalal and Mallows 1988 and Kramer and Starr 1990 in three directions:

1. to the case of unknown distribution G of parameters L ;i
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2. to unobservable mixture-parameter values: this is needed to make the
model relevant to software reliability;

Ž .3. to a model incorporating ‘‘offspring’’ bugs due to imperfect debugging in
software testing.

Ž .Extension 3 is undertaken only in Section 3, where the software reliability
setting is elaborated.

In Section 2 we study the asymptotically optimal stopping rules for the
size-dependent search model without replacement, obtaining results which
apply also in the examples mentioned above where size attributes are unob-
served. In Section 3 we extend the discussion to the case of software reliabil-
ity with imperfect debugging. Section 4 contains an illustrative example
using real software reliability data. All proofs are deferred to Section 5.

2. Asymptotic optimality in size-dependent search without re-
placement. We begin by introducing some notation. Index the undiscov-
ered items of interest by i s 1, . . . , n , n ' nq , where n denotes a known0 0 n
parameter indicating the order of magnitude or scale of the search, and

Ž .q ª q , an unknown positive parameter. Let L , T be i.i.d. for i s 1, . . . , n ,n i i 0
with the random size parameter L for item i distributed according to d.f. Gi

Ž . Ž .on 0, ` and with T conditionally exponential L distributed given L , andi i i
Ž .define r t ' I for t G 0. The unconditional distribution function Q andi wT G t xi

density q of T are respectively given byi

`
yl tQ t ' 1 y e G dl ,Ž . Ž . Ž .H

0

`
yl tq t ' le G dl .Ž . Ž .H

0

Ž .The observable process N t ' Ý I counts the total number of discover-i wT F t xi

ies through time t. Let FF ' FF n be the s-field generated by all r.v.’s L , ast t i
well as all T ’s which are less than or equal to t. The infinitesimal operatori

Ž .associated with the cost function L of 1.1 is defined by

y1a t ' a t s lim x E L t q x y L t N FF ,Ž . Ž . Ž . Ž .n t
xª0q

Ž .when the limit exists. For positive increasing functions U l , let

2.1 c t ' E r t U L s eyl tU l G dl .Ž . Ž . Ž . Ž . Ž . Ž .Ž . HU i i

Ž .In what follows, c and c respectively denote the functions c with U xid h U
Ž . Ž . Ž .replaced by the identity function U x s x or the function U x s h x

Ž .appearing in 1.1 . In order that these functions be twice continuously differ-
entiable at 0, we assume that

2.2 l2 1 q h l G dl - `.Ž . Ž . Ž .Ž .H
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Ž .Our method follows Kramer and Starr 1990 in investigating the mono-
tonicity of the infinitesimal cost operator in order to characterize the optimal
rule. In the first part of this section, until stated otherwise, the distribution G
is assumed known.

Ž .It is known that if the cost function is such that a t exists and is
monotonically nondecreasing with probability 1, then the stopping time

� Ž . 4 w Ž .x w Ž .xt s inf t G 0: a t G 0 is optimal in the sense that E L t F E L t 9 forn n n
� 4 Ž .all FF stopping times t 9. For details, see Ross 1971 and Shapiro andt

Ž .Wardrop 1980 . Here the model for the counting process of observed software
Ž .failures for large n is of a triangular-array type such that a t tends a.s. byn

the law of large numbers to the nonrandom limit

d
n t ' lim E L tŽ . Ž .ndtnª`

Ž . Ž .when L is given by 1.2 . Although a t is not monotone in t, the functionn n
Ž . wn t will be, under restrictions on G and L . Indeed, it will be shown inn

Ž .Theorem 5.1 that the first part of condition 2.3 below is equivalent to the
Ž . xmonotonicity of n t .

Ž . Ž .THEOREM 2.1. Assume that L is given by 1.1 , with f ? rn convergingn n
w xuniformly on 0, t as n ª ` to f which is twice boundedly differentiable,max

where t - ` does not vary with n, and assume alsomax

2.3 f 0 t q q l2 h l y a eyl t dG l ) 0, t G 0,Ž . Ž . Ž . Ž .Ž .H

f 9 0 y q l h l y a dG l - 0Ž . Ž . Ž .Ž .H
Ž . Ž .for the true parameters q , G governing the discovery-count process N t . If

Ž .2.2 holds and the stopping time t is defined byn

nf 9 t Q tŽ . Ž .
2.4 t ' min t , inf t ) 0: G N t ,Ž . Ž .n max ylt½ 5½ 5He l h l y a G dlŽ . Ž .Ž .

then t is an asymptotically optimal stopping time in the sense that, for anyn
alternative FF stopping times t bounded by t ,t n max

lim inf EL t rEL t G 1Ž . Ž .n n n n
nª`

or

lim inf E L t y L t G 0.Ž . Ž .Ž .n n n n
nª`

Moreover, as n ª ` the times t tend almost surely ton

w x yl tt# ' inf t g 0, t : f 9 t y q l h l y a e G dl G 0 .Ž . Ž . Ž .Ž .Hmax½ 5
REMARK 2.1. The asymptotic property established for t with respect ton

Ž .L is asymptotic optimality in the sense of Bickel and Yahav 1969 . Asymp-n
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w Ž .xtotic pointwise optimality Bickel and Yahav 1967, 1968 could also be
shown, but would require some modification of the hypotheses and conclu-
sions of Lemma 2.3 below.

Ž .REMARK 2.2. The rule 2.4 of the preceding theorem, in the case where
Ž .h ? ' b ) a is constant, coincides with the asymptotic stopping rule of Dalal

Ž .and Mallows 1988 .

Ž .REMARK 2.3. The role of the second part of condition 2.3 is to ensure that
the optimal stopping time t# is strictly positive. Then q is consistently

Ž . Ž Ž ..estimated by N t r nQ t for t G « ) 0.

REMARK 2.4. A remarkable feature of the asymptotically optimal rule of
Theorem 2.1 is that it does not depend on the size-attribute values L . Thusi
these rules can be adapted to the case of unknown G.

REMARK 2.5. In Theorem 2.1, we have assumed that f rn has a finiten
nonzero limit. In some applications, it may turn our that the limit together
with its derivatives is close to 0, that is, the fixed time-dependent costs may
be of much smaller order than the random costs. In that case, it is easy to see
that the stopping times t approach t . At the other extreme, f rn togethern max n

Ž .with its derivatives may be uniformly large for large n, and therefore by 2.3
nearly convex: t then approximates the first time at which f X G 0.n n

Ž .Since one cannot usually claim to know G or equivalently Q in advance,
our next result allows the optimal stopping times t to be approximated byn
times constructed from estimated functions G.

THEOREM 2.2. Assume all hypotheses of Theorem 2.1, except that now G
w Ž . xis not assumed known and 2.2 need not hold , and, for each t ) 0,

2Ž Ž .. yl tl 1 q h l e is a bounded continuous function of l ) 0. Then G is identi-
ˆ ˆ� Ž . 4fiable from data N u : 0 F u F « for any « ) 0, and if G ' G for t G «t n, t

Ž Ž .is any system of a.s. uniformly consistent estimators of G based on data N u :
.0 F u F t , the stopping times

yl t ˆnf 9 t H 1 y e G dlŽ . Ž . Ž .t
j ' min t , inf t G « : G N tŽ .n max ylt½ 5½ 5He l h l y a G dlŽ . Ž .Ž . t

share the same optimality properties as t in Theorem 2.1 whenever t# G « ) 0,n
where t# is as defined in Theorem 2.1.

The following lemma, which is used to prove Theorem 2.1, may be of some
Žindependent interest. Suppose that, for each positive integer n, a vector-

. Ž Ž . . Ž .valued stochastic process X t : 0 F t F 1 is observed, where X ? sn n
Ž . w x Ž n .X ?, v is a D 0, 1 -valued random process on a probability space V , FF , P .n n n

Ž . Ž .Suppose also that a nonrandom cost function C ?, ? is given, with c t 'n n
Ž Ž ..C t, X t representing the cost of stopping a random experiment generat-n n

Ž xing data X at time t g 0, 1 .n
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Ž Ž .. Ž Ž Ž ...LEMMA 2.3. Assume that E c t ' E C t, X t is a differentiablen n n
function of t for each n, and that, as « ª 0 q ,

< <2.5 lim sup E sup c u y c v ª 0,Ž . Ž . Ž .n n
nª` < <u , v : uyv F«

1 d
2.6 lim sup sup E c t q « y c t y E c t ª 0,Ž . Ž . Ž . Ž .Ž . Ž .n n n« dtnª` 0FtF1y«

1
2.7 lim sup E sup c t q « y c t y c9 t ª 0,Ž . Ž . Ž . Ž .n n«nª` 0FtF1y«

Ž .where c9 t is a strictly increasing and continuous function of t. Then the
nonrandom times

d
t s min 1, inf t g 0, 1 : EC t , X t G 0Ž Ž .Ž .n n n½ 5½ 5dt

� � w x Ž . 44converge to t# s min 1, inf t g 0, 1 : c9 t G 0 and satisfy

2.8 lim inf E C t , X t y C t , X t G 0Ž . Ž . Ž .Ž . Ž .n n n n n n n n
nª`

� 4 Ž Ž . .for any sequence t of s X v : v F t measurable random times on V .n n n

Ž .There are several methods available for nonparametric estimation of G, q ,
Ž .which Fakhre-Zakeri and Slud 1995 found to be identifiable even if the size

Žattributes L are not observable. If they were observable, then G would bei
.estimated by an empirical d.f. One approach, justified by identifiability plus

Ž .an argument of Blum and Susarla 1977 , is to discretize the l-axis finely and
treat G as a superposition of finitely many point masses, and then to solve

N uŽ . yl us q 1 y e G dlŽ . Ž .Hn

for a succession of values u F t as a system of linear equations in the jumps
Ž .of q G ? . Such an estimation method can be refined by estimating q and the

Ž .jumps of G by a minimum-chi-square method. See Slud 1983 for details and
asymptotic justification. Note that the nonparametric maximum likelihood

w Ž .xestimator Lindsay 1983 for the mixture d.f. G could not be used directly
because n is unknown.0

If the unknown d.f. G were assumed to belong to a suitably regular
� Ž . k4finite-parameter family G ?, m : m g R , then the parametric asymptotic

ˆŽ .theory of van Pul 1992 justifies simultaneous MLEs q , m for q and mˆt t
Ž Ž . .based on data N u : 0 F u F t , t G « ) 0, in terms of which the estimators

ˆ Ž .G ' G ?, m will satisfy the requirements of Theorem 2.2ˆn, t t

3. Software reliability application and extensions. We have men-
tioned in the Introduction that size-dependent search arises naturally in the
statistical analysis of failure data obtained through software reliability test-

w Ž . Ž .xing Dalal and Mallows 1988 and Fakhre-Zakeri and Slud 1995 . In this
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setting, the scale factor n in the model of Section 2 might measure the size or
scope of applicability of the software system, for example, through the
number of modules, total lines of code or complexity of logic. The search in

Ž . Žsoftware testing has the features i that the size attributes or hazard for
.occurrence of failures due to individual faults or ‘‘bugs’’ will not be observ-

Ž . Ž .able and ii that detection and immediate fixup and removal of bugs from a
Žsoftware system may also result in the introduction of new faults ‘‘imperfect

. Ž .debugging’’ . To model the latter phenomenon, Fakhre-Zakeri and Slud 1995
introduced the following extension and modification of the model of Section 2.

w .Let the unknown parameter p g 0, 1 denote the probability of introduc-
Ž .ing a new bug a ‘‘descendant’’ of the one just removed at the time of a

software failure, and assume that such a new bug has size attribute L9
independently sampled from the same d.f. G as those initially embedded in

wthe software. Although it might seem natural to choose a different distribu-
tion than G for new bugs, there is no obvious choice. The issue of estimating

Ž .parameters related to imperfect debugging is difficult enough, cf. Slud 1994 ,
Ž . xthat we consider here only the model of Fakhre-Zakeri and Slud 1995 . To

simplify the analysis, we assume that whenever a bug causes failure, it is
wremoved and is replaced by either zero or one new bugs. Models with a

Poisson random number of new bugs were given by Sumita and Shantikumar
Ž . Ž .1986 and van Pul 1991 and would be tractable and lead to a development

xsimilar to the one below. Unremoved bugs, old and new, are assumed to
cause failure and produce descendants independently.

In this setting, where the large parameter n both measures the extent of
the software and is proportional to the initial number of bugs, it seems
natural to allow the time of testing to grow proportionately to some function
Ž .m n increasing to ` with n and to regard the instantaneous hazard of

Ž .failure due to any single bug to be inversely proportional to m n . Sim-
ilar rescaling of time may also be appropriate in other applications of size-
dependent search.

The conditional intensities of failure given the bug severities L arei
specified here to be constant between failures because the operation of the
software in continuous time is idealized as a continuously restarted repetition

w Ž .xof the same program with randomly chosen inputs Littlewood 1989 . Espe-
cially in the usual case where the running time for the program with each
input set is much smaller than the total CPU time to be expended on
software testing, the failure intensity remains essentially constant between
successive observed failures in the gross scale of cumulative CPU time. One
consequence of the constancy of hazards is that when hazards are scaled

Ž .inversely with the large factor m n and also the observation horizon scales
Ž . Ž .proportionately with m n , the counting processes N t of observed failures

Ž . Ž .up to time t are identical in law to processes N s for s ' trm n within
which neither the time horizon nor the intensities vary with n for each i.
Thus, although time scaling and hazard scaling are appropriate in the
software application, we do not treat them explicitly, since all stopping times

Ž .would scale up by the same factor m n .
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For the remainder of this section, the following model is in force. Associ-
ated with the initial bugs, labeled i s 1, . . . , n , n s nq , where q ª q as0 0 n n
n ª `, we assume that there is an i.i.d. sample L , L , . . . , L of real1 2 n0

random variates from an unknown distribution function G. Assume further
that the waiting times T until system failure due to the ith bug arei
Ž .conditionally given L , L , . . . , L independent exponential random vari-1 2 n0

ables with hazard rates L . At time T , the bug labeled i is assumed to bei i
instantaneously removed but with probability p is replaced by a new bug
whose rate L

X of causing failure is an independently sampled variable withi
d.f. G. The observable data consist only of the failure times which occur up to
time t , where t ) 0 is known.max max

Ž . Ž .As in Section 2, let r t denote the indicator that bug i or its descendanti
Ž . Ž .is still present in the system as of time t. When r t s 1, let L t denote thei i

severity attribute of the descendant of bug i in the software just before time
Ž . Ž .t. Note that L t s L the initial severity only if bug i has caused noi i

Ž .failures up to t; otherwise L ? is left-continuous with jumps at each occur-i
Ž .rence time for failure due to bug i or its descendant , with distinct values

Ž . Ž . Ž . Ž .i.i.d. with d.f. G. In the loss functions L t and L t of 1.1 and 1.2 , then n
Ž . Ž Ž ..term h L should now be understood to be replaced by h L t , whichi i

measures losses linked to the frequency of occurrence of bugs in normal use
after commercial release of the software. In the following theorem, we replace

Ž . Ž .the previous notation c t in 2.2 byU

3.1 c t s E r t U L t� 4Ž . Ž . Ž . Ž .Ž .U 1 1

noting that, in the case p s 0, the new definition simplifies to the old one
Ž . Ž .since then r t s I and L t ' L .1 wT G t x 1 11

Ž . Ž .THEOREM 3.1. Assume that L is given by 1.1 , with h L replaced byn i
Ž Ž .. Ž . w xh L t and with f ? rn converging uniformly in t g 0, t to twice bound-i n max

edly differentiable f as n ª `. Assume also

f 0 t q q ac X q c Y ) 0, t G 0,Ž . Ž .id h

f 9 0 q q ac q c X - 0Ž . Ž .id h

3.2Ž .

Ž . Ž .for the parameters q , G governing the discovery-count process N t .

Ž . Ž . Ž .i If 2.2 holds and the stopping time t is defined for known p, G byn

ynf 9 t Q tŽ . Ž .
3.3 t ' min t , inf t ) 0: G N t ,Ž . Ž .Xn max ½ 5½ 5ac q cid h

then t is an asymptotically optimal stopping time in the sense that, for anyn
alternative FF stopping times t bounded by t ,t n max

lim inf EL t rEL s G 1Ž . Ž .n n n n
nª`

or

lim inf E L t y L s G 0.Ž . Ž .Ž .n n n n
nª`
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Moreover, as n ª ` the times t tend almost surely ton

w x Xt# ' inf t g 0, t : f 9 t q q ac q c G 0 .� 4Ž . Ž .max id h

Ž . Ž . Ž .ii Suppose that p, G is not assumed known and that 2.2 need not
� Ž . 4hold, but that, for data N u : 0 F u F t , a consistent estimator p of p andˆ

ˆ ˆconsistent estimators G ' G of G, uniformly on compact sets of l, arel n, l
2Ž Ž .. yl tavailable. Assume that, for t ) 0, l 1 q h l e is bounded and continu-

ous in l ) 0. Then the stopping times

yl t ˆnf 9 t H 1 y e G dlŽ . Ž . Ž .
j ' min t , inf t G « : G N tŽ .n max X½ 5½ 5ˆ ˆyac y cid h

share the same optimality properties as t whenever t# G « ) 0, where then
ˆ ˆX ˆestimators c and c are defined by substituting p for p and G for G in theˆid h

Ž .integral equation 5.8 .

REMARK 3.1. Here the situation is not so satisfactory as in Section 2.
Ž .When p ) 0 is unknown, Fakhre-Zakeri and Slud 1995 have shown that

Ž . Ž Ž . .G,q , p is not identifiable from the function EN t : 0 F t F t . However,max
identifiability can be restored by restricting G to lie in finite-dimensional

� Ž .4families G ?, m , and the theory of simultaneous likelihood-based estimation
Ž . Ž .of m, q , p is treated in Slud 1994 .

4. Illustrative example. We illustrate graphically the stopping rules
Ž .given by Theorem 2.2, using the system 1 dataset of Musa 1980 . The data

consist of 136 intervals between observed failures, in CPU time during the
system testing phase of a software development project concerning real-time
command and control, followed by a final interval of observation during

Ž .which no further system-test failures occurred. Musa 1980 argued that
these data fit a nonhomogeneous Poisson process model well, and elsewhere
w Ž .xMusa and Okumoto 1985 argued for a particular form of such a model,

Ž .called the ‘‘logarithmic Poisson model.’’ Fakhre-Zakeri and Slud 1995 showed
that this model is a limiting case, as the number n of initial bugs in the0
software goes to ` and the parameter a goes to 0 as krn for a constant k, of0

Ž .the Littlewood 1980, 1981 model in which G is the Gamma distribution
function with parameters a , b. Due to the excellent fit to the data of this
model in Figure 1, there is no need to assume imperfect debugging, and we do
not. The logarithmic Poisson model used in this reanalysis has the parame-

Ž . Ž .terization EN t s k ln 1 q trb . The joint maximum likelihood estimators
ˆ ˆŽ .for k, b can be found readily, with k given as a function of b, and the latter

found as the numerical solution of a nonlinear equation.
We consider the problem of optimally stopping the system phase of testing

Ž .for the Musa system 1 data, with respect to the loss function 1.1 with
Ž . Ž . Ž dŽ tyh ..h ? s b constant and with f t s f t q e , where f , d and h aren 0 0

constants. This is the same choice of loss function used by Dalal and Mallows
Ž .1988 , Sections 4 and 5, for their illustrations. According to Theorem 2.2, one
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FIG. 1. System 1 data and stopping boundaries.

should optimally stop testing at the first time t, after some minimum « , at
which

ˆ ˆ4.1 N t F f r b y a b q t ln 1 q trb ,Ž . Ž . Ž .Ž . Ž . Ž .0 t t

ˆ Ž Ž . . Ž .where b is the MLE of b based on data N s , 0 F s F t . The formula 4.1t
ˆarises from taking the limit of estimators G in a model with n initial bugst 0

Ž . y1and G the Gamma a , b d.f., where n , n and a increase to ` in such a0
w Ž .way that n rn ª q , n a ª k. See Fakhre-Zakeri and Slud 1995 , Example0 0

x Ž .6.2 and Appendix A.3. Substitution of a Gamma a , b distributional form for
ŽG in Theorem 2.2 gives a stopping rule not depending on a or n a in the0

ˆ. Žlimit of small a , so that only the estimator b enters into the asymptotict
.form of the stopping times j in Theorem 2.2.n

Ž . wFigure 1 displays the Musa 1980 system 1 data the plotted points
Ž Ž .x w Ž Ž .xt, N t , the fitted logarithmic-Poisson model the plotted solid line t, EN t

wand several choices of the optimal stopping boundary the right-hand side of
Ž . x4.1 plotted vs. t as dashed curves for various choices of the scaled parame-

Ž .ters f t rc where c s b y a , d and hrt . The parameter choices and0 max max
appearance of the graphs in Figure 1 are similar to those of Dalal and

Ž .Mallows’ 1988 Figure 4. The minimum possible stopping time « was chosen
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FIG. 2. Estimated beta values as a function of time, system 1.

ˆas the 40th observed failure time, so that the MLEs b were calculated onlyt
y1Ž . y1Ž .for t s N 40 , . . . , N 136 . Several irregularities in the plotted stopping

boundaries can be understood clearly as being due to fluctuations between
ˆestimated values b at t ranges from the 40th through 136th observed failuret

times, and these MLEs are plotted as a function of testing time t in Figure 2.
ˆThe considerable variability of b over the first half of the testing periodt

w x0, t strongly suggests that very early stopping of software reliabilitymax
testing would be unwise.

5. Proofs. We now prove the main theorems of the previous sections, as
well as some sufficient conditions for the first lines of each of the hypotheses
Ž . Ž .2.3 and 3.2 . Since Theorems 2.1 and 2.2 are just the special cases of
Theorem 3.1 in which p s 0, we prove only the latter theorem. In order to
understand the proofs more simply when p s 0, that is, in the usual case

Ž .where there are no replacements of discovered items, simply read L for L ti i
in what follows.

PROOF OF LEMMA 2.3. First, since c9 is strictly increasing, t# is well
Ž . Ž .defined, and, by the continuity of c9, either c9 1 - 0 or c9 t# s 0. Without

Ž Ž ..loss of generality, assume that EC 0, X 0 s 0, since otherwise we couldn n
Ž . Ž Ž .. Ž Ž .. Ž . Ž .replace c t by C t, X t y C 0, X 0 , leaving 2.5 ] 2.7 still valid andn n n n n

Ž .the definition of t and assertion of 2.8 unchanged. It follows immediatelyn
Ž .from 2.5 that

< <5.1 lim sup E sup c t - `Ž . Ž .n
nª` 0FtF1

and, as « ª 0 q ,

1 tq«
5.2 lim sup E sup c u du y c t ª 0.Ž . Ž . Ž .H n n« tnª` 0FtF1y«
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Ž . t Ž .Now, with c t ' H c9 s ds, use the calculation0

c u q « y c uŽ . Ž .t n n y c9 u duŽ .H
«s

sq«tq«y1s « c u du y c u du y c t q c sŽ . Ž . Ž . Ž .H Hn n½ 5
t s

Ž . Ž . Ž .to conclude from 2.7 , 5.1 , 5.2 and the triangle inequality that

< <5.3 E sup c t y c s y c t q c s ª 0 as n ª `.Ž . Ž . Ž . Ž . Ž .n n
0Fs , tF1

Ž . Ž .By 2.6 , 2.7 and the triangle inequality,

d
5.4 lim sup sup Ec t y c9 t s 0.Ž . Ž . Ž .ndtnª` 0Ft-1

Ž .Therefore, by the definition of t and the continuity of c9, either c9 1 - 0 andn

d
E c t - 0Ž .Ž .ndt ts1

and t s 1 for all large n, or, as n ª `,n

d
Ec t ª 0Ž .ndt tstn

and
c9 t ª 0.Ž .n

In either case, the strict increase and continuity of c9 imply t ª t#. Applyn
Ž . < Ž Ž .. Ž Ž .. <2.5 to conclude that E C t , X t y C t#, X t# converges to 0. Now,n n n n n n

w x Ž .since t# is the unique strict minimizer of c on 0, 1 apply 5.3 with s
replaced by the arbitrary stopping times t and t replaced by t to obtainn n

lim inf E c t y c t s lim inf E c t y c t# G 0,Ž . Ž . Ž . Ž .n n n n n
nª` nª`

Ž .which completes the proof of 2.8 . I

Ž .PROOF OF THEOREM 3.1 i . Lemma 2.3 applies directly, with

N t rnŽ .
y1X t ' ,Ž . n r t h L tŽ . Ž .n Ž .Ý i i

iFn0

Ž .where L t can be replaced by L in the setting of Section 2, andi i

C t , x s ny1 f t q ax q x ,Ž . Ž .n n 1 2

Ž Ž .. Ž . Ž .so that C t, X t ' L t as in 1.2 . We proceed to check the hypothesesn n n
Ž . Ž . Ž2.5 ] 2.7 of Lemma 2.3 for X and C just defined where we ignore then n

w x w x. Ž .difference between 0, t and 0, 1 . Observe that X t satisfies a uniformmax n
w Ž .law of large numbers as n ª ` Ranga Rao 1962 , Theorem 6.5, on the

w xseparable Banach space D 0, 1 with Skorohod’s J -topology metrized by the1
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Ž . xd -norm; cf. Billingsley 1968 , pages 112]115 , with the limit0

T
t

5.5 q c u du, c t .Ž . Ž . Ž .H id h
0

Ž .Moreover, the limiting vector function 5.5 is twice continuously differen-
w x Ž . wtiable in t on all of 0, t , as long as 2.2 holds. If all that is desired is twomax

w x Ž . Ž .continuous derivatives on « , t for « ) 0 as in Theorem 3.1 ii , then 2.2max
xis not necessary. Apart from the nonrandom terms involving f rn, then

Ž . Ž .expectations in each of 2.5 ] 2.7 depend on n only through n rn ' q ª q ,0 n
Ž . Ž .and the hypotheses 2.5 ] 2.7 of Lemma 2.3 are easily verified. The only

hypothesis left to check is the strict monotonicity of the function c9, that is,
that

d
lim E L tŽ .ndtnª`

is increasing, and Theorem 5.1 below establishes this under the hypothesis
Ž .3.2 . Thus the lemma applies, yielding the conclusion that the stopping times

1
X Xs ' min t , inf t ) 0: f t q q ac t q c t G 0Ž . Ž . Ž .Ž .n max n n id h½ 5½ 5n

are asymptotically optimal and converge to the nonrandom time t# defined
w xas the smaller of t and the smallest t g 0, t , wheremax max

f 9 t q q ac t q c X t G 0.Ž . Ž . Ž .Ž .n id h

Ž . Ž .The second part of 3.2 implies that t# ) 0. Then, since N t rnq is uni-
Ž . Ž .formly convergent a.s. and in the mean to Q t as n ª `, the proof of the

lemma implies that t given in the theorem converges in probability to t#,n
hence that t is also asymptotically optimal. In

Ž .PROOF OF THEOREM 3.1 ii . The proof builds upon the proof of Theorem
Ž . Ž .3.1 i . As remarked following 2.2 , the twice continuous differentiability of

w xc and c on « , t for « ) 0 does not require any integrability assump-id h max
Ž .tion such as 2.2 . Therefore, since the time interval of interest is now

w x w x« , t , we apply the lemma on that interval in place of 0, 1 , and wemax
Ž .dispense with 2.2 .

As before, Lemma 2.3 yields asymptotically optimal stopping times tn
Ž .converging to t# assumed G « , as well as asymptotic optimality of any

other sequence of stopping times t converging in probability to t#. Substi-n
ˆ ˆ ˆXŽ .tuting G for G and p for p in the definition of estimators c and c in theˆ U U

Ž .stopping times t of part i yields new stopping times j which are easilyn n
Žseen to differ asymptotically negligibly in probability from t . A key pointn
ˆ ˆXw xhere is the uniform consistency on « , t of the estimators c and c ,max U U

ˆ .which follows from the assumptions on p, G and h. Thus the stopping timesˆ
Ž .j of part ii of the theorem are asymptotically optimal and converge to t# asn

asserted. I
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This completes the proof of Theorem 3.1. Important special cases will be
treated in detail after Theorem 5.1, and Corollaries 5.2 and 5.3 below provide

Ž .conditions under which the first line of 3.2 is satisfied. In particular, when
Ž .p s 0 and f is convex and the minimum cost h 0 of an undiscovered bug is

w Ž . x Ž .larger than the cost a of finding it i.e., h 0 G a , then the first line of 3.2
holds and need not be separately assumed.

Ž . Ž . Ž .THEOREM 5.1. Assume first that f t ' f t rn and that 2.2 holds. Thenn

d
n t ' E L tŽ . Ž .ndt

is strictly increasing if and only if

5.6 f 0 t q q ac X t q c Y t ) 0 for all t G 0,Ž . Ž . Ž . Ž .Ž .n id h

Ž . Ž .where q ' n rn. If, instead, f t exists as the uniform limit of f t rn, thenn 0 n
Ž . Ž . w Ž .x5.6 implies that drdt E L t is asymptotically increasing in the sensen
that, for t ) s,

d d
lim inf E L t y E L s ) 0.Ž . Ž .n nž /dt dtnª`

Ž .PROOF. First, note that if L u again denotes the failure-rate parameteri
for the descendant of bug i still present in the software as of time u, for

Ž .i s 1, 2, . . . , n , then the compensator of the counting process N t with0
Ž Ž . Ž . Ž . .respect to the filtration s N u , L u , r u : i s 1, . . . , n , 0 F u F t isi i 0

n0t
r u L u du,Ž . Ž .ÝH i i

0 is1

which implies that

y15.7 x E N t q x y N t ª n E r t L t as x ª 0 q .� 4Ž . Ž . Ž . Ž . Ž .0 1 1

Thus, to compute the function

d
n t s E L t ,Ž . Ž .ndt

Ž . Ž . Ž .it suffices to study the derivatives of c t and c t . Properties of theid h
latter functions arise from the following application of the renewal argument.
For given nondecreasing function U which is integrable with respect to dG,
by conditioning on the time T of occurrence of the first software failure due1
to bug 1,

` ` tyl t yluc t s e U l dG l q p le c t y u du dG lŽ . Ž . Ž . Ž . Ž .H H HU U
0 0 0

5.8Ž .
` tyl ts e U l dG l q p q t y u c u du,Ž . Ž . Ž . Ž .H H U

0 0
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Ž . ` ylt Ž .where we recall that q t s H le dG l is the density of T . Thus c is0 i U
2 Ž . Ž .twice continuously differentiable if Hl U l dG l - `. Since f is twice dif-

Ž . Ž .ferentiable, by 1.2 and 5.7 ,

n 9 t s f 0 t q q ac X t q c Y t .Ž . Ž . Ž . Ž .Ž .n id h

The theorem is proved. I

Ž . Ž .Next, we provide a sufficient condition for 5.6 to hold, when h ? ' b ) 0
Ž . t Ž . Ž .is constant. First, let g*c t s H g x c t y x dx for an arbitrary differen-U 0 U

tiable function g . Then

g*c 9 t s g t c 0 q g*c X t ,Ž . Ž . Ž . Ž . Ž .U U U

g*c 0 t s g 9 t c 0 q g t c X 0 q g*c Y t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .U U U U

5.9Ž .

Ž . Ž . Ž . ` ylt Ž .From 5.8 , with g t ' q t s H le dG l , we have0

`
yl tc t s le dG l q pq*c t ,Ž . Ž . Ž .Hid id

0
5.10Ž .

`
yl tc t s h l e dG l q pq*c t .Ž . Ž . Ž . Ž .Hh h

0

Ž . X Ž . YŽ . Ž . Ž .Write KK t s ac t q c t . Then, in view of 5.9 and 5.10 ,id h

KK t s l2eyl t h l y a dG lŽ . Ž . Ž .Ž .H
Xq p aq t c 0 q q9 t c 0 q q t c 0 q q*KK t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .id h h

Ž . Ž . Ž .COROLLARY 5.2. Assuming 2.2 and h ? ' b G ar 1 y p ) 0, a sufficient
Ž .condition for 5.6 is that, for all t G 0,

f 0 t G q b 1 y p y a p l dG lŽ . Ž . Ž .Ž . Hn ½
`

m Žmq1.yinf supp G p q* t .Ž . Ž .Ž Ý5
ms0

5.11Ž .

PROOF. The renewal-type equation for KK preceding the corollary is
Ž . Ž . Ž .KK t s n t q pq*KK t , where

n t ' l2eyl t h l y a dG lŽ . Ž . Ž .Ž .H
Xq p aq t c 0 q q9 t c 0 q q t c 0 .Ž . Ž . Ž . Ž . Ž . Ž .id h h

Ž . yl t Ž . Ž . Ž .Now substitute q t s Hle dG l , h ' b, and use 5.9 and 5.10 at t s 0
to conclude that

n t s b 1 y p y a l2eyl t dG l y pq t l dG l .Ž . Ž . Ž . Ž . Ž .Ž . H Hž /
2 ylt Ž . yl t Ž .Since Hl e dG l rHle dG l is a decreasing function of t and has limit
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Ž Ž .. � Ž . 4equal to inf supp G s inf y ) 0: G y ) 0 , we have shown

n t G q t b 1 y p y a inf supp G y p l dG l .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Hž /
Ž . Ž .Now, by repeated substitution in the renewal-type equation KK t s n t q

Ž .pq*KK t ,

KK t s n t q pq*n t q ??? qpmq*Žm.)n t q pmq 1q*Žmq1.) KK t .Ž . Ž . Ž . Ž . Ž .
It follows by letting m ª ` that

KK t s pmq*Žm.)n tŽ . Ž .Ý
mG0

`
m Žmq1.G b 1 y p y a inf supp G y p l dG l p q* t .Ž . Ž . Ž . Ž .Ž . Ž . ÝH½ 5

ms0

Ž . Ž . Ž . Ž .Therefore, by 5.11 , f 0 t q q KK t G 0 as asserted in 5.6 . In

Ž .Another special case arises if p s 0, when condition 5.6 becomes

5.12 f 0 t q q l2 h l y a eyl t dG l G 0 for t G 0.Ž . Ž . Ž . Ž .Ž .Hn
Since h is assumed to be a nondecreasing function, it follows that

Hl2eyl th l dG lŽ . Ž .
2 yltHl e dG lŽ .

is a decreasing function of t, and the limit of this ratio as t becomes large is
Ž Ž Ž ... Ž .easily seen to be h inf supp G G h 0 . Thus we have the following result.

COROLLARY 5.3. When p s 0 and h is nondecreasing, a sufficient condition
Ž .for 5.6 is

5.13 inf f 0 t r l2eyl t dG l q q h 0 y a ) 0.Ž . Ž . Ž . Ž .Ž .H n½ 5tG0
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