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DYNAMIC SAMPLING POLICY FOR DETECTING A CHANGE
IN DISTRIBUTION, WITH A PROBABILITY BOUND

ON FALSE ALARM

BY BENJAMIN YAKIR

Hebrew University of Jerusalem

We show that if dynamic sampling is feasible, then there exist
surveillance schemes that satisfy a probability constraint on false alarm.
Procedures are suggested for detecting a change of a normal mean from 0

Ž . Žto a unknown positive value. These procedures are optimal up to a
.constant term when the post-change mean is known, and almost optimal

w Ž Ž .. xup to an o log 1ra term when the post-change mean is unknown.

1. Introduction. The subject of this article is the detection of a change
in distribution, when a probability constraint on false alarm is required. To
illustrate the problem, consider the following example. An agency monitors
periodically the level of contamination of the soil in the neighborhood of a
factory that produces some hazardous materials. The factory is considered
safe if the contamination level does not exceed the safety level set up by
regulations. If, however, the contamination does exceed the safety level,
severe measures may be taken against the owners of the factory.

Monitoring is based on the measured levels of contamination in samples of
soil; hence, it is subject to chance error. Since the declaration by the agency
that the contamination level is above the safety limit may have severe
consequences, the agency would like to minimize the possibility that such a
declaration is made due to sampling error alone. Hence, the statistical

Žprocedure employed should keep the probability of a type I error small. A
type I error, in this example, is to declare incorrectly that the safety limits

.were crossed.
The classical change point problem setup is one where independent obser-

vations X , X , . . . , X are identically distributed according to some F ,1 2 ny1 0
and X , X , . . . are independent and identically distributed according ton nq1
Ž .F / F . The change point n is unknown. A detection scheme consists of a1 0

stopping time N for the process of observations X , X , . . . at which one stops1 2
and declares a change to have occurred.

The speed of detection of a scheme may be measured by Lorden’s func-
w Ž .xtional Lorden 1971 , namely

q
<sup ess sup E N y n q 1 X , . . . , X ,Ž .n 1 ny1

1Fn-`
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Ž .or by the functional suggested by Pollak and Siegmund 1975

<sup E N y n N G n .Ž .n
1Fn-`

The rate of false alarm is customarily controlled by allowing only stopping
times that satisfy the expectation constraint E N G B for some prespecified`

constant B. This constraint is adequate when the cost of false alarm and the
Žcost of delay in detection are of the same order, or when the process and its

.surveillance is renewed after N. If this is not the case, and we want to
protect ourselves against a false alarm, it is reasonable to consider only
stopping times that satisfy the probability constraint

1 P N - ` F a ,Ž . Ž .`

where a is a given constant, 0 - a - 1.
ŽAll the classical procedures for detecting a change in distribution i.e.,

. Ž .Shewhart, CUSUM, Shiryayev]Roberts have P N - ` s 1. In fact, if a`

Ž .stopping time N satisfies 1 with a - 1, then the maximal expected delay
Ž . w Ž .measured by both functionals is infinite see Pollak and Siegmund 1975

Ž .xand Yakir 1995 . Thus, using a probability bound as a constraint on the rate
of false alarm in the traditional setup is problematic.

In order to overcome the problem of an infinite maximal delay when a
probability constraint is required, it was suggested that procedures having a

Ž .more flexible sampling structure be used. Assaf 1988 introduced dynamic
sampling into the surveillance context. A dynamic sampling policy allows the
statistician to determine the number of samples of soil that are sampled in
each monitoring period. The statistican can decide, based on past observa-
tions, to sample a larger number of samples in a single period, as long as
some budget constraint on the long-run number of samples is satisfied. Assaf
Ž . Ž .1988 and Assaf and Ritov 1989 showed that employing dynamic sampl-
ing policies can result in a dramatic reduction in the maximal expected

Ž .delay measured by the Pollak]Siegmund functional . In the non-Bayesian
setting, however, their work considered only stopping times that satisfy
Ž .P N - ` s 1.`

When dynamic sampling is feasible, one can allow a probability constraint
on the rate of false alarm but at the same time keep the maximal expected

Ž .delay bounded. This fact was shown in Assaf, Pollak, Ritov and Yakir 1993
for the special model where the observations in each period are distributed as
a Brownian motion. The drift of the Brownian motion in that model is 0
before the change and is m ) 0 after the change, where m is a known
constant. The speed of detection is measured by Pollak and Siegmund’s
functional. The budget constraint ensures that as long as n F n the average

Ž .number of samples sampled up to the nth sampling period is at most
Žproportional to n and that the average of the total number of samples is at

.most proportional to the average of the number of monitoring periods.
Formally, if t is the length of time during which the statistician observes thei
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process on the ith period, then these t ’s must satisfyi
n

E t F g n , n s 1, 2, . . . ,Ý` i
is1

N

E t F g E N , n s 1, 2, . . . ,Ýn i n
is1

for some prespecified constant g . It was shown in Assaf, Pollak, Ritov and
Ž .Yakir 1993 that for this model and under these constraints the probability

Ž .constraint 1 can still be met, and at the same time the detection of the
change point can be done efficiently.

The case expected to be encountered in practice is the case where m is
unknown. In such a case the budget constraint must be met for a wide range
of possible m’s. This requirement is not satisfied by the scheme described in

Ž .Assaf, Pollak, Ritov and Yakir 1993 .
In this work we propose the consideration of a mathematically simpler, yet

stronger, set of constraints on the sampling budget}an almost sure bound
rather than an average bound. Thus, the t ’s are required to satisfy thei
constraint

n

2 t F g n , n s 1, 2, . . . .Ž . Ý i
is1

This constraint is natural in the problem of surveillance with a probability
bound on false alarm, because a probability bound is likely to be needed when

Žthe setting of the problem is a ‘‘one shot’’ setting as opposed to a renewal
.setting . Hence, exceeding the budget cannot be compensated for in future

Žrepetitions of the monitoring process. The probability of false alarm and the
maximal average delay in this context are over all possible occurrences,

.rather than ‘‘in the long run.’’ Nevertheless, it will be shown that even
Ž .though the budget constraint in 2 is more restrictive than the average

budget constraint, efficient surveillance schemes are still applicable.
In the next section we study the case where m is known. A scheme is

constructed for which the expected delay is, for any given a , 0 - a - 1,
Ž .within a constant of the lowest possible a-dependent expected delay. In

Sections 3 and 4 the case where m is unknown is considered. A scheme is
constructed for which the expected delay is bounded for all m ) 0, and for

Ž . wwhich the expected delay is almost the minimal possible uniformly in m
Ž Ž ..over a compact interval that is bounded away from 0 and up to an o log 1ra

xterm as a ª 0 .
The functional we use to evaluate the performance of a surveillance

scheme is the functional of Pollak and Siegmund. However, some of the
results in this paper are still valid if Lorden’s functional is used instead.

2. Almost optimality, when the value of the post-change drift is
known. We consider the same model as described in Assaf, Pollak, Ritov

Ž .and Yakir 1993 , assuming that if one would take an infinite number of
samples during each sampling period, then one would observe independent
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Brownian motions with unit variance, having a zero drift before a change,
and a positive drift thereafter. The post-change drift parameter m is assumed
to be known. Let n denote the first sampling period for which the drift

� Ž . 4parameter is m. Let B t : 0 F t - ` be the Brownian motion on the nthn
Ž .sampling period and assume that the processes B t , n s 1, 2, . . . , aren

independent.
If t is the duration of time the statistician chooses to observe the processn
Ž . Ž .B t , the resulting observed sample path at the nth sampling period is B tn n

for 0 F t F t . Thus, unlike the classical fixed sampling rate, the dynamicn
� Ž . 4sampling setup allows variation on the part of B t : 0 F t - ` actuallyn

� Ž . 4observed. Formally, t is a stopping time for B t : 0 F t - ` such thatn n
� 4 � Ž . 4t ) t is in the s-field generated by B s : 0 F s F t , i s 1, 2, . . . , n y 1,n i i

� Ž . 4 � Ž .and B s : 0 F s F t . Denote by FF the s-field generated by B s : 0 F s Fn n i
4t , i s 1, 2, . . . , n. As a restriction on the duration of time the Browniani

Ž .motions can be observed, consider the set of constraints given in 2 .
Ž . Ž .A change point detection policy in short, ‘‘a policy’’ is a couple N, t ,

where the sampling policy t s t , t , . . . is a sequence of sampling times as1 2
described above, and N is an integer-valued stopping time with respect to the

� 4observed process; that is, N ) n is in the s-field FF . Notice that N follows an
Ž .probability constraint on false alarm for a given a if 1 is true. Furthermore,

we expect N to declare that a change has occurred if n - `. For this purpose
the following constraints are placed on N:
3 P N - ` s 1, 1 F n - `.Ž . Ž .n

Ž . �Ž . Ž . Ž . Ž .4Let G a s N, t : t satisfies 1 ; N satisfies 2 and 3 . Then we have
the following result.

Ž .THEOREM 1. There exists a constant C which depends on m and g such
that

2 1
<4 0 F inf sup E N y n N G n y log F C.Ž . Ž .n 2 agmŽ . Ž .N , t gG l 1Fn-`

Ž . Ž .PROOF. If N, t g G a , then N can be used to define a power-one test of
H : n s ` vs. H : n s 1, with significance level a . One rejects H if and only0 1 0
if N - `. As a result of the optimality of the SPRT, it can be concluded that
the H -expected sampling time until stopping satisfies1

N 2 1
E t G log .Ý1 i 2 amis1

Ž . Ž .From 2 we obtain the first inequality in 4 .
Ž .In order to prove the second inequality in 4 , it is enough to construct a

Ž . Ž .policy N, t g G a such that
2 1

<5 sup E N y n N G n F log q CŽ . Ž .n 2 agm1Fn-`

for some constant C. In the remainder of the proof such a policy is con-
structed.
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The main idea of the proof is to look at the connected sampling process and
to declare a change to have occurred as soon as the connected process crosses
a given threshold. The sampling policy is constructed by looking again at the
connected process. As long as the process is above a given line, g units are
sampled in each passing sampling period. If the process is below the line,
fewer samples are taken; hence, options for future sampling periods are
saved.

We begin by constructing the sampling policy t. The t ’s are definedi
recursively. Let

3 mt
t s inf t G 0: B t F mt y n g .Ž .1 1½ 54 4

Ž .Given that B t s x , t is defined by the equation1 1 1 2

3 2mt
t q t s inf t G t : B t y t q x F mt y n 2g .Ž .1 2 1 2 1 1½ 54 4

Ž .In a similar manner, for n G 2, if B t q x s x , then t isny1 ny1 ny2 ny1 n
required to satisfy

n ny1 ny1 3 nmt
t s inf t G t : B t y t q x F mt y n ng .Ý Ý Ýi i n i ny1½ 5ž / 4 4is1 is1 is1

Ž .It is clear from the definition of t that 2 is met.
We turn now to the determination of the stopping time N. Let

n

n t s max n G : t F t .Ž . Ý i½ 5
is1

Ž .Thus, n t q 1 is the sampling period that follows the accumulation of a total
Ž .of t units of sampling time. Denote by B t the process obtained by concate-

� Ž . 4nating B t : 0 F t F t , n s 1, 2, . . . . In other words, write, for 0 F t - `,n n

Ž . Ž .n t n t

B t s B t q B t y t .Ž . Ž .Ý Ýi i nŽ t .q1 iž /
is1 is1

� Ž . Ž . Ž . 4 Ž .Let T s inf t: B t G 1rm log 1ra q mtr2 T s ` if no such t exist and
Ž .let N s n T q 1.

Ž . Ž . Ž .In order to show that N satisfies 1 and 3 , notice that if n s `, then B t
Ž . Ž .is a standard Brownian motion. Therefore, P T - ` s a , hence 1 . If n - `,`

Ž .then B t can be presented as the concatenation of two processes. For t such
ny1 Ž .that 0 F t F Ý t , B t is distributed like a standard Brownian motion,is1 i

ny1 Ž . Ž .and for t such that Ý t - t, B t has a positive drift. As a result of 2 itis1 i
Ž . Ž .follows that if n - ` and t G g n y 1 , then the drift of B t is m. By

Ž .continuity of the sample paths, it follows that P T - ` s 1, n s 1, 2, . . . ,n

Ž .which leads to 3 .
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Ž .We turn now to the investigation of the performance of N, t as a surveil-
Ž .lance scheme. The following proof shows that N, t actually satisfies a

Ž .stronger version of 5 , namely

2 1q
<6 sup ess sup E N y n FF F log q C.Ž . Ž .n ny1 2 agm1Fn-`

Ž .In order to prove 6 , notice that from the strong Markov property of
Brownian motions it follows that

ny1
q q

<7 E N y n FF s E N y n B t .Ž . Ž . Ž . Ýn ny1 n iž /
is1

� Ž . 4 Ž .Let B t : t G s be the process B t for t G s, conditioned on the eventx
� ny1 Ž . 4Ý t s s, B s s x . The origin of this process can belong to one of twois1 i
sets:

3A n y 1 s x , s : 0 F s F g n y 1 , x s ms y n y 1 mgr4 ,Ž . Ž . Ž . Ž . Ž .� 41 4

A n y 1 s x , s : s s g n y 1 , mg n y 1 r2 F x .� 4Ž . Ž . Ž . Ž .2

Ž .If the origin is in A n y 1 , then not all of the sampling budget has been1
used by the end of the n y 1 sampling period. On the other hand, if the origin

Ž . Ž .is in A n y 1 , then there are no saved sampling options, but the vertical2
distance from the origin to the stopping line of T is less than the distance

Ž .from the point 0, 0 to that line.
Define an integer-valued r.v. M by the relation

3 mg
� 4M - n s B t ) mt y n , ;t such that t G s .Ž .x½ 5ž /4 4

Ž .Here M y n y 1 is a bound on the number of sampling periods that are
going to pass until there are no savings at the end of each sampling period.

Ž . Ž . Ž .If x, s g A n y 1 , then M is a geometric random variable. If x, s g1
Ž .A n y 1 , then M is bounded by such a geometric random variable.2

Ž . Ž .In order to evaluate 7 we condition on M. If M y n y 1 s n, then until
n sampling periods have elapsed, either N declares a change to have occurred
or

nqny1 nqny1

B t , t g A n y 1 .Ž .Ý Ýx i i 2ž /ž /
is1 is1

3 Ž .Hence, the process is above the line mt y n q n y 1 mgr2 for all t G4
nqny1 Ž .Ý t . If N ) n q n y 1, then N y n q n y 1 is 1rg times the realis1 i

sampling time that passes until N detects the change. This sampling time is
Ž .less than the random time it takes a Brownian motion with a drift parame-

Ž . Ž .ter m to reach the line mtr2 q 1rm log 1ra , where the Brownian process is
3conditional on the event that the process is above the line mt . In Lemma 1,4

which is stated and proved next, it is shown that the expected sampling time
Ž 2 . Ž .of the conditional Brownian motion is less than 2rm log 1ra . The proof of

the theorem thus follows. I
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Ž .LEMMA 1. Let X t be a Brownian motion with a drift parameter u ) 0.
� Ž . 4Consider, for b ) 0, the random time T s inf t: X t G b . Given a, 0 - a - u ,

and c, c F 0,
<E T X s ) c q as, ;s, 0 - s - ` F bru .Ž .Ž .

Ž . Ž .PROOF. Let Y t be the process X t y u t, conditioned on the event
� Ž . 4 Ž .X s ) c q as, ; s, 0 F s - ` . It will be shown that Y t is an F -sub-t
martingale, where

F s s X s : 0 F s F t , 0 F t .� 4Ž .t

Ž .Indeed, if X t s x, then

<E Y t q u F y Y tŽ . Ž .Ž .t

<s E X t q u y X t y u u X s ) c q as, ;s, 0 F s - `Ž . Ž . Ž .Ž .
8Ž .

<s E X u y u u X s y u s ) c q at y x q a y u s,Ž . Ž . Ž .Ždist .

;s, 0 F s - ` ..
Ž .Notice that X u y u u is a standard Brownian motion, a y u - 0 and c q

at y x - 0.
Let

K s X s y u s ) c q at y x q a y u s, ;s, 0 F s - ` .� 4Ž . Ž .
Since

< <0 s E X u y u u s E X u y u u K P K q E X u y u u K P K ,Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
Ž .it is enough, in order to prove that the last term in 8 is positive, to prove

Ž Ž . < .that E X u y u u K F 0.
Ž .Let S be the first time the process hits the line c q at given that it does .

By conditioning on S we get

<E X u y u u K s E c q at y x q a y u S | S F uŽ . Ž . Ž .Ž .Ž .
`

<q E X u y u u S s s dP S F s .Ž . Ž .Ž .H
u

Ž .The integrand is negative; hence, Y t is indeed a submartingale.
Ž .Since the stopping time T is bounded by b y c ra, we get by the optional

sampling theorem that

<0 s Y 0 F EY T s b y u E T X s ) c q as, ;s, 0 F s - ` .Ž . Ž . Ž .Ž .
Ž .The proof of Lemma 1 thence the proof of Theorem 1 is concluded. I

REMARK 1. Theorem 1 is similar to Theorem 2 is Assaf, Pollak, Ritov and
Ž . Ž .Yakir 1993 . Notice that the current result is stronger, because 2 is a

stronger set of constraints compared to the set of constraints considered in
Ž .Assaf, Pollak, Ritov and Yakir 1993 .

Ž .REMARK 2. From 6 it follows that Theorem 1 can be reformulated for a
Lorden-type functional.
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REMARK 3. If M is distributed as a geometric r.v., then the parameter of
� 2 4that r.v. is p s 1 y exp ym r8 , thus C F 1rp. Notice that this bound

Ž .cannot be improved by any policy N, t , having the same structure as the
policy in the proof of Theorem 1, for which the sampling policy t is deter-

1Ž .mined by lines of the form bmt y n 1 y b mt , n s 1, 2, . . . , where - b - 12

is some constant.

REMARK 4. The condition 0 - a - u in Lemma 1 is technical. Actually, a
stronger version of Lemma 1 can be proved, for which the upper and lower
lines are not required to be linear and the conditioned stopping time is proved

wto be stochastically smaller than the unconditioned stopping time see Yakir
Ž .x1990 .

3. A detection policy when the value of the post-change drift is
unknown. In this section we consider the situation in which the drift
parameter after the change is unknown, but positive. The model is basically
the model of the previous section, but m ) 0 does not have a prespecified

Ž . Ž .value. We regard pairs N, t as in the case for a known m, but 4 is replaced
by the more restrictive set of constraints:
9 P N - ` s 1 for 1 F n - `, m ) 0.Ž . Ž .n , m

where P is the distribution on the sequence of Brownian motions, forn , m

which the drift parameter changes to m at the n th sampling period.
Ž . �Ž . Ž . Ž . Ž .4Let G* a s N, t : t satisfies 1 , N satisfies 2 and 9 . It is not obvious

Ž .that G* a is not empty. Notice, for example, that the policy that was
Ž .constructed in Theorem 1 does not belong to G* a . In the following theorem

Ž .a policy that does belong to G* a is described.

Ž . Ž . Ž .THEOREM 2. There exists a policy N, t g G* a . Furthermore, N, t
satisfies

<10 sup E N y n N G n - ` for m ) 0.Ž . Ž .n , m
1Fn-`

� 4` � 4̀ � 4̀PROOF. Let m , g and a be sequences of positive numbers,k ks1 k ks1 k ks1
such that m ª 0, Ý` g s g and Ý` a s a .k ks1 k ks1 k

We construct an infinite triangular array of sampling times t k, k F n - `.n
For a given k, the sequence of stopping times t k, t k , . . . , t k, . . . is con-k kq1 n
structed in a similar way to the construction of t in the previous section, with
m s m and g s g . The construction is done in a recursive manner.k k

Consider first t1, where1
3 11t s inf t G 0: B t F m t y m g n g .Ž .� 41 1 1 1 1 14 4

Ž 1. 1 1Given that B t s x , we define t by solving the equation1 1 1 2
3 21 1 1 1 1t q t s inf t G t : B t y t q x F m t y m g n 2g .� 4Ž .1 2 1 2 1 1 1 1 1 14 4

2 Ž 1.The stopping time t is constructed by observing the process B t q t y2 2 2
Ž 1.B t :2 2

3 12 1 1t s inf t G 0: B t q t y B t F m t y m g n g .� 4Ž . Ž .2 2 2 2 2 2 2 2 24 4
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1 Ž 1 .We continue in this manner to define t by conditioning on B t qn ny1 ny1
x1 s x1 and solvingny2 ny1

n ny1 ny1 3 n
1 1 1t s inf t G t : B t y t F m t y m g n ng .Ý Ý Ýi i n i 1 1 1 1½ 5ž / 4 4is1 is1 is1

Ž k j .In a similar fashion, for 1 - k - n, we condition on B Ý t yny1 js1 ny1
Ž ky1 j . k k kB Ý t q x s x and define t by solvingny1 js1 ny1 ny2 ny1 n

n ny1 ky1 ky1
k k j j kt s inf t G t : B t q t y B t q xÝ Ý Ý Ýi i n n n n ny1½ ž / ž /isk isk js1 js1

3 n y k q 1
F m t y m gk k k 54 4

n n y k q 1 g .Ž . k

Finally,

ny1 ny1
3 1n j jt s inf t G 0: B t q t y B t F m t y m g n g .Ý Ýn n n n n n n n n4 4½ 5ž / ž /js1 js1

The sampling policy t is constructed by letting
n

jt s t , n s 1, 2, . . . .Ýn n
js1

From the construction it follows that
n n i n n n

j jt s t s t F n y j q 1 g F ng .Ž .Ý Ý Ý Ý Ý Ýi i i j
is1 is1 js1 js1 isj js1

Ž .Hence, 2 is satisfied.
In order to define the stopping time N, we denote by T and N thek k

Ž .random times constructed by observing the process B t . This process isk
formed by concatenating the sequence of processes

`
ky1 ky1

j j kB t q t y B t : 0 F t F t .Ý Ýn n n n n½ 5ž / ž /js1 js1 nsk

wThe construction of T and N is similar to the way T and N werek k
Ž . xconstructed by observing the process B t in the previous section.

We return to the construction of N. If N s 1, then N s 1. Otherwise, if1
N ) 1 but N n N s 2, then N s 2. In general, if H ny1N ) n y 1 but1 1 2 is1 i
H n N s n, then N s n.is1 i

The policy N is finite if and only if any of the policies N , 1 F k - `, isk
finite. Therefore,

` `

� 4P N - ` s P N - ` F a s a .Ž . D Ý` ` k kž /
ks1 ks1
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� 4 � 4Furthermore, since N s ` ; N s ` , it follows thatk

P N s ` F P N s ` s 0 for 1 F n - `, m G m .Ž . Ž .n , m n , m k k

Ž . Ž .Therefore, N, t g G* a .
Ž .In order to show 10 , let m ) 0 be given and let k be such that m G m .k

For n G k it is true that

E N y n , N G n E N y n , N G nŽ . Ž .n , m n , m
<E N y n N G n s F .Ž .n , m P N G n 1 y aŽ .n , m

� 4 � 4However, since N G n ; N G n and since N F N , it follows thatk k

E N y n , N G n F E N y n , N G nŽ . Ž .n , m n , m k k

<F sup E N y n N G n .Ž .n , m k k
1Fn-`

Moreover, for 1 F n - k, N behaves as if the change has occurred in the firstk
sampling period in which it was activated}the kth period. Therefore,

<k q sup E N y n N G nŽ .k F n -` n , m k k
<sup E N y n N G n FŽ .n , m 1 y a1Fn-`

Ž .from which 10 follows. I

4. Almost optimality, when the value of the post-change drift is
unknown. In this section we prove that when dynamic sampling is applica-
ble then the average run length to detection of a change is comparable to the
average run length to rejection of the null hypothesis in power-one sequential
testing. Hence, one loses almost nothing by not knowing in advance the

Ž .sampling period in which the drift may have changed. Formally, N, t can be
used as a test of H : n s ` vs. H : n s 1, with significance level a . It follows0 1

Ž .from Pollak 1978 that
2 <inf sup sup gm E N y n N G nŽ .n , m

Ž . Ž .N , t gG* a aFmFb 1Fn-`

1 1
G 2 log q log log q O 1 ,Ž .

a a

< Ž . <where 0 - a - b - ` and lim O 1 - `. We now state the main result ofa ª 0
this section.

THEOREM 3. For dynamic sampling
1

2 <11 inf sup sup gm E N y n N G n s 2 log 1 q o 1 ,Ž . Ž . Ž .Ž .n , m aŽ . Ž .N , t gG* a aFmFb 1Fn-`

Ž .where 0 - a - b - ` and lim o 1 s 0.a ª 0

We prepare the groundwork for the proof of Theorem 3 by stating and
proving two lemmas. These lemmas deal with the H -expected sampling time1
of a mixed SPRT.
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Ž .Assume that X ; N u , 1 , i s 1, 2, . . . , and definei i
nqk

S s X , S s S .Ýk , n i n 0, n
iskq1

Define, for 0 - b* - `,

1 u 2
b*

f x , t s exp u x y t du .Ž . H ž /b* 20

ŽThe stopping time of a mixed SPRT when the uniform distribution is used as
.the mixing distribution is

T s inf n: f S , n G 1ra T s ` if no such n exists .� 4Ž . Ž .n

LEMMA 2. Let p be given, 0 - a F p F b - b*. If u s p , for all i, then1 1 i

1 1
212 p ET F 2 log q log log q M*,Ž .

a a

where M* depends on b* but not on a or p .

Ž .PROOF. This is merely a restatement of Lemma 3 in Pollak 1978 .

LEMMA 3. Let p be given, 0 - a F p F b - b*. Suppose that u s 0 for1 1 i
1 F i - k and u s p for i ) k. If, for some constant M,i

y<E S T G k F kM ,Ž .k
then

1 1
2 <13 p E T y k T G k F 2 log q log log q kC*,Ž . Ž .

a a

where C* depends on b* only.

Ž .PROOF. Compute the left-hand side of inequality 13 by conditioning on
� 4S . On the event T G k, S s y we havek k

1 1¡
inf n: f S q y , n q k G , f y , k - ,Ž . Ž .k , n½ 5a a~14 T y k sŽ .

1
0, f y , k G .Ž .¢

a

Now

1 u 2
b*

f S q y , n q k s exp u S q y y n q k duŽ . Ž . Ž .Hk , n k , n½ 5b* 20

1 u 2 u 2
b*

s exp u y y k exp uS y n du .H k , n½ 5 ½ 5b* 2 20

Therefore,
2b*Ž .

f S q y , n q k G exp b* y n 0 y k f S , n .Ž . Ž . Ž .k , n k , n½ 52
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Ž . Ž � 4.Returning to 14 , it can be concluded that on the event T G k, S s yk

2¡ 1 b*Ž .
inf n: f S , n G exp yb* y n 0 q k ,Ž . Ž .k , n ½ 5½ 5a 2

1~T y k F f y , k - ,Ž .
a
1

0, f y , k G .Ž .¢
a

Ž . � Ž . Ž .2 4Moreover, if f y, k - 1ra , then exp b* y n 0 y k b* r2 - 1ra . Thus, by
w � Ž . Ž .2 4xLemma 2 for a significance level of a exp b* y n 0 y k b* r2 ,

22 <p E T y k T G k , S s y F 2 log 1r a exp b* y n 0 y k b* r2Ž . Ž .� 4Ž . ž /k

2q log log 1r a exp b* y n 0 y k b* r2Ž . Ž .� 4ž /
q M*.

Ž .The fact that if a ) 1 and b ) 0 then log a q b F b q log a and some easy
calculations lead to the proof of the lemma. I

PROOF OF THEOREM 3. The idea behind the proof is to notice that if the
change occurred in the first period, then the stopping time of a mixed SPRT,
based on sampling the process at the end of each constant time interval of

Ž .length g , satisfies 11 . This statement is still correct if the change occurred
after a small number of sampling periods.

Ž 1. Ž .Consider, for some b, b 4 a , a policy N , t that satisfies 10 and1
Ž 1. Ž .N , t g G* b . If we use this policy until it declares a change to have1

Ž .occurred, and then use a mixed SPRT with significance level a as our
stopping rule, we will get that, with high probability, the number of sampling
periods it takes for the detection of a change is only slightly larger than the
number of sampling periods until H is rejected by the SPRT.0

Ž .We prove the theorem by constructing an appropriate policy N, t . Choose
�Ž i.4̀0 - b - 1. Let m be a natural number to be determined later. Let N , ti is2

Ž 1.be independent copies of N , t .1
Start with the definition of t. Let t s t1 during the first N sampling1

periods. After these sampling periods, sample the process for m periods at a
constant rate. Therefore, t s g for N - i F N q m and the first cycle isi 1 1
complete. Set t s t2 for the next N sampling periods, after which sample at2
a constant rate and so on and so forth.

Here N is defined by the process over the constant rate periods. More
precisely, it is defined by the sequence

1
X s B t y B t , k s 1, 2, . . . ,Ž .Ž .k t Žk . t Žk .'mg

k ky1Ž . Ž . Ž . Ž .where t k s Ý N q m and t k s Ý N q m q N .is1 i is1 i k
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Ž . � Ž . 4Let S and f x, t be defined as before, and let T s inf n: f S , n G 1ra .n n
Notice that N declares a change to have occurred at the end of the first cycle

T Ž .at which T rejects H . Hence, N s Ý N q m .0 is1 i
Given the sequence N s 0, N , N , . . . , notice that the X ’s are indepen-0 1 2 k

dent and normally distributed with variance 1 and mean parameter u . Ifk
n s `, then u s 0 for all k. Otherwise,

ky1¡ 1r2
m mg , n F N q m q N ,Ž . Ž .Ý i k

is1

1r2k ky1g~u s m N q m y n , 0 - n y N q m q N F m ,Ž . Ž .Ý Ýk i i kž /ž /mis1 is1

k

0, N q m - n .Ž .Ý i¢
is1

Ž . Ž .Therefore, P T - ` F a and P T - ` s 1 for 1 F n - ` and m ) 0.` n , m

� 4 � 4 Ž .Since N - ` ; T - ` it follows that P N - ` - a . Furthermore, due`

to the fact that

`

� 4 � 4 � 4N - ` l T - ` ; N - `F i
is1

Ž .it can be shown that P N - ` s 1 for 1 F n - ` and m ) 0. Hence,n , m

Ž . Ž .indeed, N, t g G* a .
Ž < .In order to evaluate E N y n N G n letn , m

ky1

J s sup k G 0: N q m q N - nŽ .Ý i k½ 5
is1

be the number of times the sequence N , N , . . . declares a change to have0 1
occurred before the real change point n . For any given n , J is a bounded r.v.
Hence,

`

< <E N y n N G n s E N y n N G n , J s jŽ . Ž .Ýn , m n , m
js0

P J s j b jŽ .n , m
<P J s j N G n F F .Ž .n , m P N G n 1 y aŽ .n , m

15Ž .

Ž < .The next step is to bound E N y n N G n , J s j . In order to do that,n , m

Ž .1r2notice that if J s 0, then N G n and u s m mg for all k. Using Lemma1 k
Ž � 4 � 4.2, one gets since J s 0 ; N G n

1 1
2 <mgm E T N G n , J s 0 F 2 log q log log q M*Ž .

a a
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for all m, a F m F b. Now, from the definition of N it follows that

<E N y n N G n , J s 0Ž .n , m

T

<s E N q M y n N G nŽ .Ýn , m i 1ž /
is1

T

<F E N y n N G n q m q E N q m .Ž .Ž . Ýn , m 1 1 1, m iž /
is2

For i G 2 the N ’s are independent of T. Therefore, for a F m F b,i

m q L 1 1
2 <16 gm E N y n N G n , J s 0 F 2 log q log log q M* ,Ž . Ž .n , m ž /m a a

where

<L s sup sup E N y n N G n .Ž .n , m 1 1
aFmFb 1Fn-`

In a similar fashion, for j ) 0,

1r2¡m mg , j - k ,Ž .
1r2j jy1g

m N q m y n , 0 F n y N q m q N F m,Ž . Ž .Ý Ýi i jž /ž /mis1 is1~u sk
j

0, 0 - n y N q m F N ,Ž .Ý i jq1
is1¢0, j ) k .

If J s j and N G n , then either

jy1 j

N q m q N - n and N q m G nŽ . Ž .Ý Ýi j i
is1 is1

or
jy1 j

N q m - n and N q m q N ) n .Ž . Ž .Ý Ýi i jq1
is1 is1

� 4 � 4Nonetheless, in both cases, N G n , J s j ; T G j, J s j .
� 4On the event N G n , J s j it is true that

jT

N y n s N q m y n y N q mŽ . Ž .Ý Ýi iž /
isjq1 is1

j T

F N y n y N q m q m q N q m .Ž . Ž .Ý Ýjq1 i iž /
is1 isjq2

� 4Conditional on the event N G n , J s j , the sequence N , N , . . . isjq2 jq3
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independent of T. Therefore, for all a F m F b,

T

<E N q m N G n , J s jŽ .Ýn , m iž /isjq2

<F L q m E T y j y 1 N G n , J s j .Ž . Ž .n , m

j Ž .Moreover, by conditioning on n y Ý N q m , it can be shown thatis1 i

j

E N y n y N q m N G n , J s j F L q m.Ž .Ýn , m jq1 iž /
is1

Furthermore, if T s j, then N y n F m. The above results can be summa-
rized in the inequality:

< <17 E N y n N G n , J s j F m q m q L E T y j N G n , J s j .Ž . Ž .Ž . Ž .n , m n , m

� 4 � 4Given the event J s j , the probability of the event N - n is less than a .
Thus,

<E T y j T G j, J s jŽ .n , m
<E T y j N G n , J s j F .Ž .n , m 1 y a

Lemma 3 is applicable since

y< qE S J s j jEZŽ .n , m jy <E S T G j, J s j F F ,Ž .n , m j 1 y a 1 y a

Ž .where Z is a standard normal. From 17 it follows that

2 <gm E N y n N G n , J s jŽ .n , m

1 m q L 1 1
2F gm m q 2 log q log log q C*j .ž /1 y a m a a

18Ž .

All that is needed, in order to complete the proof of Theorem 3, is to tie up
Ž . Ž . Ž .the loose ends. Combining 15 , 16 and 18 , one gets, for all a F m F b,

1 1
2 <gm E N y n N G n F B 2 log q log log q B ,Ž .n , m 1 2ž /a a

where

L
B s 1 q r 1 y aŽ .1 ž /m

<L 1 y aP J s 0 N G nŽ .n , mG 1 qž /m 1 y a

` <L P J s j N G nŽ .n , m
<s 1 q q P J s 0 N G nŽ .Ý n , mž /m 1 y ajs0



B. YAKIR2214

and
2`L jC* q mg b 1 y aŽ .

jB s sup sup sup 1 q bÝ2 2ž /m 1 y aŽ .aFmFb 0-a-a 1Fn-` js10

<qM*P J s 0 N G n .Ž .n , m

Notice that B and B do not depend on n or m. Moreover, B is bounded1 2 2
and B satisfies lim B s 1 q Lrm. The limit, 1 q Lrm, can be made as1 a ª 0 1
close to 1 as one wishes by choosing m large. This completes the proof of the
theorem. I
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