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ASYMPTOTIC OPTIMALITY OF DATA-DRIVEN NEYMAN’S
TESTS FOR UNIFORMITY1

BY TADEUSZ INGLOT AND TERESA LEDWINA

Technical University of Wrocław

Data-driven Neyman’s tests resulting from a combination of Neyman’s
smooth tests for uniformity and Schwarz’s selection procedure are investi-
gated. Asymptotic intermediate efficiency of those tests with respect to the
Neyman]Pearson test is shown to be 1 for a large set of converging
alternatives. The result shows that data-driven Neyman’s tests, contrary
to classical goodness-of-fit tests, are indeed omnibus tests adapting well to
the data at hand.

1. Introduction. Consider testing the hypothesis H: P s P , P a0 0
known continuous distribution on R, against K : P / P , based on n indepen-0
dent observations distributed according to P.

There are many consistent tests for testing H against K. The most
Ž . Ž .popular are Kolmogorov]Smirnov KS and Cramer]von Mises CM tests.´

Consistency here means that those tests are capable of detecting any devia-
tion from P provided that the sample size is large enough. However, there is0
now strong evidence that, in fact, for moderate sample sizes, only a few
deviations can be detected by these tests with substantial frequency. First of

w Ž .all this feature is seen in simulations cf. Quesenberry and Miller 1977 ,
Ž . Ž .xMiller and Quesenberry 1979 and Kim 1992 . Moreover, there are some

theoretical results explaining the behavior of the power function. We shall
mention here two kinds of such explanations.

The first is based on the local asymptotic theory and is due to Neuhaus
ˇŽ . Ž .1976 and Milbrodt and Strasser 1990 . It is related to the Hajek and Sidak´ ´

Ž .1967 method of analysis of the asymptotic power around the hypothesis.
Ž . Ž .The results obtained by Neuhaus 1976 and Milbrodt and Strasser 1990

show how the above-mentioned and some other tests distribute their powers
in the space of all alternatives when the sample size is large. From these
investigations it follows that there are only very few directions of deviations
from the hypothesis for which the tests are of reasonable asymptotic power.
The directions are also identified in the papers. Roughly speaking, these
directions correspond to some very smooth departures from the null distribu-

Ž .tion low-frequency alternatives . Moreover, from the ‘‘principal component
representation’’ of the local asymptotic power, it follows that there is only one
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direction with highest asymptotic power that is possible. In each other
direction the power is smaller. For ‘‘bad’’ directions the power is close to the
significance level. Therefore, it is not surprising that one of the conclusions in
Milbrodt and Strasser is that each of the KS and CM tests behaves very
much like a parametric test for a one-dimensional alternative and not like a
well-balanced test for higher-dimensional alternatives. Thus, at least from a
local point of view, the tests do not have the omnibus property usually
attributed to them.

The second approach we would like to mention is to investigate the relative
efficiency of a given test with respect to the Neyman]Pearson test for an
alternative of interest. Such an approach for the KS, CM and other goodness-

Ž .of-fit tests has been developed by Nikitin 1984, 1995 . He used the notion of
Bahadur efficiency and has shown that if one restricts attention to one-
parameter location or scale alternatives, then, for each of the above-men-
tioned tests, there is only a single alternative for which the test is locally
Ž .under location or scale close to 0 as efficient as the Neyman]Pearson test.

Ž .Using some results of Inglot and Ledwina 1990 and exploiting the notion of
intermediate efficiency, it can be shown that the same conclusion follows. For
a justification see subsection 7.7 of the present paper. Some related results
concerning the local equivalence of intermediate and Bahadur slopes of a

Ž .class of goodness-of-fit tests can be found in Koning 1992, 1993 .
The mentioned inability of commonly used goodness-of-fit tests to detect

Ž .higher-frequency alternatives has caused renewed interest in Neyman’s 1937
Ž .smooth test of fit. For details see Rayner and Best 1989, 1990 , Milbrodt and

Ž . Ž . Ž .Strasser 1990 , Eubank and LaRiccia 1992 and Kaigh 1992 . To enlarge
the applicability of the original Neyman’s test and to make the test consistent
against any alternative, some data-driven versions of Neyman’s test have

Ž .recently been proposed by Bickel and Ritov 1992 , Eubank and LaRiccia
Ž . Ž . Ž . Ž .1992 , Kim 1996 , Eubank, Hart and LaRiccia 1993 , Ledwina 1994 and

Ž .Kallenberg and Ledwina 1995a . After the first draft of this paper was
Ž .submitted, we received a manuscript on a related topic by Fan 1996 .

Ž .Extensive simulations presented in Ledwina 1994 , Kallenberg and Ledwina
Ž . Ž . Ž .1995a, 1995b , Bogdan 1995 and Bogdan and Ledwina 1996 show that the

Ž .data-driven Neyman’s test proposed in Ledwina 1994 and extended in
Ž .Kallenberg and Ledwina 1995a compares very well to classical tests and

other competitors.
The present paper provides some theoretical results supporting the nice

Ž .simulation results for the data-driven test proposed in Ledwina 1994 .
Namely, for the class of data-driven smooth tests described in Kallenberg and

Ž .Ledwina 1995a , asymptotic power is investigated via the intermediate
efficiency approach. More precisely, for a given member of the class of tests, a

Žlarge set of alternatives, say P ’s, converging to the null distribution as then
.sample size n increases is found for which the data-driven Neyman’s test is

asymptotically as efficient as the Neyman]Pearson test for testing uniformity
against P . It is shown that in this set the actual direction of approach to then
null hypothesis is immaterial but the rate of convergence plays a role. So, the
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data-driven Neyman’s tests considered in this paper have qualitatively dif-
ferent asymptotic properties from those of the KS and CM tests.

The outline of the paper is as follows. In Section 2 we state the assump-
tions, illustrate our main results on asymptotic efficiency and discuss some of
their implications. Section 3 contains a modified version of a basic result from

Ž .Kallenberg 1983 which is a useful tool in our investigation of efficiency.
Section 4 presents the intermediate slope of T . In Section 5 the intermediateS
slope of the Neyman]Pearson test for P against P is given and discussed.0 n
Section 6 contains results on the asymptotic optimality of T . The main resultS

Ž .of Section 4 Theorem 4.1 is proved in subsection 7.5. The proof is based on a
series of auxiliary results which are collected in subsections 7.1, 7.3 and 7.4.
In particular, in subsection 7.1 we develop new results related to Schwarz’s
rule. Subsection 7.3 deals with properties of information projection of alterna-
tives onto increasing exponential families related to the considered test. In
subsection 7.4 the asymptotic behavior of Schwarz’s rule designed to select a

Ž .member of an increasing with n exponential family is studied under general
Ž .as a rule nonexponential alternatives P converging to the null hypothesis.n
Subsection 7.2 provides a large deviation result for T , which is exploited inS
Section 4. Subsection 7.7 contains a justification that, for KS and CM, local

Ž .Bahadur efficiency investigated in Nikitin 1984 is equal to the intermediate
efficiency.

2. Notation, assumptions and discussion of results. We start with a
formal definition of the class of tests we shall investigate. To motivate further
considerations, we find it useful to first mention Neyman’s argument which
resulted in the Neyman smooth test.

When testing H against K without loss of generality attention can be
w xrestricted to i.i.d. X , . . . , X with values in 0, 1 . The null hypothesis is then1 n

w xthat the X are uniform on 0, 1 . Suppose an alternative has the formi

k

2.1 g x ; u s exp u f x y c u ,Ž . Ž . Ž . Ž .Ýk j j k½ 5
js1

w x Ž .where f , f , . . . , f are orthonormal in L 0, 1 with f ' 1 and c u is a0 1 k 2 0 k
normalizing constant defined by

k
1

2.2 c u s log exp u f x dx .Ž . Ž . Ž .ÝHk j j½ 50 js1

The system of orthonormal Legendre polynomials was Neyman’s original
choice for the f . Neyman’s smooth test statistic with k components is thenj
given by

2k n
y1r22.3 T s n f XŽ . Ž .Ý Ýk j i½ 5

js1 is1

Ž 1r2 .and is a locally under u ’s, 1 F i F k, converging to 0 at the rate ni
Ž .optimal under some side conditions test statistic for testing uniformity
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Ž .against g x; u . A consequence of the above is that rejecting the nullk
hypothesis when T is large is a powerful test provided that the alternativek

Ž .g x; u is close to the distribution of the data at hand. Otherwise the powerk
of Neyman’s test can be unsatisfactory. For some evidence, see Neyman
Ž . Ž .1937 , Inglot, Jurlewicz and Ledwina 1990a , Inglot, Kallenberg and

Ž . Ž .Ledwina 1994 and Kallenberg and Ledwina 1995a .
Ž .To overcome this difficulty, Ledwina 1994 and Kallenberg and Ledwina

Ž .1995a proposed considering an increasing family of exponential models
Ž . Ž .g x; u , 1 F k F m , choosing first, via Schwarz’s 1978 criterion, in thatk n

Ž .family the density with dimension S, say , fitting the data at hand and then
applying to the data the test statistic T .S

Ž .Denoting by LL u the log-likelihood based on X , . . . , X with densityk 1 n
Ž .g x; u and definingk

12.4 L s n sup LL u y k log n ,Ž . Ž .k k 2
kugR

Schwarz’s criterion produces the data-driven order

2.5 S s min k : 1 F k F m , L G L , 1 F j F m .� 4Ž . n k j n

Ž .Theorem 4.4 in Kallenberg and Ledwina 1995a shows that if the growth of
m is suitably related to oscillations of f ’s 1 F j F m , then T is consistentn j n S
against essentially any alternative.

Ž . wIt should be recalled also that, under P , lim P S s 1 s 1 cf.0 nª` 0
Ž . xKallenberg and Ledwina 1995a , Theorem 3.2 . This result implies that if a
� 4 Ž .sequence of alternatives P is contiguous to P , then lim P S s 1 s 1n 0 nª` n

as well. So, under contiguous alternatives, T degenerates to T and noS 1
interesting conclusions on asymptotic power can follow. Hence, to get nontriv-
ial results, the convergence of P to P should be slightly slower than undern 0
contiguity. Due to the characterization of contiguity given by Oosterhoff and

Ž .van Zwet 1979 , the above implies we shall restrict attention to P ’s suchn
that

2.6 lim H P , P s 0 and lim nH 2 P , P s `,Ž . Ž . Ž .n 0 n 0
nª` nª`

Ž . Ž .where H P , P is the Hellinger distance between P and P . Note that 2.6n 0 n 0
Ž .is naturally related to Kallenberg’s 1983 notion of intermediate efficiency.

Ž .A goal of the present paper is to find alternatives satisfying 2.6 for which
T is asymptotically as efficient as the Neyman]Pearson test for P againstS 0
P . To this end, we shall show that if P is smooth enough to be welln n

Ž . Ž .approximated by some exponential family g x; u , given by 2.1 , with k andk
u depending on n, and the number of models m that are allowed to ben

Ž .chosen with Schwarz’s rule 2.5 is well balanced with the magnitude of
Ž .H P , P , then, under such P ’s, the intermediate asymptotic efficiency of Tn 0 n S

to the Neyman]Pearson test is 1. If for some alternatives it holds that the
efficiency of T to the Neyman]Pearson test is 1, we shall say that T isS S
asymptotically optimal under such alternatives or, merely, asymptotically
optimal.
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Below we state the assumptions we impose on the orthonormal systems
wŽ . Ž .x wŽ .xA1 and A2 , the number m of models A3 , the smoothness of alterna-n

Ž . wŽ .xtives via approximation properties of exponential models 2.1 A5 and the
Ž . wŽ .x Ž .rate of convergence to 0 of H P , P A6 . Assumption A4 is a technicaln 0

one.

Ž . Ž . w x2.1. Basic assumptions. Let f x , f x , . . . , x g 0, 1 , be an orthonor-1 2
w x Žw x .mal sequence in L 0, 1 s L 0, 1 , l , l the Lebesgue measure, satisfying2 2

1
2.7 f x dx s 0, j s 1, 2, . . . .Ž . Ž .H j

0

Assume
A1 sup f x - `,Ž . Ž .j

x

A2 V s O k v for some v G 0,Ž . Ž .k

where
2.8 V s max sup f x .Ž . Ž .k j

1FjFk x
3 � 4For some r such that r ) v q , let m be a sequence such thatn2

A3 m ª ` as n ª ` and m s O n1rŽ2 rq1. .Ž . Ž .n n

� 4 w xAssume P is a sequence of distributions on 0, 1 possessing densities pn n
with respect to l. By P we shall denote throughout the uniform distribution0

w x Ž . w xon 0, 1 , while p x ' 1, x g 0, 1 , shall stand for its density. We shall0
assume that p approaches p , as n is growing. Moreover, we shall assumen 0

Ž .A4 There exists M such that, for sufficiently large n,
yM M w xe F p x F e , x g 0, 1 .Ž .n

Ž . m nNow set f s f , . . . , f and let ( stand for the inner product in R .1 m n

Ž . Ž .A5 There exists u s u , . . . , u such that1 m n

5 5g s log p y u (f is bounded,`m nn

1
5 5D s log p y u (f s O ,2m n rn ž /mn

5 5 5 5 w xwhere ? denotes the supremum norm and ? is the L 0, 1 norm.` 2 2

Ž . Ž . r Ž .A6 H p , p ª 0 as n ª ` and m H p , p ª `.n 0 n n 0

Recall that, for any two densities p and q with respect to l, the Hellinger
Ž .distance H p, q is defined by

1r2
1 2' '2.9 H p , q s p y q dx .Ž . Ž . Ž .H½ 5

0

Ž . Ž .REMARK 2.1. The trigonometric basis satisfies A1 and A2 with v s 0.
1Ž . Ž .For Legendre polynomials A1 and A2 hold with v s .2
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REMARK 2.2. Assume that f s log p g W r, r G 1, where W r denotesn n 2 2
w x Žry1.the Sobolev space of functions f on 0, 1 for which f is absolutely

1Ž Žr .Ž ..2 Ž .continuous and H f x dx - `. Then A5 holds for Legendre polynomi-0
w Ž . x Ž .als cf. Barron and Sheu 1991 , Section 7 . A5 holds also for a trigonometric

Ž j.Ž . Ž j.Ž .basis provided that the extra boundary condition f 0 s f 1 , 1 F j F r, isn n
w Ž . ximposed see Barron and Sheu 1991 , Section 7 . u is then the vector of the

first m Fourier coefficients of log p with respect to a suitable basis.n n
Ž yrq1. Ž yrq1r2 .Moreover, g s O m for Legendre polynomials and g s O mm n m nn n

for trigonometric functions.

REMARK 2.3. In what follows the subscript n in m shall be suppressed inn
the notation.

� 4 Ž . Ž .REMARK 2.4. A set of p ’s satisfying A4 ] A6 shall be denoted by PP .n m r
This is the set of sequences of alternatives to uniformity under which we

Žshall investigate asymptotic optimality of the test based on T asymptoticS
.optimality of T for short .S

2.2. Asymptotic optimality of T : an illustrative result. In this section weS
shall present one theorem stating asymptotic optimality of T under a givenS
choice of the growth rate of m in S. The result follows from Corollary 6.12.
For simplicity, we will consider alternatives of the form

yj w x2.10 p x s 1 q n g x , x g 0, 1 , j G 0,Ž . Ž . Ž .n

1 Ž .where H g x dx s 0.0
We shall compare T and the most powerful test under p via theS n

intermediate efficiency approach. This approach can be considered as inter-
mediate between the asymptotic Pitman and the exact Bahadur approach.
That is, when calculating the intermediate efficiency, the significance level,
say a , tends to 0 but not too fast, the alternative p tends to the hypothesisn n
but also not too fast and a and p agree in such a way that the power at pn n n
stays away from 0 and 1. Moreover, similar to the Pitman and Bahadur
concepts, the intermediate efficiency can be interpreted in terms of the
sample sizes required to attain, with a level tests, the same power at ann
alternative p .n

Given p , let a be defined byn n

52.11 a s exp y nD p p 1 q o 1 ,Ž . Ž .� 4Ž .n n 0

Ž 5 .where D p p is the Kullback]Leibler distance between p and p . Recalln 0 n 0
Ž .that, restricting attention to 2.10 , the Pitman efficiency is calculated under

1 Ž 5 .j s , while the Bahadur efficiency deals with j s 0. Then D p p sn 02
Ž y1 . Ž 5 .O n and D p p s constant, respectively. This illustrates the fact thatn 0

Ž .2.11 defines any intermediate significance level in between an exponentially
Ž . Ž .small one the Bahadur efficiency and a constant one the Pitman efficiency .
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Let

n
y1r2Ž0.V s n Var log p X log p X y E log p XŽ . Ž . Ž .� 42.12Ž . Ýn P n n i P n0 0½ 5

is1

be a standardized version of the logarithm of the Neyman]Pearson test
statistic for P against P .0 n

Ž .For given n and a as in 2.11 , let TT and V be test functions onn n; a n; an n

the significance level a rejecting P for large values of T and V Ž0.,n 0 S n
respectively. The critical value of T , defining precisely a , is given inS n
Corollary 6.11.

Finally, set

N n , p s inf N : E V G E TT for all k s 0, 1, 2, . . . .� 4Ž .T , V n P Nqk ; a P n ; an n n n

THEOREM 2.5. Assume that g has finite number of non-zero Fourier coef-
ficients in the cosine basis. For r G 2 let m s cn1rŽ2 rq2., where c is an
arbitrary constant. Then, for any

3 r
j g ,ž /2 2r q 2 2r q 2Ž .
Ž .and related p given by 2.10 , it holds thatn

N n , pŽ .T , V n
2.13 lim s 1.Ž .

nnª`

The same statement holds for the basis of Legendre polynomials provided
r G 3 and

2 r
j g , .ž /2r q 2 2r q 2

Ž .REMARK 2.6. The left-hand side of 2.13 is the intermediate efficiency of
T with respect to V Ž0.. If the efficiency equals 1 we say that T is asymptoti-S n S
cally efficient or asymptotically optimal. So, for any g satisfying the assump-

Ž .tions of Theorem 2.5, T is asymptotically optimal. The alternatives 2.10 areS
called the contamination model, while the function g is called the direction of

Ž .the alternative 2.10 . For instance, taking as g succeeding functions
Ž .f , f , . . . from the cosine or Legendre systems, 2.13 holds. So, approaching1 2

p in any of directions f , j s 1, 2, . . . , T is asymptotically optimal. Recall0 j S
that goodness-of-fit tests like KS or CM are asymptotically optimal in one
direction, only. T does not have this drawback. This implies, for example,S

Ž .also that T is more efficient than KS or CM in all directions f ’s butS j
possibly one in which the tests are equally efficient. Moreover, the above
holds for a large range of rates of convergence of p to p , provided that then 0

Ž .a ’s are related to these rates via 2.11 . In particular, for large r the intervaln
1yr rŽ2 rq2. yŽ3q2 v .r2Ž2 rq2.Ž . wn , n with v s 0 and v s for cosine and Legendre2

xbasis, respectively corresponds to almost all intermediate ranges in between
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the Pitman and Bahadur efficiency. Similar statements hold true also for
Žother standard alternative models considered in the literature cf. Corollary

.6.12 .

3. Intermediate efficiency and asymptotic optimality: definitions
and tools. In this section we present a generalization of the notion of

Ž .intermediate efficiency introduced and investigated by Kallenberg 1983 . We
Ž .also give a related version of Kallenberg’s 1983 result on calculating inter-

mediate efficiency.
� 4 Ž .Let P , p g P be a family of distributions on a sample space XX , BB .p

Suppose the hypothesis H : p g P has to be tested against H : p g P ;0 0 1 1
P y P , where P and P are given subsets of P.0 0 1

Let a be a sequence of levels such that a ) 0 andn n

3.1 lim a s lim nyt log a s 0 for some 0 - t F 1.Ž . n n
nª` nª`

� 4Let p be a sequence of alternatives withn

3.2 lim H p , P s 0, lim nH 2 p , P s `.Ž . Ž . Ž .n 0 n 0
nª` nª`

Ž . Ž . Ž .Here H p , P s inf H p , p and H p , p denotes the Hellinger dis-0 p g P 0 00 0

tance between the probability measures P and P .p p 0

Let V Ž i., i s 1, 2, be some test statistics and let VV Ž i. be a sequence of testn n; a n

functions for H against H , rejecting H for large values of V Ž i.. Assume0 1 0 n

3.3 sup E VV Ž i. F a , i s 1, 2,Ž . p n ; a n0 n
p gP0 0

and

3.4 0 - lim inf E VV Ž2. F lim sup E VV Ž2. - 1.Ž . p n ; a p n ; an n n nnª` nª`

Define

N Ž2. Ž1. n , pŽ .V , V n

s inf N : E VV Ž1. G E VV Ž2. for all k s 0, 1, 2, . . .� 4p Nqk ; a p n ; an n n n

3.5Ž .

and set

N Ž2. Ž1. n , pŽ .V , V n
Ž2. Ž1.3.6 e s lim .Ž . V , V nnª`

� 4REMARK 3.1. Recall that elements of p come from P , the given set ofn 1
alternatives. All notions below are related to the set P . However, to simplify1
the notation and formulations, we shall not repeat it throughout. In most
applications the form of P shall follow from the context. Moreover, in this1

Ž .paper the limit 3.6 shall be calculated only for some family PP of sequences
� 4 Ž .p , p g P , which obey 3.2 . Therefore we shall introduce the followingn n 1
notion of intermediate efficiency.
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Ž .DEFINITION. If the limit 3.6 exists and does not depend on the special
� 4 � 4 Ž . Ž .sequences p and a such that 3.1 ] 3.4 hold, we say that the asymptoticn n

Ž2. Ž Ž2.. Ž1. Ž Ž1..t intermediate efficiency of VV or V with respect to VV or V inn; a n; an n

the family PP equals e Ž2. Ž1..V , V

The following lemma is an immediate generalization of Lemma 2.1 and
Ž .Remark 2.1 in Kallenberg 1983 .

LEMMA 3.2. Let V Ž i., i s 1, 2, be test statistics rejecting the hypothesis forn
large values of V Ž i.. Suppose that there exist positive constants cŽ i. andn

Ž i.Ž .positive functions b p , p g P i s 1, 2, such that,1

i a for all sequences P , p g P , of alternatives satisfying 3.2 ,� 4Ž . Ž . Ž .p n 1n

lim P 1 y « F ny1r2V Ž1.rbŽ1. p F 1 q « s 1 for each « ) 0,Ž .Ž .p n nnnª`

� 4i b for all sequences p g PPŽ . Ž . n

lim P 1 y « F ny1r2V Ž2.rbŽ2. p F 1 q « s 1 for each « ) 0,Ž .Ž .p n nnnª`

1
Ž i. Ž i.'ii lim y log sup P V G n x s cŽ . Ž .p n n2 0½ 5nxnª` p gPn 0 0

yŽ1 yt .r2'if n x ª ` and x s o nŽ .n n

� 4and for all sequences p g PPn

2Ž2. Ž2.c b pŽ .n
iii lim s EE exists, 0 - EE - `.Ž . Ž1. Ž1.½ 5c b pnª` Ž .n

Then the asymptotic t intermediate efficiency of V Ž2. with respect to V Ž1. in then n
family PP exists and is given by e Ž2. Ž1. s EE.V , V

REMARK 3.3. Making an analogy to the Bahadur slope, for any statistic,
Ž) . Ž . wŽ . Ž .x Ž . Ž) .say V , satisfying i a or b and ii of Lemma 3.2 with a positive cn

Ž) . Ž) .� Ž) .Ž .42and a positive b , we shall call c b ? its intermediate slope.

REMARK 3.4. A proof of Lemma 3.2 consists of rewriting line by line the
Ž .proof of Lemma 2.1 of Kallenberg 1983 and is here omitted. For details see

Ž .Inglot 1996 . However, we find it useful to mention here that the proof relies
on checking that for any particular sequence of alternatives under considera-

Ž . Ž . Ž . Ž . Ž .tion, under 3.1 ] 3.4 , conditions i ] iii imply that 3.6 exists and that
2Ž2. Ž2.

Ž2. Ž1.N n , p c b pŽ . Ž .V , V n n
3.7 lim s lim .Ž . Ž1. Ž1.½ 5n c b pnª` nª` Ž .n

Ž . � 4Moreover, to guarantee that 3.4 holds, the rates of convergence of p andn
a have to be related. To this end, in Kallenberg’s paper first the significancen
level is chosen. Consequently, the rate t and the related critical value are
determined. Then attention is focused on those alternatives which satisfy
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Ž . Ž . Ž .3.2 and 3.4 . So, in such an approach, the rate of convergence in 3.2
depends on the choice of t . Obviously, one can reverse the order of the above

Ž .steps. Namely, first fix a rate of convergence in 3.2 and find a critical value
Ž .for which 3.4 holds. Then calculate the related significance level and deter-

mine the value of t . In subsections 6.2 and 6.3 of the present paper just the
second approach shall be applied.

1� 4 Ž .REMARK 3.5. Letting PP consist of all p satisfying 3.2 , choosing t sn 3

and t s 1 corresponds to Kallenberg’s notion of asymptotic i-efficiency and
strong asymptotic i-efficiency, respectively.

We shall say that a test statistic V is asymptotically t efficient if itsn
asymptotic t intermediate efficiency in a family PP with respect to the
Neyman]Pearson test exists and equals 1.

If V is t efficient for some t , and some family PP we shall say that V isn n
asymptotically optimal.

4. Intermediate slope of T . Recall that PP is a set of sequencesS m r
� 4 Ž . Ž . Ž . Ž .p ’s satisfying A4 ] A6 . In addition to A4 ] A6 , assume now that forn

3� 4 Ž .each sequence p g PP there exists b g v q , r such thatn m r 2

A7 m bH p , p s O 1 as n ª `Ž . Ž . Ž .n 0

and
Ž .ybr 2 bq1y1A8 n log n H p , p ª ` as n ª `.Ž . Ž .Ž . n 0

Ž .Ž .The following key theorem shows that T fulfills condition i b of LemmaS
3.2.

Ž . Ž . Ž .THEOREM 4.1. Under A1 ] A8 for any « g 0, 1 ,
y1n TS

4.1 lim P y 1 F « s 1.Ž . n 5ž /2 D p pnª` Ž .n 0

REMARK 4.2. In view of the famous Bahadur]Raghavachari theorem on
w Ž .x Ž2.Ž .exact slopes cf. Theorem 7.5 in Bahadur 1971 , the function b ? s

Ž 5 . Ž .Ž .2 D ? p is the most obvious candidate to satisfy i b for T , if one aims at0 S
proving the asymptotic optimality of T . On the other hand, the structure ofS
T is not explicitly related to such a choice. A naive choice would beS
Žv .Ž . S 2 Ž . Žv .Ž .b p s Ý a , where a s E f X . But the function b ? is not an js1 j j P jn

deterministic one! Anyway, in subsection 7.4, using some results of subsec-
wtion 7.1, we show that it is possible to find a deterministic dimension l cf.

Ž . Ž .x Že.Ž . l 2 Ž .Ž . Ž7.32 and 7.33 such that b p s Ý a satisfies i b for T cf.n js1 j S

. Ž2.Ž . Že.Ž .Theorem 7.20 . However, a relation in between b ? and b ? is not
Že.Ž . Ž2.Ž .obvious, also. To show that b ? and b ? differ by a negligible quantity

Ž .cf. Theorem 7.21 , we express both functions via Euclidean norms of the
vector u U, where u U is the vector of parameters of the information projection
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Ž . w Ž . Ž .of the alternative p into the exponential family g x; u cf. 7.19 , 7.51n m
Ž .xand 7.52 . To get the last result, several properties of the projection are

elaborated in subsection 7.3. A formal proof of Theorem 4.1 is given in
subsection 7.5.

Ž .The following corollary to Theorem 7.9 shows that condition ii of Lemma
3.2 is satisfied.

Ž . Ž . � 4PROPOSITION 4.3. Suppose A1 ] A8 hold. Let x be a sequence ofn
2 Ž yŽ1 q2 v .r2 .positive numbers such that x ª 0, nx ª ` and x s o m . Thenn n n

1 1
24.2 lim log P T G nx s y .Ž . Ž .0 S n2 2nxnª` n

Ž .PROOF. To get 4.2 , it is enough to check the assumptions of Theorem 7.9
Ž . y1Ž . 2for d n s m . Under the choice of x it suffices to prove n log n mu ª 0n n m

as n ª `. However, a much stronger statement is true. Namely,
y 1Ž . 2 Ž by v . 2 y 1Ž . 2 Ž by v . 2n log n m u ª 0. Indeed, since n log n m u sm m
Ž .� b Ž .42q1r b � w Ž .x2q1r b 4y1 Ž . Ž .O 1 m H p , p log n n H p , p , by A7 and A8 then 0 n 0

conclusion follows. I

Now set
1r2Ž2. � 44.3 V s T .Ž . n S

Theorem 4.1 and Proposition 4.3 yield the following result.

Ž . Ž . Ž2. Ž .Ž . Ž .COROLLARY 4.4. If A1 ] A8 hold, then V satisfies i b and ii ofn
1Ž2. Ž2. 1r2Ž . � Ž 5 .4Lemma 3.2 with c s and b ? s 2 D ? p .02

5. Intermediate slope of the Neyman–Pearson test for P against0
P . For a given alternative P with a density p , setn n n

5.1 e s E log p X , s 2 s Var log p XŽ . Ž . Ž .0 n P n 0 n P n0 0

and
ny1Ž0. '5.2 V s n s log p X y e .� 4Ž . Ž .Ž . Ýn 0 n n i 0 n

is1

V Ž0. is the standardized version of the logarithm of the Neyman]Pearson testn
statistic for P against P .0 n

Ž0. Ž .Ž . Ž0.Ž .First we shall prove that V obeys i a of Lemma 3.2 with b ? suchn
that

Ž0. y1 55.3 b p s s D p p y e .� 4Ž . Ž . Ž .n 0 n n 0 0 n

To this end, we shall use the bounds given in the following two lemmas.

Ž .LEMMA 5.1. Assume that A4 holds. Then, for sufficiently large n,
2 5 25.4 H p , p F D p p y e F C M H p , p ,Ž . Ž . Ž . Ž .Ž .n 0 n 0 0 n 1 n 0

Ž . � 41r2where C M s 8 q 8 cosh M .1
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Ž 5 . 1Ž Ž . . Ž .PROOF. Since D p p y e s H p x y 1 log p x dx, it is enoughn 0 0 n 0 n n
to show

2'5.5 x y 1 log x F C M x y 1Ž . Ž . Ž . Ž .1

Ž yM M . Ž .for x g e , e . To get 5.5 , it is enough to check that the function
X Y2'Ž . Ž .Ž . Ž . Ž . Ž . Ž .g x s C M x y 1 y x y 1 log x obeys g 1 s g 1 s 0 and g x ) 01

Ž yM M . Ž .for x g e , e . Since the functions in 5.5 are continuous and e F 0, the0 n
proof is completed. I

By a similar argument one obtains the following result.

Ž .LEMMA 5.2. Assume A4 is satisfied. Then, for sufficiently large n,

1 2 25.6 p x log p x dx F C M H p , p ,Ž . Ž . Ž . Ž . Ž .H n n 2 n 0
0

Ž . � 4where C M s 4 exp 3Mr2 .2

� 4 Ž . 2Ž . 2ŽTHEOREM 5.3. Suppose p obeys A4 , H p , p ª 0 and nH p ,n n 0 n
. Ž .p ª ` as n ª `. Then, for any « g 0, 1 ,0

Ž0.Vn
5.7 lim P y 1 F « s 1.Ž . n Ž0.'ž /nª` n b pŽ .n

Ž .PROOF. To prove 5.7 , it is enough to show that
n1

5L s P log p X y D p p� 4Ž . Ž .Ýn n n i n 0ž n is1
5.8Ž .

5G « D p p y e ª 0� 4Ž .n 0 0 n /
Ž .as n ª `. To this end, we shall apply Proposition 7.17 with Y s log p X yi n i

Ž 5 . 2 2 2 2D p p , KK s 2 M, b s E Y and B s nb . Hencen 0 i P i n 1n

22 5y« n D p p y eŽ .n 0 0 n
5.9 L F 2 exp .Ž . n 2½ 552 b q 1.62«M D p p y eŽ .Ž .1 n 0 0 n

Ž . 2 Ž . 2Ž . Ž .Since, by 5.6 , b F C M H p , p , an application of 5.4 and the as-1 2 n 0
2Ž . Ž .sumption nH p , p ª ` proves 5.8 . In 0

Ž0. Ž0.Ž .The next result allows us to replace s in V and b ? by a slightly0 n n
simpler expression.

Ž . Ž .LEMMA 5.4. If A4 holds and H p , p ª 0 as n ª `, thenn 0

y1
12 25.10 s log p x dx ª 1 as n ª `.Ž . Ž .H0 n n½ 5

0
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PROOF. It is enough to show
2 y1

1 1 25.11 log p x dx log p x dx ª 0 as n ª `.Ž . Ž . Ž .H Hn n½ 5 ½ 5
0 0

Ž .To get 5.11 , we shall apply the inequalities
2'5.12 log y G y y 1 y C M y y 1 ,Ž . Ž . Ž . Ž .3

22 '5.13 log y G C M y y 1 ,Ž . Ž . Ž .4

w yM M x Ž . M r2 Ž . yMwhere y g e , e , C M s 2 e , C M s 2 e , which can be proved3 4
Ž .similarly to 5.5 .

Ž .By 5.12 and Jensen’s inequality,

125.14 y C M H p , p F log p x dx F 0.Ž . Ž . Ž . Ž .H3 n 0 n
0

Ž .Moreover, 5.13 implies

1 2 25.15 log p x dx G C M H p , p .Ž . Ž . Ž . Ž .H n 4 n 0
0

Ž . 2 M 2Ž .Hence the left-hand side of 5.11 does not exceed 2 e H p , p and, byn 0
Ž .H p , p ª 0, the conclusion follows. In 0

Set
12 25.16 v s log p x dx .Ž . Ž .H0 n n

0

Ž .REMARK 5.5. In view of 5.10 , under the assumptions of Theorem 5.3, an
equivalent form of the Neyman]Pearson statistic V Ž0. given byn

ny1Ž1. '5.17 V s n v log p X y e� 4Ž . Ž .Ž . Ýn 0 n n i 0 n
is1

Ž .satisfies 5.7 with
Ž1. y1 55.18 b p s v D p p y e .� 4Ž . Ž . Ž .n 0 n n 0 0 n

Ž1.Ž . Ž2.Ž .Now we shall establish some conditions under which b p rb p ª 1n n
Ž2.Ž . � Ž 5 .41r2 Ž .as n ª `, where b p s 2 D p p cf. also Corollary 4.4 .n n 0

Ž . 5 5THEOREM 5.6. Assume A4 holds and p y p ª 0 as n ª `. Then`n 0

y1r2Ž1. 55.19 b p 2 D p p ª 1 as n ª `.� 4Ž . Ž . Ž .n n 0

Ž 5 . 1Ž Ž . .2 Ž Ž ..PROOF. Observe that D p p y e s H p x y 1 c p x dx,n 0 0 n 0 n 1 n
Ž 5 . 1Ž Ž . .2 Ž Ž .. 1 2 Ž . 1Ž Ž .2 D p p s H p x y 1 c p x dx and H log p x dx s H p x yn 0 0 n 2 n 0 n 0 n

.2 Ž Ž .. Ž . Ž .y1 Ž . Ž .y2 w1 c p x dx, where c y s y y 1 log y, c y s 2 y y 1 y log y y3 n 1 2
x Ž . Ž .y2 2 w yM M x Ž .y q 1 , c y s y y 1 log y and y g e , e . Setting c 1 s 1, i s3 i

1, 2, 3, we see that the c ’s are continuous with continuous derivatives.i
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Therefore, the uniform convergence of p to p implies that each of then 0
� Ž .4 1Ž Ž . .2considered expressions can be written as 1 q o 1 H p x y 1 dx. Hence0 n

Ž .5.19 follows. Moreover,
5 2D p p y e s O H p , p ,Ž .Ž . Ž .n 0 0 n n 0

5 2D p p s O H p , p ,Ž .Ž . Ž .n 0 n 05.20Ž .
v2 s O H 2 p , p . IŽ .Ž .0 n n 0

ŽREMARK 5.7. Using some results collected in subsection 7.3 cf. Lemmas
. 5 57.11 and 7.12 , it follows easily that p y p ª 0 provided that g ª 0.`n 0 m n

Ž .This, however, is satisfied in standard situations cf. Remark 2.2 . Hence
Ž . Ž .Theorem 5.6 holds if A1 ] A5 are satisfied and we additionally assume that

Ž .in A5 g ª 0 as n ª `.m n

Ž .Ž . Ž .Having checked i a , we shall state some conditions ensuring that ii of
Lemma 3.2 holds for V Ž1., also. For this purpose we shall use Theorem 5.8n
below, being an immediate consequence of a Cramer-type large deviations´

Ž . wresult obtained by Book 1976 cf. Lemma 4.1 in Jureckova, Kallenberg andˇ ´
Ž .xVeraverbeke 1988 .

Set
5.21 Y s vy1 log p X y e .� 4Ž . Ž .ni 0 n n i 0 n

Then V Ž1. s ny1r2Ýn Y .n is1 ni

THEOREM 5.8. If there exist positive constants B, CX, CY such that, for all
< <complex h, h - B,

X < hYn1 < Y5.22 C F E e F C for all n ,Ž . P0

� 4 2then for all sequences x of positive numbers such that x ª 0 and nx ª `n n n
as n ª ` we have

n1 1y12 '5.23 lim nx log P Y G x n s y .Ž . Ž . Ýn 0 ni nž /' 2nª` n is1

Theorem 5.8 and Remark 5.5 imply the following result.

2Ž . 2Ž . � 4COROLLARY 5.9. Suppose H p , p ª 0, nH p , p ª `, p obeysn 0 n 0 n
1Ž1. Ž1.Ž . Ž . Ž .Ž . Ž .A4 and 5.22 . Then V satisfies i a and ii of Lemma 3.2 with c sn 2

Ž1.Ž . Ž .and b ? as in 5.18 .

Ž .The rest of this section deals with sufficient conditions for 5.22 to hold.
Set

y1
k x s log p x H p , p .� 4Ž . Ž . Ž .n n n 0

Ž . Ž . 2ŽPROPOSITION 5.10. Assume A4 holds, H p , p ª 0 and nH p ,n 0 n
.p ª ` as n ª `. Further assume there exists d ) 0 such that0

1
5.24 sup exp d k x dx - `.� 4Ž . Ž .H n

0n
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Ž . Ž .Then 5.22 holds. In particular, 5.22 is satisfied if

sup E ed Yn1 - `P0
n

for some positive d .

1 1� Ž .4 Ž . � Ž .4 � Ž .4PROOF. Since exp tk x G i x s 1 q tk x exp tk x , t ) 0,n n n n2 2
1 Ž . Ž . � Ž .4therefore H i x dx - `. Put I s sup Hd k x exp d k x dx, J s0 n n n n

yM� Ž .4 � 4 Ž .sup Hexp d k x dx and B s d C M min 1, 1r2 IJ , C M s 2 e . Then' Ž .n n 4 4
< < Ž . y1 Ž .take h s h q ih with h - B and set g x s v h log p x . It follows1 2 1 0 n 1 n

that
< < < y1 <E exp hY s exp yhv eŽ . Ž .P n1 0 n 0 n0

1 1
= exp g x dx q exp g xŽ . Ž .Ž . Ž .H H1 1

0 05.25Ž .

y1= exp iv h log p x y 1 dx .Ž .Ž .Ž .0 n 2 n

Ž . Ž . Ž . < i t <Using the triangle inequality, 5.11 , 5.14 , 5.15 and the relation e y 1 F
< <t , t g R, we get

< <E exp YŽ .P n10

1
< <G C exp y g x dxŽ .Ž .H 1ž 05.26Ž .

1 y1< < < <y exp g x v h log p x dx ,Ž . Ž .Ž .H 1 0 n 2 n /0
M r2'� 4where C s exp y2d 2 e .

Ž . Ž .By choice of B, 5.15 , 5.16 and Jensen’s inequality applied to the first
Ž . < � 4 <integral in 5.26 , we get E exp hY G 1r4 J and the lower estimate inP n10

Ž .5.22 follows.
< < Ž . Ž . Ž .For h - B, by 5.14 and 5.15 , the upper estimate in 5.25 can be easily

derived. I

Ž .Another sufficient condition for 5.22 follows from the following result.

Ž . Ž . 2ŽPROPOSITION 5.11. Suppose A4 holds, H p , p ª 0 and nH p ,n 0 n
.p ª ` as n ª `. Further assume there exists a positive constant C such that0

y15 55.29 log p H p , p F C for all n.� 4Ž . Ž .`n n 0

Ž .Then 5.24 holds.

Finally, consider some known families of distributions which are used in
the statistical literature to describe the path along which one goes from
alternative to hypothesis. Different aspects of using such local families are

Ž .discussed in Kallenberg and Drost 1993 .

PROPOSITION 5.12. Suppose that alternative densities have the form
w x5.30 p x s 1 q c g x , x g 0, 1 ,Ž . Ž . Ž .n n n
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1 Ž . 5 5 5 5where H g x dx s 0. Assume c ª 0 and 0 - inf g F sup g - `.2 `0 n n n n n n
Ž . Ž . Ž . Ž .Then H p , p s O c , 5.29 is satisfied and 5.22 holds.n 0 n

PROPOSITION 5.13. Let
w x5.31 p x s exp c w x y d for x g 0, 1 ,� 4Ž . Ž . Ž .n n n n

5 5where d is a normalizing constant. Assume sup w - ` and`n n n
Ž . Ž . Ž . Ž .inf Var w X ) 0. Then H p , p s O c and 5.22 holds.n P n n 0 n0

Ž . Ž . Ž . y1Ž Ž Ž ..PROOF. We have p x s 1 q c g x , where g x s c exp c w x yn n n n n n n
Ž .. Ž .exp d exp yd . Notice that d ª 0 and, by Lemma 7.1, g satisfies then n n n

assumptions of Proposition 5.12. I

PROPOSITION 5.14. Assume that p is given byn
1rss w x5.32 p x s g 1 q c z x y 1 , x g 0, 1 , s ) 0,Ž . Ž . Ž .Ž .½ 5n n n n

Ž .where g is a normalizing constant. Assume that c ª 0 as n ª `, z x G 0n n n
5 5 w Ž .xs Ž . Ž .a.e., sup z - ` and inf Var z X ) 0. Then H p , p s O c and`n n n P n n 0 n0

Ž .5.22 holds.

Ž . Ž . �w Ž s Ž .PROOF. We have p s 1 q c g x , where g x s g 1 q c z x yn n n n n n n
.x1r s y14 y1 Ž . 2 Ž . j1 y g c . Using the inequality 1 q j y q l j y F 1 q y F 1 qn n

1 12Ž . w x w Ž . Ž .j y q r j y , y g y , , j ) 0 where the form of l j and r j changes2 2
Ž x w x xas j g 0, 1 , j g 1, 2 and j G 2 , we infer that g ª 1 as n ª ` and gn n

satisfies the assumptions of Proposition 5.12. I

Ž . Ž .REMARK 5.15. The family 5.30 is called the contamination family, 5.31
Ž .is known as the exponential family, while 5.32 is called the Renyi-type´

1Ž . Ž .family. For s s 1, 5.32 reduces to 5.30 , while s s leads to the Hellinger-2

type family.

6. Asymptotic optimality of T . We start this section with some re-S
� 4sults concerning conditions on sequences of alternatives p and maximaln

Ž1. Ž2. � 41r2 wŽ .Ž . Ž .Ž .allowable t for which the slopes of V and V s T exist i a , i bn n S
Ž . xand ii hold and are asymptotically equivalent, i.e.

2Ž2. Ž2.c b pŽ .n
6.1 EE s lim exists and EE s 1.Ž . Ž1. Ž1.½ 5c b pnª` Ž .n

Next, in subsection 6.2, for any sequence of alternatives for which we
established the above, leading terms of critical values of V Ž1. and the relatedn

� 4 Ž .sequence a of significance levels are given. The resulting t , satisfying 3.1n
and not exceeding the maximal value for t obtained in Section 6.1, is given

Ž .also. Finally in Section 6.3, we give a and state conditions under which 3.4n
is fulfilled for V Ž2. . This guarantees that the result EE s 1 can be interpretedn; a n

Ž .in terms of 3.7 , that is, in the traditional meaning as the limit of sample
sizes needed to achieve the same power by the two considered a level tests.n
The conditions determine also a family PP in which the t efficiency exists.
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6.1. Equivalence of slopes. Theorem 4.1, Proposition 4.3, Theorem 5.8,
Remark 5.7 and Theorem 5.6 imply the following results.

Ž . Ž .THEOREM 6.1. Assume A1 and A2 hold and r is a fixed number such
3 1rhthat r ) v q . Take m s cn , where h G 2r q 1 and c is an arbitrary2

Ž .constant. Let m, n be any numbers satisfying 3 q 2v rh - m - n - 2rrh.
Ž . Ž .Let PP be the set of all sequences of alternatives for which A4 ] A6 arem r

fulfilled and define PPU to be the subset of PP for which g ª 0 as n ª `m r m r m
Ž .and 5.22 is satisfied. Further set

� 4 U m 2 n 2DD m , n s p g PP : n H p , p ª 0 and n H p , p ª ` .Ž . Ž . Ž .� 4n m r n 0 n 0

Ž . Ž .Then, for all sequences of alternatives from DD m, n and t s h y 2v y 1 rh,
EE exists and EE s 1.

COROLLARY 6.2. If, in addition to the assumptions of Theorem 6.1, it is
3r Ž) . Ž .known that the p ’s come from the Sobolev space W with r ) ) v q ,n 2 2

Ž .then, taking in Theorem 6.1 r s r ) the number m of exponential models, the
rule S is looking through as well as the range of m and n are naturally related
to the degree of smoothness of alternatives. In particular, if the p ’s are fromn
C`, then choosing m s cn1rŽ2 rq1. with r large enough, any intermediate range

Ž .of convergence in between the Pitman and Bahadur cases can be attained.

� 4 UPROOF OF THEOREM 6.1. Let p g PP be such that for some m - n withn m r
Ž . m 2 Ž .3 q 2 v rh - m - n - 2 rrh it holds that n H p , p ª 0 andn 0

n 2Ž . Ž .n H p , p ª `. First, notice that the definition of DD m, n implies thatn 0
Ž . 2 r 2Ž . 2 r n 2Ž . 2 rrhynA6 holds. Indeed, m H p , p s c n H p , p n ª `.n 0 n 0

Ž . Ž .Next, we show that A7 and A8 are satisfied. To this end, denote
� j 2Ž . 4j s sup j : n H p , p ª 0 . Of course, m F j F n . Then we get immedi-0 n 0 0

3 Ž . Ž .ately hj r2 ) v q , j r2 1 y j - r and j r2 1 y j - hj r2. So, choose0 0 0 0 0 02

b such that

3 j hj0 0
max v q , - b - min r , .½ 5½ 52 2 1 y j 2Ž .0

Then, by the definition of j and the choice of b,0

m2 bH 2 p , p s c2 b n j 0 H 2 p , p nyŽ j 0y2 b rh . ª 0.Ž . Ž .n 0 n 0

Ž .Moreover, since 2br 2b q 1 ) j , the definition of j implies that0 0

Ž .2 br 2 bq1n
2H p , pŽ .n 0½ 5log n

Ž .y2 br 2 bq1j 2 2 b rŽ2 bq1.yj0 0 � 4s n H p , p n log n ª `.Ž .n 0

Now, by the results listed at the beginning of this section, Theorem 6.1
follows. I
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REMARK 6.3. If m s n1rhd , where d is any sequence such that d n«
n n n

tends to ` for every « ) 0 and tends to 0 for every « - 0, then Theorem 6.1
remains true.

The next result is a counterpart of Theorem 6.1 for the case of a slowly
increasing sequence m s m .n

Ž . Ž .THEOREM 6.4. Assume A1 and A2 hold and r is some fixed number
3satisfying r ) v q . Let m s m be any sequence increasing to ` such thatn2

ny« m ª 0 for every « ) 0. Let m be any number satisfying 2v q 3 - m - 2r.
Let PPU be as in Theorem 6.1 and definem r

� 4 U m 2 2 r 2DD m s p g PP : m H p , p ª 0, m H p , p ª ` .Ž . Ž . Ž .� 4n m r n 0 n 0

� 4 Ž . Ž .Then, for each t - 1 and any sequence p g DD m , 6.1 holds.n

U 3 m 2� 4 ŽPROOF. Let p g PP be such that, for some m ) v q , m H p ,n m r n2
. 2 r 2Ž . Ž .p ª 0 and m H p , p ª `. First, notice that A6 is contained in the0 n 0

3Ž . Ž .definition of DD m . Next, observe that A8 holds for every b ) v q . Indeed,2

by the assumptions,

Ž .2 br 2 bq1n
2H p , pŽ .n 0ž /log n

y2 rŽ .ybrr 2 bq1n
2 r 2s m H p , p m ª `.Ž .n 0 ž /½ 5log n

� j 2Ž . 4Now set j s sup j : m H p , p ª 0 . Then m F j F 2r. Choose a b0 n 0 0
3 2 b 2Ž . Ž .satisfying v q - b - j r2. Hence A7 follows since m H p , p s0 n 02

j 0 2Ž . yŽ j 0y2 b .m H p , p m ª 0. By the results listed at the beginning of thisn 0
section, the proof is concluded. I

Ž .REMARK 6.5. Faster growth of m in A3 is possible. However, at leastn
using the methods of proof employed in this paper, any other choice of mn

Ž .leads to a more narrow range of m and n under which 6.1 holds. In
particular, if m ny1rŽ2 vq4. ª `, as n ª `, we are not able to find a sequencen

Ž .of alternatives under which 6.1 is fulfilled.

� 4 Ž1.6.2. Allowable a and some examples. Denote by VV the test havingn n; a n

the significance level a and rejecting P for large values of V Ž1.. First wen 0 n
Ž .shall identify those alternatives satisfying 6.1 for which

6.2 0 - lim inf E VV Ž1. F lim sup E VV Ž1. - 1.Ž . P n ; a P n ; an n n nnª` nª`

For each such sequence we find an asymptotic formula for corresponding
Ž .significance level and the related value of t fulfilling 3.1 .

To this end we shall use the following result.
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Ž . 5 5 2Ž .PROPOSITION 6.6. If A4 holds, p y p ª 0 and nH p , p ª `,`n 0 n 0
then

Ž1. Ž1.'6.3 P V y n b p F x ª F x , x g R ,Ž . Ž . Ž .Ž .n n n

where F stands for the standard normal distribution function.

w Ž .xPROOF. Set cf. 5.21
y1y1r2 'X s n Y s n v log p X y e� 4Ž .Ž .ni ni 0 n n i 0 n

and

B2 s n Var X .n P n1n

y1r2 Ž1.Ž . Ž1. 1r2 Ž1.Ž . n ŽObserve that E X s n b p and V y n b p s Ý X yP ni n n n is1 nin
. 2 y2� 1Ž . 2 1 2 w Ž 5 .x24E X . Moreover B s v H p y 1 log p q H log p y D p p .P ni n 0 n 0 n n 0 n n 0n

Ž .The argument from the proof of Theorem 5.6 and the relations 5.20 yield
2 Ž . Ž . Ž .B s 1 q o 1 . Therefore, by A4 and 5.20 ,n

n y13 2 '< < 5E X y E X F B n v log p y D p p� 4Ž .Ž .Ý P ni P ni n 0 n n n 0 `n n
is1

y1'F O 1 n H p , p .Ž . Ž .� 4n 0

wHence, Liapounov’s central limit theorem for double arrays works cf. Serfling
Ž . x � Ž1. 1r2 Ž1.Ž .4 y1 Ž .1980 , page 32 and V y n b p B is asymptotically under Pn n n n

2 Ž .standard normal. Since B s 1 q o 1 , the proof is concluded. In

Let c be an arbitrary constant. Proposition 6.6 implies that the test with
critical region

Ž1. Ž1.'6.4 V G n b p q cŽ . Ž .� 4n n

has asymptotic power staying away from 0 and 1. Since all of the results of
Ž1.Ž .subsection 6.1 concern p ’s such that x s b p satisfies the assumptionsn n n

w Ž . Ž . Ž .xof Theorem 5.8 cf. 5.20 , A6 and 5.22 , therefore the sequence of related
Ž .significance levels of 6.4 is defined via

21 Ž1.'6.5 y log a s n b p 1 q o 1 .Ž . Ž . Ž .Ž .� 4n n2

5 5Moreover, since throughout subsection 6.1 it is assumed that p y p ª 0`n 0
Ž . Ž .cf. Remark 5.7 , by 5.19 we get

1r2Ž1. 56.6 b p s 2 D p p 1 q o 1 .� 4Ž . Ž . Ž .Ž .Ž .n n 0

So
56.7 y log a s nD p p 1 q o 1 .� 4Ž . Ž .Ž .Ž .n n 0

Ž . 1yt Ž 5 . Ž .Hence 3.1 leads to the following condition on t : n D p p s o 1 . Byn 0
Ž . 1yt 2Ž . Ž .5.20 an equivalent condition is n H p , p s o 1 . So, for instance, forn 0

� 4 Ž .any sequence of alternatives p from the set DD m, n , defined in Theoremn
6.1, we can determine related t defining a ’s under which the tests basedn
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Ž2. � 41r2 Ž1. Ž .on V s T and V , respectively, satisfy 3.1 when observations obeyS n
1yt 0 2Žthe distribution P . Namely, setting t s 1 y m, we get n H p ,n 0 n

. Ž . Ž . Žp s o 1 and t - h y 2v y 1 rh cf. the formula for the maximal allow-0 0
.able t given in Theorem 6.1 . Hence we get the following result.

COROLLARY 6.7. Suppose the assumptions of Theorem 6.1 are satisfied.
� 4 Ž . � 4 Ž .Then for any sequence p g DD m, n , a defined by 6.7 and t s 1 y m then n

Ž .condition 3.1 is satisfied. Obviously, EE s 1 still holds.

EXAMPLE 6.8. Consider the following alternatives:

Ž .a Contamination model:
yj w x6.8 p x s 1 q n g x , x g 0, 1 , j ) 0,Ž . Ž . Ž .n

31 rŽ .where H g x dx s 0 and g g W for some r ) v q .0 2 2
Ž .b Exponential model:

yj w x6.9 p x s exp n w x y d , x g 0, 1 , j ) 0,Ž . Ž . Ž .� 4n n

3rwhere w g W for some r ) v q and d is a normalizing constant.2 n2
Ž .c Renyi-type model:´

1rssyj6.10 p x s g 1 q n z x y 1 ,Ž . Ž . Ž .� 4Ž .n n

w xx g 0, 1 , s ) 0, j ) 0,

Ž . rwhere z x G 0 a.e., z g W and g is a normalizing constant.2 n

Ž . Ž . Ž . Ž . Ž . Ž .Note that 6.8 , 6.9 and 6.10 are special cases of 5.30 , 5.31 and 5.32 ,
Ž . Ž yj .respectively. Moreover, for each of the models H p , p s O n . Take an 0 n

Ž . 1rŽh .as in 6.7 , h G 2r q 1 and set m s cn , c an arbitrary constant. If j g
Ž . Ž . � 4 Ž .mr2, nr2 , where 3 q 2v rh - m - n - 2rrh then p g DD m, n for eachn

Ž . Ž . Ž .of a ] c . Take t s 1 y m. Then the relations 3.1 and EE s 1 hold for
Ž . Ž . Ž .alternatives given by a , b and c .

COROLLARY 6.9. Suppose the assumptions of Theorem 6.4 are satisfied. To
Ž . Ž .get EE s 1 we need t - 1. However, to fulfill 3.1 in this case, by 6.7 , t s 1 is

Ž .required. Therefore the notion of t efficiency in DD m cannot be applied.

Ž . Ž2.6.3. Condition 3.4 for V . In this section we give the asymptotic distri-n
� 4 1 Ž . Ž . < <bution of T under p . To this end set a s H f x p x dx and a skS n j 0 j n

� k 241r2 Ž . Ž .Ý a , k G 1. The previous assumptions A1 ] A8 are strengthened byjs1 j
imposing additionally

X < X < hA9 For each j, f exists and sup f x F cj for some positive h and c,Ž . Ž .j x j

A10 r ) h ,Ž .
A11 m s 0 n1rŽ2 rq2. .Ž . Ž .
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Moreover, using l* defined in Section 7.6, our last assumption is

2 2' < < < < < <A12 n a y a r a ª 0 as n ª `.Ž . Ž .m l* m

Ž . Ž .THEOREM 6.10. Under A1 ] A12

2 '< < < <T y n a r 2 n a ª N 0, 1 .Ž .Ž .Ž .m mS

Ž .Some remarks on the proof of Theorem 6.10 and a discussion of A12 are
Ž .given in Section 7.6. Note that for the cosine basis A9 holds with h s 1

w Ž . xwhile for the Legendre system h s 5r2 cf. Sansone 1959 page 251 . There-
Ž . Ž . Ž .fore A10 holds in standard cases. A11 strengthens slightly A3 .

COROLLARY 6.11. Let c be an arbitrary constant. Theorem 6.10 implies
2 '� < < < < 4that the test with critical region T G n a q c n a has asymptotic powerm mS

2 'Ž < < < < .staying away from 0 and 1. Set a s P T G n a q c n a . Therefore them mn 0 S
Ž2. Ž . < < Ž Ž .. w Ž .related test VV obeys 3.4 . Moreover, since a s 0 H p , p cf. 7.24 ,mn; a n on

Ž .x Ž . Ž .7.26 , by Proposition 4.3, a satisfies 6.7 and 3.1 .n

Ž . Ž . Ž .COROLLARY 6.12. Assume the f ’s satisfy A9 . Consider models a , bj
Ž . sand c of Example 6.8. Additionally suppose the functions g, w and z have

finite numbers of non-zero Fourier coefficients with respect to the system of
3� 4 Ž .f ’s. Take r ) max v q , h , h G 2r q 2 and j g mr2, nr2 , wherej 2

Ž . � 43 q 2v rh - m -n - 2rrh. Denote respective sets of sequences of p by PP ,n Ža.
PP and PP . If m s cn1rh, c an arbitrary constant, then the test VV Ž2. , basedŽb. Žc. n; a n

on T and defined in Corollary 6.11, is asymptotically t s 1 y m efficient inS
each of PP , PP and PP . In particular, Theorem 2.5 follows.Ža. Žb. Žc.

7. Some auxiliary results and proof of Theorem 4.1.

7.1. Schwarz ’s rule S and related results. Let us start with some nota-
tion. Throughout we shall operate on vectors from spaces of different dimen-
sions. To simplify the formulas, the dimension is not incorporated into a
notation of the vector and usually depends on the context. Moreover, to avoid
embedding vectors into a common space, we use the following rule: if x g R j

and y g Rk for some k G j, k possibly not given explicitly in the text, we set
j k < <x( y s Ý x y . Moreover, for x g R and 1 F i - j F k, we define x sjls1 l l

� j 241r2 < < � j 241r2Ý x and x s Ý x .i jls1 l lsiq1 l
Subsections 7.1 and 7.2 are self-contained with only orthonormality of the

Ž .f ’s and assumption A1 being exploited. Therefore, we find it useful toj
replace the sequence m in the definition of S by an arbitrary increasingn

Ž .sequence d n .
Ž . k Ž . Ž Ž . Ž . Ž ..For k s 1, 2, . . . , d n , u g R and f x s f x , f x , . . . , f x , con-1 2 k

Ž .sider exponential families 2.1 defined by

g x ; u s exp u (f x y c u ,� 4Ž . Ž . Ž .k k
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Ž . Ž .with c u defined as in 2.2 . Given X , . . . , X i.i.d. r.v.’s with densityk 1 n
Ž .g x; u setk

n1
f s f , f , . . . , f where f s f X .Ž .Ýž /1 2 k j j in is1

w Ž . Ž .xThen cf. 2.4 and 2.5
1L s n sup f (u y c u y k log nŽ .� 4k k 2

kugR

and

7.1 S s min k : 1 F k F d n , L G L , 1 F j F d n .Ž . Ž . Ž .� 4k j

Below, we state and prove three theorems which prove to be useful in the
analysis of the distribution of S. We start, however, with some facts concern-

Ž .ing the exponential function and c u which shall be used in this andk
succeeding sections.

w xLEMMA 7.1. For any positive c and y g yc, c , it holds

7.2 1 q y q cy2 eyc q c y 1 y2 F e y F 1 q y q cy2 ec y c y 1 y2 .Ž . Ž . Ž .
Ž x w xFor any c g 0, 3 and all y g yc, c , it holds

7.3 1 q y q y2 3 y c r6 F e y F 1 q y q y2 1 q c r2.Ž . Ž . Ž .
Let

7.4 u s k1r2V ,Ž . k k

< Ž . < w Ž .xwith V s max sup f x cf. 2.8 . Then, for orthonormal f ’s satis-k 1F jF k x j j
Ž . k Ž . < < Ž xfying A1 and u g R such that c s c u s u u g 0, 3 ,kk k

23 y c 3 y c 1 q cŽ .2 4 2< < < < < <7.5 u y u F c u F u .Ž . Ž .k k kk6 72 2

y 2w y2 Ž y .x y2 Ž yPROOF. Since e s1qyqy y e yyy1 and the function y e y
. Ž . Ž x y2 Ž ycy y 1 is increasing on R, 7.2 follows. For c g 0, 3 it holds that c e q
. Ž . y2 Ž c . Ž . Ž . Ž .c y 1 G 3 y c r6 and c e y c y 1 F 1 q c r2. Hence 7.2 implies 7.3 .

< k Ž . < < < 2Since Ý u f x F u u and for any z ) 0 it holds that yz r2 q z Fkjs1 j j k
Ž . Ž .log 1 q z F z, 7.5 follows. I

Ž .REMARK 7.2. The function c u plays a central role in likelihood methodsk
Ž .for exponential families. In the statistical literature a behavior of c u in ak

wvicinity of 0 is usually investigated via Taylor expansions cf. Kallenberg
Ž . Ž . x1981 , Section 3, and Portnoy 1988 , Section 2 . However, then an analysis
of the remainder term of the expansion requires as a rule some extra

Žassumptions especially when considering exponential families with the num-
. Ž .ber of parameters tending to ` . On the contrary, 7.5 provides explicit

bounds for the remainder.
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Now we shall present the three main results of this subsection.

Ž x 2Ž .y3 y2THEOREM 7.3. For every k G 1, « g 0, 1 and 0 - d F « 2 q « u ,k

k k < < 27.6 x g R : sup x( t y c t G d > x g R : x G 2 q « d .Ž . Ž . Ž .� 4Ž . kk½ 5
ktgR

k < < 2 Ž . Ž .PROOF. Consider first x g R such that x s 2 q « d and set c x sk
< < Ž . Žku x . Then, by the assumption on d , c x - 3. Obviously, sup x( t ykk t g R

2 1 2Ž .. < < Ž . Ž . Ž . � Ž .4 < <c t G x y c x , and, by 7.5 , c x F 1 q c x x . The relationk kk k k 2
< < 2 Ž . Ž Ž ..kx s 2 q « d and the assumption on d then yield sup x( t y c t Gk t g R k
d .

k < < 2 Ž . �Ž . 41r2 < <y1Now, let x g R be such that x ) 2 q « d . Take x s 2 q « d x xk k0
and observe that

y1r2 2< < < <sup x( t y c t G x( x y c x s x 2 q « d x y c x� 4Ž . Ž . Ž . Ž .Ž . k kk 0 k 0 0 k 0
ktgR

< < 2G x y c x G d ,Ž .k0 k 0

where the last inequality follows by the previous argument. I

Ž � 2 4. Ž .THEOREM 7.4. For every k G 1, « g 0, min 1, 2u r3 and 0 - d F d k ,k 0
Ž . Ž . 2 y2where d k s 2 y « « u r16,0 k

k k < < 27.7 x g R : sup x( t y c t G d ; x g R : x G 2 y « d .Ž . Ž . Ž .� 4Ž . kk½ 5
ktgR

Ž .PROOF. Observe that to prove 7.7 it is enough to show that, for an
k Ž Ž .xarbitrary t g R and d g 0, d k ,0

< <'7.8 c t q d G 2 y « d t .Ž . Ž . Ž . kk
k < < 2 Ž . Ž Ž ..kIndeed, if x g R satisfies x - 2 y « d , then sup x( t y c t Fk t g R k

Ž < < < < Ž .. Ž < < Ž .. Ž Ž .'k k ksup x t yc t -sup 2y« d t yc t F sup c t qŽ .k k ktgR k t g R k t g R k
Ž ..dyc t sd .k

Ž .The proof of 7.8 shall be given in two parts. First assume additionally
Ž . < < Ž x Ž .that t is such that c t s u t g 0, « . By 7.5 we getkk

22 3 41 1 1 1< < < < < < < <c t G t y u t y t 1 y u t .Ž . Ž .k k k kk k k2 6 8 3

< <An elementary calculation shows that from this and the assumption t Fk

« uy1 it follows thatk
1 2< <7.9 c t G 2 y « t .Ž . Ž . Ž . kk 4

21 2'Ž . Ž . < < Ž . < < Ž .'Hence c t q d G 2 y « t q d G 2 y « d t and 7.8 is provedŽ .k kk 4
< <in the case u t F « .kk

< < < < y1Assume now u t ) « . Put v s trb, where b s u t « . Then b ) 1 andk kk k
< < y1 Ž .v s « u . By Jensen’s inequality and 7.9 ,k k

1 2< <c t q d s c bv q d G bc v q d G b 2 y « v q dŽ . Ž . Ž . Ž . kk k k 4

< <'s 2 y « d t q z ,Ž . k

2Ž < < Ž . < < . Ž Ž .x'where z s d y b 2 y « d v q b 2 y « v r4 . Since for d g 0, d k itŽ . k k 0
holds that z ) 0, the proof is concluded. I
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REMARK 7.5. The logarithm of the likelihood ratio test statistic for testing
Ž . �ku s 0 against u / 0 in the model g x; u has the form n sup f (u yk u g R

Ž .4c u . Theorems 7.3 and 7.4 show that some large deviation probabilities fork
21 < <this statistic can be obtained by analyzing a much simpler statistic n f .k2

Besides, results for norms of random vectors are well developed. For example,
Žnice exponential bounds are available cf. Theorem 7.7 and Proposition 7.17

.below . A variety of large deviation results can be found in Inglot, Kallenberg
Ž .and Ledwina 1993 . Finally, note that an idea of approximating the set

� k Ž Ž .. 4kx g R : sup x( t y c t G d by some easier tractable sets has beent g R k
Ž .used earlier in Kourouklis 1984 .

Our next theorem will play a key role in investigating the events of the
� 4form S - l for some natural l.

Ž � 2 4xTHEOREM 7.6. For all k G 1, every « g 0, min 1, 2u r3 , every c G 0 andk
all j - k,

7.10Ž . kx g R : sup x( t y c t - c q sup x( s y c sŽ . Ž .Ž . Ž .k j½ 5
k jtgR sgR

k < < 2 k < < 2; x g R : x F 2 y « c q «d# j x g R : x G d# ,Ž . � 4� 4jk k

Ž . 2 2where d# s 2 y « « r12u .k

k < < 2 < < 2PROOF. Observe that if for some x g R we have x - d# and x )k jk
Ž .2 y « c q «d#, then

< < 2 < < 2 < < 2 < < 2x s x y x - x y 2 y « c y «d#Ž .j k jk k

< < 2 < < 2F x y 2 y « c y « xŽ .k k

y1 2< <F 2 y « 2 q « x y 2 y « cŽ . Ž . Ž .k

7.11Ž .

y1 2< <s 2 y « 2 q « x y c .Ž . Ž . k

Ž .y1 < < 2 < < 2Set d s 2 q « x y c. Then, due to x - d# and u - u , it holds thatk k j k
Ž . Ž . Ž .d - d j , where d ? is as in Theorem 7.4. Application of 7.11 and Theorem0 0

Ž Ž ..j7.4 with k s j and the above-defined d leads to sup x( s y c s - d orsg R j
Ž .y1 < < 2 Ž Ž ..jequivalently 2 q « x ) c q sup x( s y c s . On the other hand,k sg R j

< < 2 Ž .y1 < < 2 Ž . 2 Ž . 2 2 Ž .3 2by x - d#, 2 q « x - 2 y « « r12 2 q « u - « r 2 q « u . Hencek k k k
Ž Ž .. 2Ž .y3 y2

jb s c q sup x( s y c s - « 2 q « u . Thus using Theorem 7.3sg R j k
Ž Ž .. Žk jwith the given k and d s b yields sup x( t y c t ) c q sup x(t g R k sg R

Ž ..s y c s , which completes the proof. Ij

7.2. Large deviations for T under P . Let X , . . . , X be i.i.d. randomS 0 1 n
w x Žvariables taking values in 0, 1 . The Neyman smooth test statistic for

. wtesting uniformity with a fixed number of components k has the form cf.
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2k y1r2 n 2Ž .x � Ž .4 < <2.3 T s Ý n Ý f X s n f . The data-driven smooth testkk js1 is1 j i
S � y1r2 n Ž .42statistic is then defined by T s Ý n Ý f X , where S is given byS js1 is1 j i

Ž . Ž .7.1 . Recall that also in this section S chooses one out the d n candidate
Ž .exponential models 2.1 .

The large deviation result for T , which we state and prove below, is basedS
Ž . Ž .on the following version of inequality 2 in Prohorov 1973 .

w Ž .xTHEOREM 7.7 Prohorov 1973 . Let Y , . . . , Y be i.i.d. random vectors in1 n
k < <R with uncorrelated components. Assume EY s 0 and Y F L, P a.e.k1 1 0

2 w y2 xThen, for y g 2k, nL ,
n

y1r2P n Y G yÝ0 iž /
is1 k

7.12Ž . Ž .ky1 r22 2C y y
F exp y 1 y h ,Ž .n½ 5ž /G kr2 2 2Ž .

where C is an absolute constant while 0 F h - Lyny1r2.n

Also we shall need the following result.

Ž . < Ž . <PROPOSITION 7.8. Assume E f X s 0 and sup f x - `. Then, forP 1 x 10
� 4 2any sequence x such that x ª 0 and nx ª ` as n ª `,n n n

n1 1y12 'lim nx log P f X G x n s y .Ž .Ž . Ýn 0 1 i nž /' 2nª` n is1

PROOF. Proposition 7.8 follows from Theorem 1 of Chapter 8 in Petrov
Ž .1975 . I

'Ž .THEOREM 7.9. Assume A1 and recall that u s k V . Assume thatk k
Ž . y1Ž . Ž . 2 � 4 2d n ª ` and n log n d n u ª 0. Let x satisfy x ª 0, nx ª ` anddŽn. n n n

Ž .x u s o 1 . Thenn dŽn.
y1 12 27.13 lim nx log P T G nx s y .Ž . Ž . Ž .n 0 S n 2

nª`

Ž .PROOF. By 7.1 , S G 1. Hence T G T and, by Proposition 7.8,S 1

y1 y1 12 2 2 2lim inf nx log P T G nx G lim nx log P T G nx s y .Ž . Ž . Ž . Ž .n 0 S n n 0 1 n 2
nª` nª`

Ž 2 .To majorize P T G nx , observe that0 S n

Ž .d n
2 2P T G nx s P T G nx , S s kŽ . Ž .Ý0 S n 0 k n

ks1

and the definition of S implies

1 y1� 4S s k ; sup f ( t y c t G k y 1 n log n .Ž . Ž .Ž .k 2½ 5
ktgR
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1y1 2 y1Ž . Ž . Ž .The assumption n log n d n u ª 0 implies that d s k y 1 n log ndŽn. 2
Ž . Ž . 2 2 Ž . Ž .satisfies d F d k s 2 y « « r16u for any k F d n and « g 0, 1 , pro-0 k

vided that n is sufficiently large. Consequently, by Theorem 7.4, for k s
22Ž . Ž � 4. � 4 � < < Ž .Ž .1, . . . , d n and any « g 0, min 1, 2u r3 , S s k ; f G 1r2n 2 y « =k1

2Ž . 4 < <k y 1 log n for sufficiently large n. Since however n f s T , the abovek k
yields

2 2P T G nx F P T G nxŽ . Ž .0 S n 0 1 n

Ž .d n 1
2q P T G max nx , 2 y « k y 1 log n .Ž . Ž .Ý 0 k n½ 5ž /2ks2

7.14Ž .

Ž . Ž .To majorize the second component in 7.14 , for each k s 2, . . . , d n we shall
Ž � 2 Ž .Ž . 4.1r2apply Theorem 7.7 with y s max nx , 1 y «r2 k y 1 log n and L s u .n k

To this end, observe that for any k G 2 and sufficiently large n it holds that
2 Ž . Ž . 2 2y G 2k. Moreover, since x d n s o 1 it follows that y L F n, if n isn

Ž .sufficiently large. Thus 7.12 implies that
Ž .ky1 r2 21 k y 1 k y

2 2P T G y F C exp log y y log G y 1 y h .Ž .Ž .0 k n½ 5ž / ž /2 2 2 2

To estimate the first two components in the exponent, we shall use the
1 2 y1Ž . Ž . Ž . Ž .facts that log G x G yx q x y log x, 2 y k y 1 G 2 y « log n and2

1 1y1 2 2Ž . Ž .x log x is decreasing for x ) e. Hence k y 1 log y y log G kr2 F y c ,n2 2
Ž .y 1w Ž 2 . x Ž 2 .where c s 2 log n log log n q 2 . Therefore, P T G y Fn 0 k
1 1Ž1yk .r2 2 dŽn. 2 2� Ž .4 Ž . � ŽC2 exp y y 1 y h y c and Ý P T G y F 3C exp y y 1 yn n ks2 0 k2 2

.4 � 4h y c . Proposition 7.8 implies that there exists a sequence d , d ª 0,n n n n
12 2Ž . � Ž .4 Ž .such that P T G nx F exp y nx 1 y d . We conclude from 7.14 and0 1 n n n2

12 2Ž . Ž . � 4the last two bounds that P T G nx F 3C q 1 exp y nx z , where z s0 S n n n n2
� 4max 1 y d , 1 y h y c . As z ª 1 the proof is concluded. In n n n

7.3. Information projection of P ’s.n

7.3.1. Preliminaries. In this section we shall study in detail some proper-
ties of the information projection. We shall start by recalling some notions

Ž .and basic results derived by Barron and Sheu 1991 . Throughout we restrict
attention to the densities p introduced in subsection 2.1.n

Ž . UAs in Barron and Sheu 1991 , let us denote by p the density in them
Ž . w Ž .xm-dimensional exponential family g ?; u given by cf. 2.1m

m

7.15 g x ; u s exp u f x y c u ,Ž . Ž . Ž . Ž .Ým j j m½ 5
js1

with u g Rm, which is closest to p in the relative entropy sense. Moren
precisely, let

1
7.16 a s f x p x dx , 1 F i F m.Ž . Ž . Ž .Hi i n

0
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U Ž . Ž .Then p is the unique provided it exists density in the family 7.15 form
which

1 U7.17 f x p x dx s a , 1 F i F m.Ž . Ž . Ž .H i m i
0

Ž .Denoting the relative entropy Kullback]Leibler distance between two prob-
ability densities p and q by

p xŽ .1
5D p q s p x log dx ,Ž .Ž . H q xŽ .0

pU can also be defined via the relationm

5 5 U U 57.18 D p g s D p p q D p gŽ . Ž . Ž . Ž .n m n m m m

Ž . Ž .valid for all densities g in 7.15 . So, in particular, 7.18 holds for g s p .m m 0
Ž . UIn view of 7.18 , p is called the information projection.m

For further considerations the following remark is useful.

Ž .REMARK 7.10. As in Barron and Sheu 1991 , let A be such that, for all fm
5 5 5 5in the linear space spanned by f , f , . . . , f , f F A f . Observe that` 20 1 m m

Ž .A1 and the orthonormality of the f ’s imply that we can take A s u ,j m m' w Ž .xwhere u s m V cf. 7.4 .m m

Set
7.19 f U s log pU s u U (f y c u U .Ž . Ž .m m m

The following properties of pU and f U can be deduced from the formulationm m
Ž .and proof of Theorem 3 of Barron and Sheu 1991 .

Ž . Ž . � 4LEMMA 7.11. Assume A1 ] A5 and set « s 4u D exp 2 M q 4g q 1 .m m m m
Then the following conclusions are valid:

Ž . Ua If n is so large that « - 1, then the information projection p exists.m m
Ž . Ž 5 U . Ž 2 .b D p p s O D .n m m
Ž . 5 U 5c log p y f F 2g q « .`n m m m

7.3.2. Properties of the information projection.

Ž . Ž . z Ž .LEMMA 7.12. Assume A1 ] A5 . If m H p , p ª 0 for some 0 F z - r,n 0
z < U <then m u ª 0. In particular,m

Ž . Ž . < U <a if H p , p ª 0, then u ª 0 as n ª `,mn 0
Ž . vq1r2 Ž . < U <b if m H p , p ª 0, then u u ª 0 as n ª `.mn 0 m

2Ž . Ž 5 .PROOF. It is well known that H p, q F D p q for any two densities p
Ž U . Ž . � Ž 5 U .41r2and q. Hence H p , p F H p , p q D p p . By the assumptionm 0 n 0 n m

z Ž . Ž . z Ž U .m H p , p ª 0 and Lemma 7.11 b , this implies that m H p , p ª 0 asn 0 m 0
1 U2z 1 2Ž � Ž .4 . Ž .n ª ` or equivalently m H exp f x y 1 dx ª 0 as n ª `. Now, A40 m2
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Ž . 5 U 5 5 U 5 5 5and Lemma 7.11 c yield f F log p y f q log p F 2 M , where` ` `m n m n 1
Ž t .2 Žw � 4x .2 22 M s 2g q « q M. Since e y 1 G 1 y exp yM rM t for all t g1 m m 1 1

w x 2z 1w U Ž .x2 2z Ž < U < 2 2Ž U ..yM , M , then m H f x dx s m u q c u ª 0 and the con-m1 1 0 m m
clusion follows. I

vq1r2 Ž . Ž . Ž .LEMMA 7.13. Assume that m H p , p ª 0 and A1 ] A5 are ful-n 0
filled. Then, for any d ) 0 and sufficiently large n,

1 U 2 U 1 U 22< < < <7.20 y d u F H p , p F q d u .Ž . Ž .Ž . Ž .m mm 04 4

PROOF. By the definition of H we get
U 1 U 1 U2H p , p s 2 y 2 exp c u y c u .Ž . Ž .� 4Ž .m 0 m m2 2

� Ž U .4 1 � U 4Since exp c u s H exp u (f dx we shall apply Lemma 7.1 with y sm 0
U U < U < U Ž U .u (f and c s c s u u . By Lemma 7.12, c ª 0. Set A s 1 q c r2mm

Ž U .and B s 3 y c r6. With this notation Lemma 7.1 yields

< U < 2 U < U < 21 q B u F exp c u F 1 q A u .� 4Ž .m mm

1 U� Ž .4 ŽUsing similar bounds for exp c u and applying the inequality 1 qm 2
.1r2x F 1 q xr2, we get

< U < 21 1 y C u 2 A y Bm2 2U U U2< < < <2 B y A u F H p , p F u ,Ž . Ž .m mm 02 2U U2 < < < <1 q B u 2 q A um m

Ž . Ž .where C s ABr4 B y Ar2 . Hence 7.20 follows easily. I

Ž . Ž .Observe that A7 and A8 , imposed in Section 4, imply there exists a
� 4sequence k , k ª `, such thatn n

2q1rby17.21 n k log n H p , p ª `� 4Ž . Ž . Ž .n n 0

and
Ž .2 by2 vy3 r2 b7.22 k H p , p ª 0 as n ª `.� 4Ž . Ž .n n 0

Now put
2q1rby17.23 r s n k log n H p , p .� 4Ž . Ž . Ž .n n n 0

Ž . Ž .COROLLARY 7.14. Under A1 ] A7 it holds that
U' '< <7.24 3 F u rH p , p F 5 for sufficiently large nŽ . Ž .m n 0

and

5 U 2 < U < 2D p p s o H p , p s o u .Ž .Ž . Ž . Ž .mn m n 0

Ž . Ž . � Ž 5 U .41r2 Ž Ž ..PROOF. By A6 and Lemma 7.11 b , D p p s o H p , p . Hencen m n 0
U 'Ž . < <7.20 and the beginning of the proof of Lemma 7.12 give u r 5 Fm

Ž U . Ž .Ž Ž .. Ž .H p , p F H p , p 1 q o 1 which proves the right-hand side of 7.24 .m 0 n 0
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Ž U . Ž . � Ž 5 U .41r2 Ž .Similarly, as H p , p G H p , p y D p p , then by 7.20 we getm 0 n 0 n m
U U1 < < Ž . Ž .Ž Ž ..u G H p , p G H p , p 1 q o 1 which proves the left-hand side' m m 0 n 03

Ž .of 7.24 . Now the second part of the corollary follows immediately. I

Ž . Ž .COROLLARY 7.15. Assume A1 ] A8 hold. Then

< U < 3 y17.25 u u s o n r log n .Ž . Ž .mm n

Ž . Ž .PROOF. 7.24 and A2 yield

< U < 3 vq1r2 3u u F O 1 m H p , p .Ž . Ž .mm n 0

Ž .Hence, due to A7 ,

y13U y1< <u u n r log nŽ .mm n

Ž .y 2q1rbvq1r2 3F O 1 m k H p , p H p , p� 4Ž . Ž . Ž .� 4n n 0 n 0

Ž .2 by2 vy3 r2 bs O 1 k H p , p .� 4Ž . Ž .n n 0

Ž .By 7.22 the proof is concluded. I

Before we state the last result of this subsection recall that a sj
1 Ž . U Ž . w Ž .x Ž .H f x p x dx cf. 7.17 and set a s a , . . . , a .0 j m 1 m

Ž . Ž . U < U <LEMMA 7.16. Assume that A1 ] A7 are satisfied. Set c s u u . Then,mm
for sufficiently large n,

U 1 U U 2< < < <7.26 a y u F 1 q c V u for 1 F j F mŽ . Ž . mj j j2

and

< U < 1r2 < U < 3r27.27 a y u s o u u for 1 F j - k F m.Ž . Ž .jk mm

U 1 Ž .Ž U .PROOF. Since u s H f x f (u dx, we can writej 0 j

1U U U U Ua y u s f x exp f (u y c u y 1 y f (u y c u dx .� 4Ž . Ž . Ž .Ž .Hj j j m m
0

y < U < Ž U .Since e G 1 q y for y g R, it follows that a y u F V c u . By Lemmaj j j m
U 1 U U 2Ž . Ž . Ž . < <7.12 and 7.5 we get for sufficiently large n that c u F 1 q c u .mm 2

Ž . Ž . Ž .This establishes 7.26 . The estimate 7.26 then yields 7.27 . I

7.4. Asymptotic behavior of S under P . We start with a technical resultn
we shall exploit to investigate the distribution of S under P . In subsectionn
7.2 we used a version of Prohorov’s inequality to analyze the distribution of
' < <n f under P . Since under P the components of f are, as a rule,k 0 n
correlated, the original Prohorov inequality is less convenient for application

wŽ .in this situation. However, the following result of Yurinskii 1976 , page
x491 , is more easily applicable.
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w Ž .xPROPOSITION 7.17 Yurinskii 1976 . Let independent random vectors
Y , . . . , Y with values in Rk satisfy the following conditions:1 n

EY s 0,i

s!s 2 sy2< <E Y F b KK , s s 2, 3, . . . ,ki i2
7.28Ž .

B2 s b2 q ??? qb2 .n 1 n

Then, for x ) 0,
y12n x x KK

7.29 P Y G xB F 2 exp y 1 q 1.62 .Ž . Ý i n ½ 5ž /ž / 2 Bnis1 k

In the sequel we shall use the following result.

Ž . Ž . Ž .COROLLARY 7.18. Let assumptions A1 ] A4 and A7 hold. Then, for any
j, k such that 0 - j - k F m brŽvq1r2. and arbitrary c ) 0 such thatn

y1r27.30 c V k y j ª 0 as n ª `,Ž . Ž .n k

we have that

nc2
n

< <7.31 P f y a G c F 2 exp y 1 q o 1 ,Ž . Ž .Ž .Ž .jkn n ½ 52 k y jŽ .
1 Ž . Ž . w Ž .xwhere a s H f x p x dx cf. 7.16 .0 n

< < Ž Ž .'PROOF. Note that f y a F 2 k y j V F 2u . Moreover, E f X yjk Pk k jn
2 2 1 2 1 2. Ž . Ž .Ž Ž . . Ž . < <Ža FE f X s1qH f x p x y 1 dx F 1qH f x p x y1 1q' Ž .j P j 0 j n 0 j nn

M r2 . Ž M r2 . Ž .� 1 4Ž . 41r2 � 1 4Ž . 41r2e dx F 1 q 1 q e H p , p H f x dx . Since H f x dx Fn 0 0 j 0 j
� 1 2Ž . 41r2 Ž v. b Ž . Ž .V H f x dx s V , V s O k and m H p , p s O 1 , the above yieldsj 0 j j k n 0
Ž Ž . .2 Ž . < Ž . < 2 Ž .Ž Ž ..E f X y a F 1 q o 1 . Hence E f X y a F k y j 1 q o 1 andjkP j j Pn n

sy2s 'E f X y a F k y j 1 q o 1 2 k y j V , s G 2.Ž . Ž . Ž .Ž . Ž .jkP kn

Ž Ž . Ž ..Thus Proposition 7.17 is applicable for the vector f X , . . . , f X withjq1 k
2 2Ž .Ž Ž .. Ž .Ž Ž ..'b s k y j 1 q o 1 , KK s 2 k y j V and B s n k y j 1 q o 1 . Takingi k n

� Ž .41r2Ž Ž .. Ž .x s nc rB s c nr k y j 1 q o 1 and using 7.30 , Proposition 7.17n n n
Ž .implies 7.31 . I

Ž . Ž .Below we assume that conditions A1 ] A8 are satisfied. So, we shall
Ž . Ž .consider the exponential family 2.1 and related notions in particular S

under m s m .n
m Ž .For u g R and r given by 7.23 , we setn

l u s min k : 1 F k F m ,Ž .n ½
7.32Ž . log n log n2 2< < < <u y kr G u y j r , 1 F j F m .k jn n 5n n
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U Ž .Let u be given by 7.19 . Define

7.33 l s l u U .Ž . Ž .n

Ž . Ž .THEOREM 7.19. Under assumptions A1 ] A8 ,

7.34 P S - l ª 0.Ž . Ž .n

PROOF. By the definition of S,
ly1 j

� 4S - l ; n sup f ( s y c s y log nŽ .D ž /j½ 2jjs1 sgR
7.35Ž .

l
G n sup f ( t y c t y log n .Ž .Ž .l 52ltgR

Ž . Ž � 2 4xTheorem 7.6 and 7.35 imply that, for « g 0, min 1, 2u r3 and sufficientlyl
large n,

ly1 12 2< < < <� 4S - l ; f F 2 y « l y j log n q «d# j f G d# ,Ž . Ž . � 4D jl l½ 52njs1

Ž . 2 2 Ž .1r3 < U <where d# s 2 y « « r12u . Now take « s 24 u u . By Lemma 7.12 itll l
follows that « ª 0.

Define also
1 3U2 < <t s 2 y « l y j log n q 2 2 y « u u .Ž . Ž . Ž . ljl l2n

By the above
ly1

2 2U2< < < < < <� 47.36 S - l ; f F t j f G s u ,Ž . � 4½ 5D jl l ljl
js1

2 Ž . 1r3 Ž .where s s 2 y « r3 . The triangle inequality and 7.16 then imply that
U U� < < 4 � < < < < 4 � < < < < < < 4f F t ; f y a G a y t ; f y a G u y a y u y t .jl jl jl jl jl jljl jl jl

Ž .1r2 1r2 1r2 � y1Ž . 41r2 1r2 < U < 3r2By x q y F x q y we get t F n l y j log n q 2u u .mjl m
Ž . < U < � y1Ž . 41r2 ŽMoreover, 7.27 implies that t q a y u F n l y j log n q 2 qjljl

Ž .. 1r2 < U < 3r2 Ž . Ž . < U < 2 y1Žo 1 u u . On the other hand, by 7.33 and 7.32 , u G n l ym jlm
. Ž . < U <j r log n. So, these two inequalities, 7.23 and Corollary 7.15 yield u yjln

< U < � y1Ž . 41r2Ž Ž ..a y u y t G c , where c s n l y j r log n 1 q o 1 . Sincejl jl jl jl n

1r2y1r2 2 y1c V l y j F r V n log nŽ . � 4jl l n m

vrb Ž .2 bq1y2 v r2 by1 bF O 1 k m H p , p H p , p ,� 4Ž . Ž . Ž .� 4½ 5n n 0 n 0

Ž . w Ž .xthe assumption A7 and the definition of k see 7.21 imply that cn jl
Ž .satisfies 7.30 with k s l. Applying Corollary 7.18 with c s c and k s l,n jl
Ž < < . Ž < < . � Ž Ž .. 4we get P f F t F P f y a G c F 2 exp y 1 q o 1 r log n . Thusjl jln jl n jl n

ly1

< <P f F t F 2 exp y 1 q o 1 r log n q log l .� 4Ž .Ž .½ 5D jln jl nž /js1
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Ž . 2Ž . Ž . 2 b 2Ž . Ž .By A8 , nH p , p ª `, while, by A7 , m H p , p s O 1 . Hencen 0 n 0
2 b Ž .y1m - n for n sufficiently large. However, log l F log m F 2b log n. This,

Ž . Ž .together with 7.23 , implies that the first term in 7.36 tends to 0.
Ž .To majorize the second term in 7.36 , observe that

U U U U< < < < < < < < < < < <f G s u ; f y a G s u y u y a y u .� 4 � 4l l l l l l

Ž . Ž .As « ª 0, using 7.32 and 7.21 , for sufficiently large n we see that

1r21 log n2U U< < < <s y 1 u G u y mrŽ . l m n½ 58 n

1 1r22q1rb2U y1< <s u y k m H p , p .Ž .Ž .½ 5m n n 08

Ž . Ž . ŽThis, together with A7 , 7.24 and the definition of k , implies that s yn
U 1. < < Ž Ž .. Ž .1 u G 1 q o 1 H p , p . Thus it follows thatl n 08

< U < < U < < U <7.37 u G u q o u .Ž . Ž .l m m

Ž . < U < Ž < U < . Ž Ž ..In addition, by 7.24 and Lemma 7.16, a y u s o u s o H p , pl m n 0
U 1� < < < < 4 � < < Ž Ž .. Ž .4and hence f G s u ; f y a G 1 q o 1 H p , p .l l l n 08

1 Ž Ž .. Ž . Ž .Now set c s 1 q o 1 H p , p . Due to A7 and Lemma 7.12, cn n 0 n8
Ž .satisfies 7.30 . Thus, by Corollary 7.18,

n2 2U 2< < < <7.38 P f G s u F 2 exp y H p , p 1 q o 1 .Ž . Ž . Ž .Ž .Ž .l ln n 0½ 5128l

Ž . Ž .Since A7 and A8 imply

2q1rb2nH p , p 1 n H p , p� 4Ž . Ž .n 0 n 0G log n ) log n1rbl log nm H p , p� 4Ž .n 0

for sufficiently large n, the proof of Theorem 7.19 is concluded. I

Note that the above argument yields

n
27.39 H p , p ) log nŽ . Ž .n 0m

for sufficiently large n.

7.5. Proof of Theorem 4.1. Theorem 4.1 follows from the two following
results.

Ž . Ž . Ž .THEOREM 7.20. Under A1 ] A8 for any « g 0, 1 ,

TS
7.40 lim P y 1 F « s 1,Ž . n 2ž /< <nª` n a l

Ž .where l is defined by 7.33 .
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PROOF. We have
m

y2 y2 2y1< < < < < < < < < <7.41 P n a T y 1 G « F P S - l q P a f y 1 G « .Ž . Ž . Ž .Ž . Ýl l kn S n n
ksl

Ž .By Theorem 7.19, P S - l ª 0. So, consider the second component on then
Ž .right-hand side of 7.41 . Notice that l F k F m and that

y2 2< < < < < <P a f y 1 G «Ž .l kn
7.42Ž .

2 2 2 2< < < < < < < <s P f G 1 q « a q P f F 1 y « a .Ž . Ž .Ž . Ž .k l k ln n

Ž .Using the triangle inequality, the first component in 7.42 can be majorized
as follows:

'< < < <P f G 1 q « aŽ .k ln

'< < < <F P f G 1 q « aŽ .m ln

'< < < < < <F P f y a G 1 q « a y aŽ .m l mn
7.43Ž .

«
U U U'< < < < < < < <F P f y a G 1 q « u y u y 2 q a y u .m l m mn ž /ž /2

w Ž . Ž .x Ž .The definitions of l and r see 7.33 and 7.23 , A7 and the fact k ª `n n
imply

12 2U U 2< < < <7.44 u y u F r m y l log n s o H p , p .Ž . Ž . Ž .Ž .m l n n 0n

Ž . < U < Ž < U < . Ž Ž ..By 7.24 and Lemma 7.16, a y u s o u s o H p , p . This lastm m n 0
Ž . Ž .fact, 7.43 and 7.44 give

1'< < < < < <7.45 P f G 1 q « a F P f y a G « q o 1 H p , p .Ž . Ž . Ž .Ž . Ž .Ž .k l mn n n 03

Ž .Arguing as in 7.38 , we get by Corollary 7.18 that the first component of
Ž .7.42 is majorized by

1
2 27.46 2 exp y n« H p , p 1 q o 1Ž . Ž . Ž .Ž .n 0½ 518m

Ž .and, by 7.39 , goes to 0 for every « ) 0.
Ž .The second component of 7.42 can be treated analogously to the first one.

Indeed,

' '< < < < < < < <P f F 1 y « a F P f F 1 y « aŽ . Ž .k l l ln n

« «
< < < < < < < <F P f F 1 y a F P f y a G al l l ln nž / ž /ž /2 27.47Ž .

« «
U U< < < < < <F P f y a G u y a y u .l l ln ž /2 2
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Arguing as before, we get the estimate
1

< <P f y a G « H p , p 1 q o 1Ž . Ž .Ž .ln n 0ž /2
7.48Ž .

1
2 2F 2 exp y n« H p , p 1 q o 1 ,Ž . Ž .Ž .n 0½ 58l

Ž . Ž . Ž .which goes to 0 by 7.39 . Thus, by A7 and A8 , it follows that the whole
Ž .sum in 7.41 tends to 0 and the proof is concluded. I

< < 2 Ž . Ž 5 .Now we shall show that a in 7.40 can be replaced by 2 D p p .l n 0

Ž . Ž .THEOREM 7.21. Let assumptions A1 ] A8 hold. Then

< < 2a l
7.49 lim s 1.Ž .

52 D p pnª` Ž .n 0

PROOF. The properties of pU imply thatm

1U U U U U U5D p p s u (f x y c u p x dx s a(u y c uŽ . Ž . Ž . Ž .Ž . Ž .Hm 0 m m m
07.50Ž .

2U U U U< <s u q a y u (u y c u .Ž . Ž .m m

Ž . U U < U < Ž .By 7.5 with u s u and c s c s u u , 7.26 and Lemma 7.12, relationmm
Ž .7.50 yields

2U U1 c 3 y cŽ .2 2 2 4U U U U U U U5 < < < < < < < < < < < <D p p F u q u a y u y u q u q uŽ . m m m m m mm 0 2 6 72
1 2 2U U< < < <s u q o uŽ .m m2

and
1 cU

2 2 2U U U U U U5 < < < < < < < < < <D p p G u y u a y u y u y uŽ . m m m m mm 0 2 2
1 2 2U U< < < <s u q o u .Ž .m m2

Ž .This, together with 7.18 and Corollary 7.14, then implies that

5 < U < 2 < U < 27.51 2 D p p s u q o u .Ž . Ž . Ž .m mn 0

Ž .On the other hand, applying again Lemmas 7.16 and 7.12 and 7.37 , we
get

< < < U < < U < < U < < U <a G u y a y u G u q o uŽ .l l l m m

and
< < < U < < U < < U < < U <a F u q a y u F u q o u .Ž .l l l m m

Hence
< < 2 < U < 2 < U < 27.52 a s u q o u ,Ž . Ž .l m m

Ž .and the proof of 7.49 is concluded. I
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Ž . Ž . Ž . Ž .REMARK 7.22. By 7.51 and 7.52 , relations 7.40 and 7.49 imply the
statement of Theorem 4.1.

7.6. Remarks on Thoerem 6.10. Theorem 6.10 is based on:

� 4THEOREM 7.23. Let k be a sequence of natural numbers satisfyingn
� < < < < 41 F k F m s m , n G 1. Assume lim inf a r a ) 0. Then underk mn n n n

Ž . Ž .A1 ] A11 , it holds that
2 '< < < <T y n a 2 n a ª N 0, 1 .Ž .Ž .k kž /k n nn

Theorem 7.23 can be proved via an application of Hungarian embedding in
a way similar to that proposed in the proof of Theorem 3.1 in Inglot,

Ž . wJurlewicz and Ledwina 1990a cf. also Inglot, Jurlewicz and Ledwina
Ž .x1990b . Therefore details are omitted here.

To get Theorem 6.10 set
log n log n2 2< < < <l* s min i : 1 F i F m: a y 2 ir G a y 2 j r , i s 1, . . . , m .i jn n½ 5n n

It can be seen that, under the imposed assumptions and n large enough,
Ž .l* F l, where l is given by 7.33 . Applying now Theorem 7.23 to k s l andn

k s m and using Theorem 7.19, Theorem 6.10 follows.n

Ž . Ž .REMARK 7.24. Consider the model a of Example 6.8. Suppose that g x s
s Ž . < < Ž Ž ..Ý v f x for some fixed s and v , . . . , v . Since a s 0 H p , p smjs1 j j 1 s n o
Ž yj . < <0 n it follows that l* s s and a s 0 for n large enough. Thereforel*m

Ž . Ž . Ž .A12 holds. The same can be shown for models b and c of Example 6.8
Ž . w Ž .xs Ž .provided w x and z x have the same form as g x .

Ž . Ž .For more general analysis of A12 , see Inglot 1996 .

7.7. Local equivalence of efficiencies. The purpose of this subsection is to
Ž .show that the Nikitin 1984 result mentioned in Section 1 can be extended to

other notions of efficiency.
Ž .Let T stand for one of the statistics KS or CM. Nikitin 1984 assumed the

Ž .alternative distribution function is G s G x; u for u g Q and G smooth in
both arguments. In particular, it was assumed that
7.53 G x ; u s G x ; 0 q u GX x ; 0 q o u ,Ž . Ž . Ž . Ž . Ž .u

X Ž . Ž . Ž . X Ž . y1 Ž .where G x; u s ­r­u G x; u and that G x; 0 q u o u is bounded foru u

Ž .x g R. The null hypothesis corresponds to u s 0. Denoting by c u the exactT
Ž . Ž .Bahadur slope of T under an alternative G x; u and by 2 KK u the slope of

Ž . Ž . Ž .the Neyman]Pearson test for G x; 0 against G x; u , Nikitin 1984 in fact
has shown that

c uŽ .T
7.54 lim s h T , GŽ . Ž .

2 KK uuª0 Ž .
for some h depending on the statistic T and the distribution G. Restricting

Ž .attention to a location or scale family, he proved that the equation h T, G s 1
Ž .has a unique solution in G for given T.
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Ž .A look at Theorem 7.2 in Bahadur 1971 and Lemma 2.1 and Remark 2.1
Ž . Ž .in Kallenberg 1983 shows that 7.54 shall be equal to any notion of

Ž .Kallenberg’s i-efficiency provided that condition i of Kallenberg’s Lemma 2.1
is fulfilled and T satisfies

y12 'lim lim nt log P T G t nŽ . Ž .0
nª`tª0

y12 's lim nt log P T G t nŽ . Ž .n 0 n
nª`

7.55Ž .

'for any t ª 0 in such a way that t n ª `.n n
Ž .The equality 7.55 for KS and CM has been established in Inglot and

Ž .Ledwina 1990 . So, the argument will be concluded if we check that under
Ž . Ž . Ž .7.53 with the imposed regularity conditions assumption i is fulfilled for

Ž .KS and CM. To this end, consider first 7.53 with u s u ª 0. Using then
y1Ž .transformation G x; 0 and Nikitin’s regularity conditions, we can restrict

Ž .attention to distributions concentrated on 0, 1 and alternatives having
densities

7.56 q x ; u s 1 q u g x , x g 0, 1 ,Ž . Ž . Ž . Ž .n n n

Ž . 1 Ž .with g x uniformly bounded and satisfying H g x dx s 0 andn 0 n
1 2Ž .inf H g x dx ) 0.n 0 n ' 5 5Next, observe that both KS and CM have the form T s n F y F ,n 0

Ž . Ž . 5 5where F is the empirical distribution function, F x s x, x g 0, 1 , and ?n 0
5 5 5 5is a suitable norm. Moreover, in both cases it holds that ? F c ? for some`

Ž . 5 5 Ž . x Ž . Ž .positive c. Set b u s Q y F , where Q x s H q y; u dy. Let H Q , Fu 0 u 0 u 0
stand for the Hellinger distance between densities of Q and F .u 0

Ž . � 4To verify condition i , we have to show that, for all sequences u withn

7.57 H Q , F ª 0 and nH 2 Q , F ª ` as n ª `,Ž . Ž . Ž .u 0 u 0n n

it holds that

T
7.58 lim P y 1 - « s 1 for each « ) 0.Ž . un½ 5'nª` n b uŽ .n

The structure of T and the Dvoretzky]Kiefer]Wolfowitz exponential inequal-
ity yield

T
5 5 5 5P y 1 - « G P F y Q - « Q y F� 4u u n u u 0n n n n½ 5'n b uŽ .n

«' '5 5 5 5G P n F y Q - n Q y F`u n u u 0½ 5n n nc

n« 2
25 5G 1 y 58 exp y2 Q y F .u 02 n½ 5ž /c

Ž . Ž . Ž .So, 7.58 follows provided that, under 7.56 and 7.57 ,

5 5 27.59 n Q y F ª `.Ž . u 0n
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Ž . 2Ž . 2However, under 7.56 , H Q , F F Cu for some positive constant C andu 0 nn 2 Ž .it is enough to show that the condition nu ª ` implies 7.59 . Check firstn
5 5the last implication for CM. Since in this case Q y F s u C , where C isu 0 n n nn

bounded, the conclusion follows. A similar argument works for KS.
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