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In factor screening, often only a few factors among a large pool of
potential factors are active. Under such assumption of effect sparsity, in
choosing a design for factor screening, it is important to consider projections
of the design onto small subsets of factors. Cheng showed that as long as
the run size of a two-level orthogonal array of strength two is not a multiple
of 8, its projection onto any four factors allows the estimation of all the main
effects and two-factor interactions when the higher-order interactions are
negligible. This result applies, for example, to all Plackett–Burman designs
whose run sizes are not multiples of 8. It is shown here that the same hidden
projection property also holds for Paley designs of sizes greater than 8, even
when their run sizes are multiples of 8. A key result is that such designs do
not have defining words of length three or four. Applications of this result to
the construction of E(s2)-optimal supersaturated designs are also discussed.
In particular, certain designs constructed by using Wu’s method are shown to
be E(s2)-optimal. The article concludes with some three-level designs with
good projection properties.

1. Introduction. In the initial stage of experimentation, one may have to
consider a large number of potentially important factors while only a few of these
factors are active. In designing experiments for factor screening, it is important
to consider projections of the design onto small subsets of factors. Box and
Tyssedal (1996) defined a design to be of projectivity p if in every subset of
p factors, a complete factorial (possibly with some combinations replicated) is
produced. When there are no more than p active factors, no matter what these
factors are, the projection of a design of projectivity p onto the active factors
allows all the factorial effects to be estimated. This important concept was also
discussed on page 363 of Constantine (1987), and appeared in another context:
p-projectivity is the same as p-covering in designs for circuit testing; see, for
example, Sloane (1993).

Projectivity can be viewed as an extension of the concept of strength of an
orthogonal array. Recall that an orthogonal array of size N , m constraints, s levels
and strength t , denoted by OA(N , sm, t), is an N × m matrix X of s symbols such
that all the ordered t-tuples of the symbols occur equally often as row vectors
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of any N × t submatrix of X. Each OA(N , sm, t) defines an N -run factorial
design for m s-level factors, with the symbols representing factor levels, columns
corresponding to factors and rows representing factor-level combinations. Such
a design has projectivity t since in every subset of t factors, all the factor-level
combinations are replicated the same number of times.

An important class of orthogonal arrays are the so-called regular fractional
factorial designs which are constructed by using defining relations. Each effect
that appears in the defining relation is called a defining word and the length of the
shortest defining word is called the resolution of the design. It is well known that a
regular fractional factorial design of resolution R is an orthogonal array of strength
R − 1. The projection property of such a design can be studied via its defining
relation in a straightforward manner. For example, since the strength is R − 1, the
design has projectivity R − 1. However, it cannot have projectivity greater than
R − 1; projecting the design onto the R factors that appear in a defining word of
length R does not produce a complete factorial.

On the other hand, it is possible for a nonregular orthogonal array of maximum
strength t to have projectivity greater than t . Lin and Draper (1992) and Box and
Bisgaard (1993) discovered that certain small Plackett–Burman designs (which are
orthogonal arrays of strength two) have projectivity three. For example, each of the
165 projections of a 12-run Plackett–Burman design onto three factors consists
of a complete 23 design and a half-replicate of 23. The 12-run Plackett–Burman
design does not have projectivity four, but in its projection onto any four factors,
all the main effects and two-factor interactions are estimable if the higher-order
interactions are negligible [see Lin and Draper (1993) and Wang and Wu (1995)].
A regular design needs resolution at least five to have such a hidden projection
property.

Cheng (1995) showed that a key to the hidden projection property described
above is the absence of defining words of length three or four. While this
concept will be precisely defined for nonregular designs as well at the end of this
section, roughly speaking, a design (regular or nonregular) has a defining word of
length k if it causes a main effect to be completely aliased with a (k − 1)-factor
interaction. If a design has a defining word of length three or four, then certain
two-factor interactions are completely aliased with main effects or other two-factor
interactions. As a result, when the design is projected onto the factors involved, not
all the main effects and two-factor interactions can be estimated. Thus a necessary
condition for a design to have the property that the main effects and two-factor
interactions are estimable in all four-factor projections is that it has no defining
word of length three or four. Cheng (1995) showed that for two-level orthogonal
arrays of strength two, this condition is also sufficient. For a two-level orthogonal
array of strength three, the main effects and two-factor interactions are estimable
in all five-factor projections if and only if the design has no defining word of length
four [Cheng (1998a)].



1014 D. A. BULUTOGLU AND C.-S. CHENG

The desirability to have no defining words of certain (short) lengths also arises
in other situations. For example, Lin (1993) proposed a method of constructing
two-level supersaturated designs from Hadamard matrices. Nguyen (1996) and
Cheng (1997) showed that his method produces optimal designs under the
E(s2)-criterion proposed by Booth and Cox (1962), provided that the resulting
designs do not have completely aliased factors. It can easily be seen that this is
the case if the method is applied to Hadamard matrices that are equivalent to
orthogonal arrays without defining words of length three. Wu (1993) proposed
another method of constructing supersaturated designs from Hadamard matrices.
Similarly, his method produces designs without completely aliased factors if it
is applied to Hadamard matrices that are equivalent to orthogonal arrays without
defining words of length three or four.

It is clear that if N is not a multiple of 8, then any OA(N , 2m, 2) with m ≥ 4 has
no defining word of length three or four. This leads to Cheng’s (1995) result that
such a design has projectivity three, and in all its four-factor projections, the main
effects and two-factor interactions are estimable. If the conjecture that a Hadamard
matrix exists for every order that is a multiple of 4 is true, then for every N that is a
multiple of 8, one can always construct a strength-two orthogonal array of size N

that has defining words of length three or four; see Cheng (1995). Such designs
do not have the desirable projection properties mentioned above. However, this
does not mean that when N is a multiple of 8, there are no OA(N, 2m, 2)’s with
good hidden projection properties. Cheng (1998b) reported an OA(24, 223, 2) that
has projectivity three and the four-factor projection property described earlier. The
same paper also presented an OA(32, 231, 2) with the stronger property that its
projection onto any six factors allows the estimation of all the main effects and
two-factor interactions. Both of these arrays are members of a family of designs
called Paley designs.

One objective of this paper is to show in Section 2 that a Paley design of size
greater than 8 has no defining words of length three or four, and therefore has
desirable hidden projection properties. Section 3 contains some applications of this
result to supersaturated designs. In particular, we show that certain supersaturated
designs obtained by using Wu’s (1993) method are E(s2)-optimal. Note that Wu
(1993) contains no optimality results. Section 4 considers s-level designs with
good projection properties where s > 2. For example, Cheng and Wu (2001)
reported an OA(27, 38, 2) with the property that in all its four-factor projections,
the quadratic model is estimable. We find an OA(27, 38, 2) such that the quadratic
model is estimable in all the five-factor projections. If one does not insist on
using an orthogonal array, then an even smaller design with the aforementioned
projection property can be constructed.

Throughout this paper, an N -run design with m two-level factors is represented
by an N ×m matrix [dij ], where dij is the level of the j th factor in the ith run. If a
factor has two levels, then they are represented by 1 and −1. For two vectors x =
(x1, . . . , xN)T and y = (y1, . . . , yN)T , the Hadamard product of x and y is defined
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as x � y = (x1y1, . . . , xNyN)T . An N -run, two-level design D = [d1, . . . ,dm] is
said to have a defining word of length k if there exist k columns of D, say columns
j1, . . . , jk , such that dj1 � · · · � djk

= 1N or −1N , where 1N is the N × 1 column
of ones. Two columns di and dj of D are said to be completely aliased if di = dj

or di = −dj . Finally, a finite field with q elements is denoted by GF(q).

2. Paley designs. Paley matrices are a family of Hadamard matrices con-
structed by Paley (1933). Suppose N is a multiple of 4 such that N − 1 is an
odd prime power. Let q = N − 1 and let α1 = 0, α2, . . . , αq denote the elements of
GF(q). Define a function χ :GF(q) → {0,1,−1} by

χ(β) =


1, if β = y2 for some y ∈ GF(q),

0, if β = 0,

−1, otherwise.

Let A be the q × q matrix [aij ], where aij = χ(αi − αj ) for i,j = 1,2, . . . , q , and

PN =
[

1 −1T
q

1q A + Iq

]
,(2.1)

where Iq is the identity matrix of order q . Then PN is a Hadamard matrix. For a
proof see Hedayat, Sloane and Stufken (1999). The matrix PN is known as a Paley
matrix of the first kind.

It is well known that a Hadamard matrix of order N is equivalent to an
OA(N,2N−1,2). Without loss of generality, we may assume that all the entries
of the first column of a Hadamard matrix are equal to 1. Then an OA(N,2N−1,2)

can be obtained by deleting the first column. We shall call the orthogonal array
obtained by deleting the first column of PN a Paley design, and denote it by DN .
For N = 12, the Paley design D12 is the 12-run Plackett–Burman design.

Projection properties of a design can be revealed by its J -characteristics as
defined by Deng and Tang (1999). Suppose D is an N -run design with m two-
level factors. Then for 1 ≤ k ≤ m and any k-subset s = {h1, . . . , hk}, let

jk(s) =
N∑

i=1

dih1dih2 · · · dihk
.

The value jk(s) is called the J -characteristic of D associated with the factors in s.
Clearly, a design D has a defining word of length k if and only if there is a k-
subset s of {1, . . . ,m} such that |jk(s)| = N , and it is an orthogonal array with
strength t if and only if jk(s) = 0 for all k-subsets s of {1, . . . ,m} with k ≤ t . Thus
showing the lack of defining words of length k in a design D of size N is equivalent
to showing that |jk(s)| < N for all k-subsets s of {1, . . . ,m}.

A result from number theory (Riemann hypothesis for curves over finite fields)
can be used to establish the following bounds on jk(s) for Paley designs:



1016 D. A. BULUTOGLU AND C.-S. CHENG

THEOREM 2.1. Let DN be a Paley design of size N , where q = N − 1 is a
prime power. Then for any k-subset s of {1, . . . ,N −1}, |jk(s)| ≤ k+1+ (k−1)×
(N − 1)1/2 if k is odd, and |jk(s) + 1| ≤ k + 1 + (k − 2)(N − 1)1/2 if k is even.

PROOF. Let s = {h1, . . . , hk}. Then by (2.1),

jk(s) = (−1)k + ∑
1≤i≤q,i �=h1,...,hk

χ(αi − αh1) · · ·χ(αi − αhk
)

+
k∑

j=1

∏
1≤j ′≤k,j ′ �=j

χ(αhj
− αhj ′ )

= ∑
1≤i≤q,i �=h1,...,hk

χ(αi − αh1) · · ·χ(αi − αhk
) + e,(2.2)

where |e| ≤ k + 1.
Now write (2.2) as

jk(s) = ∑
y∈GF(q),y �=αh1,...,αhk

χ(y − αh1) · · ·χ(y − αhk
) + e.(2.3)

We have (y − αh1) · · · (y − αhk
) = yk + a1y

k−1 + a2y
k−2 + · · · + ak for some

a1, . . . , ak ∈ GF(q). Since χ(xy) = χ(x)χ(y) for all x and y, by (2.3),

jk(s) = ∑
y∈GF(q),y �=αh1,...,αhk

χ(yk + a1y
k−1 + a2y

k−2 + · · · + ak) + e.(2.4)

Let Nq be the number of solutions (z, y), z, y ∈ GF(q), of the equation

z2 = yk + a1y
k−1 + a2y

k−2 + · · · + ak.(2.5)

Since αh1, . . . , αhk
are the zeros of yk + a1y

k−1 + a2y
k−2 + · · · + ak = (y −

αh1) · · · (y − αhk
), there are Nq − k solutions (z, y) of (2.5) with z �= 0. Also,

every pair of solutions of (2.5) of the form (z, y) and (−z, y), where z �= 0,

corresponds to one value of yk + a1y
k−1+ a2y

k−2 + · · · + ak . Therefore, for
y ∈ GF(q), y �= αh1, . . . , αhk

,

χ(yk + a1y
k−1 + a2y

k−2 + · · · + ak)

=
{

1, (Nq − k)/2 times,
−1, q − k − (Nq − k)/2 times.

(2.6)

By (2.4) and (2.6),

jk(s) = (Nq − k)/2 − {q − k − (Nq − k)/2} + e = Nq − q + e.(2.7)

On the other hand, since αh1, . . . , αhk
are distinct, the polynomial yk +

a1y
k−1 + a2y

k−2 + · · · + ak = (y − αh1) · · · (y − αhk
) has no double roots. Thus
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by a result of Hasse (1936) and Weil (1948) as quoted in Stark (1973), we have

|Nq − q| ≤ (k − 1)q1/2 for odd k(2.8)

and

|Nq − q + 1| ≤ (k − 2)q1/2 for even k.(2.9)

Since q = N −1, by (2.7), (2.8) and (2.9), we have |jk(s)−e| ≤ (k −1)(N −1)1/2

for odd k, and |jk(s)− e +1| ≤ (k −2)(N −1)1/2 for even k. This and |e| ≤ k +1
imply that |jk(s)| ≤ k + 1 + (k − 1)(N − 1)1/2 for odd k, and |jk(s)+ 1| ≤ k + 1+
(k − 2)(N − 1)1/2 for even k. �

Theorem 2.1 can be used to investigate the existence of defining words of
length k in a Paley design DN . Suppose there is a defining word of length k in DN .
Then there is a k-subset s of {1, . . . ,N −1} such that |jk(s)| = N . By Theorem 2.1,

N ≤
{

k + 1 + (k − 1)(N − 1)1/2, if k is odd,
k + 2 + (k − 2)(N − 1)1/2, if k is even.

(2.10)

This inequality cannot hold when N is sufficiently large. Thus for each k, there
is a positive integer N(k) such that there is no defining word of length k in any
Paley design DN with N > N(k). For example, for k = 3 or 4, (2.10) does not hold
for all multiples of 4 that are greater than 8 or 12, respectively. Since it is already
known that D12 has no defining words of length four, this proves the following
result.

THEOREM 2.2. Let DN be a Paley design of size N , N ≥ 12. Then DN has no
defining word of length three or four.

Note that the Paley design of size 8 is a regular design of resolution three, thus
Theorem 2.2 does not hold for N = 8.

Combining the results in Cheng (1995) with Theorem 2.2, we conclude the
following projection property of Paley designs.

COROLLARY 2.3. Let DN be a Paley design of size N , N ≥ 12. Then DN has
projectivity three, and in its projection onto any four factors, the main effects and
two-factor interactions are estimable under the assumption that the higher-order
interactions are negligible.

Theorem 2.1 can also be used to narrow down the possible values of jk(s). The
following result is useful for this purpose.
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LEMMA 2.4. Suppose X is an OA(N , 2m, t) with m ≥ t + 2, where t is an
even positive integer. Let N = 2tλ. Then for k = t + 1 and t + 2, jk(s) is an odd
multiple of 2t if λ is odd, and is an even multiple of 2t if λ is even.

PROOF. Let s = {i1, . . . , it+1} be a (t + 1)-subset of {1, . . . ,m} and let Y
be the N × (t + 1) submatrix of X consisting of columns i1, . . . , it+1. Then by
Theorem 2.1 of Cheng (1995), there exist two integers α and β such that each
vector (x1, . . . , xt+1) with x1 · · ·xt+1 = 1, where xi = 1 or −1, appears α times as
row vectors of Y, and those with x1 · · ·xt+1 = −1 appear β times. Then jt+1(s) =
2t (α −β) and 2t (α +β) = N = 2t λ. This implies that jt+1(s) = 2t (2α −λ). Thus
jt+1(s) is an odd multiple of 2t if λ is odd, and is an even multiple of 2t if λ is
even. The result for jt+2(s) follows the same argument by applying Corollary 3.1
of Cheng (1995). �

As an application of Theorem 2.1 and Lemma 2.4, consider, for example, Paley
designs of order 24. By Theorem 2.1, we have −16 < j4(s) < 16 for all 4-subsets s

of {1, . . . ,23}. On the other hand, by Lemma 2.4, j4(s) must be a multiple of 8.
Therefore the only possible values of j4(s) are 0, 8 and −8.

3. Supersaturated designs. Supersaturated two-level designs are those with
the number of factors m greater than or equal to the run size N . Lin (1993)
proposed a method of constructing supersaturated designs from Hadamard
matrices. Let H be an n × n Hadamard matrix. Without loss of generality, H can
be written as

H =
[

1 1 Hh

1 −1 ∗

]
,

where 1 is the n/2 × 1 vector of 1’s. If no two columns of Hh are completely
aliased, then Hh defines a supersaturated design with n − 2 factors and n/2 runs.
Nguyen (1996) and Cheng (1997) showed that this design is optimal under the
E(s2)-criterion proposed by Booth and Cox (1962). Note that it is essential that
no two columns of a supersaturated design are completely aliased so that there are
no redundant factors. In Lin’s construction, if certain redundant factors must be
removed to produce a legitimate design, then the resulting design may no longer
be E(s2)-optimal.

It can be seen that no two columns of Hh are completely aliased if the
orthogonal array

H′ =
[

1 Hh

−1 ∗

]

has no defining word of length three. This is because if H′ has no defining word
of length three, then it has projectivity at least three. Projecting H′ onto its first
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column and two other arbitrary columns, we see that Hh must have projectivity
at least two, and therefore has no completely aliased columns. As shown in
Theorem 2.2, Paley designs of sizes ≥ 12 have no defining words of length three.
Thus when applied to a Paley matrix of order greater than or equal to 12, Lin’s
(1993) method always yields an E(s2)-optimal supersaturated design with no
completely aliased factors.

Wu (1993) proposed another method of constructing supersaturated designs,
also based on Hadamard matrices. Let X be an OA(N , 2N−1, 2) obtained by
deleting a column of 1’s from an N ×N Hadamard matrix. Supplementing X by f

pairwise Hadamard products of its columns, where f ≤ (N−1
2

)
, a supersaturated

design with N − 1 + f factors is obtained if no two of the f added columns are
completely aliased and none of which is completely aliased with a column of X. It
is easy to see that this is the case if X has no defining word of length three or four.
Again this holds for Paley designs of sizes N ≥ 12.

Wu’s (1993) method can be used to construct an N -run design with up to
N −1+(N−1

2

)
factors. These designs, however, may not be E(s2)-optimal. Indeed,

Wu (1993) reports no optimality result. We shall show in the following that in
certain cases, including when f = (N−1

2

)
, the designs constructed by Wu’s (1993)

method are E(s2)-optimal. Thus, for example, the design obtained by adding to
the 12-run Plackett–Burman design all the

(11
2

) = 55 pairwise Hadamard products
of its columns is an E(s2)-optimal design for 66 factors in 12 runs.

THEOREM 3.1. Let X be an OA(N , 2N−1, 2) obtained by deleting a column
of 1’s from an N × N Hadamard matrix, and let Dext be the design obtained
by adding to X all the

(N−1
2

)
pairwise Hadamard products of its columns.

If Dext contains no completely aliased columns, then it is an E(s2)-optimal
supersaturated design with N runs and N − 1 + (N−1

2

)
factors.

PROOF. Let the N − 1 columns of X be c1, . . . , cN−1, c0 = 1N , and H =
[c0

...c1
... · · · ...cN−1]. Then H is a Hadamard matrix. Define M to be the matrix

M = [c0 � H
...c1 � H

... · · · ...cN−1 � H],(3.1)

where the j th column of ci � H is ci � cj , 0≤ j ≤ N − 1. Let cij = ci � cj . We
observe that the columns of M are all the cij ’s with 0≤ i, j ≤ N − 1. Partition the
columns of M as M = [M1

...M2
...M3], where the columns of M1 are the cij ’s with

0≤ i < j ≤ N − 1, the columns of M2 are those with 0≤ j < i ≤ N − 1, and M3
consists of the remaining columns, that is, the cii ’s with 0≤ i ≤ N − 1. Then since
cij = cj i , we see that the columns of M1 coincide with those of M2. In fact, after
proper reordering of the columns, we have M1 = M2 = Dext. By Theorem 2.1

of Cheng (1997), Dext is E(s2)-optimal if the row vectors of [Dext...JN,N/2] are
mutually orthogonal, where JN,N/2 is the N × N/2 matrix of ones.
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Now since cii = ci � ci = 1N for all 0 ≤ i ≤ N − 1, we have M3 = JN,N . Then
it follows from M1 = M2 = Dext that subject to reordering of columns, we can
write M as M = [M′

1
...M′

2], where M′
1 = M′

2 = [Dext...JN,N/2]. It is clear that the

rows of [Dext...JN,N/2] are mutually orthogonal if and only if the rows of M are

mutually orthogonal, since MMT = 2[Dext...JN,N/2][Dext...JN,N/2]T . Therefore the
proof is finished if we can show that the row vectors of M are mutually orthogonal.
This is true because each ci � H in (3.1) is an N × N Hadamard matrix. �

COROLLARY 3.2. Let X be an OA(N , 2N−1, 2) obtained by deleting a column

of 1’s from an N × N Hadamard matrix, and let S be an N × (N−1
2

)
matrix

whose columns consist of all ci � cj , 1 ≤ i < j ≤ N − 1, where c1, . . . , cN−1

are the columns of X. If S contains no completely aliased columns, then it is an
E(s2)-optimal supersaturated design with N runs and

(N−1
2

)
factors.

PROOF. By Theorem 2.1 of Cheng (1997), S is E(s2)-optimal if the
row vectors of [S...JN,N/2−1] are mutually orthogonal, where JN,N/2−1 is the
N × (N/2 − 1) matrix of ones. For the matrix Dext in Theorem 3.1, we
have [Dext...JN,N/2] = [S...c1

... · · · ...cN−1
...1N

...JN,N/2−1]. Since [c1
... · · · ...cN−1

...1N ] is
a Hadamard matrix, its row vectors are mutually orthogonal. This and the fact
that the row vectors of [Dext...JN,N/2] are mutually orthogonal (see the proof
of Theorem 3.1) imply that the row vectors of [S...JN,N/2−1] are also mutually
orthogonal. �

COROLLARY 3.3. Let X be an OA(N , 2N−1, 2) obtained by deleting a column
of 1’s from an N × N Hadamard matrix, and for any i0,1 ≤ i0 ≤ N − 1, let Xi0

be an N × (2N − 3) matrix consisting of the columns ci with 1 ≤ i ≤ N − 1
and ci0 � cj with 1 ≤ j ≤ N − 1, j �= i0, where c1, . . . , cN−1 are the columns
of X. If Xi0 contains no completely aliased columns, then it is an E(s2)-optimal
supersaturated design with N runs and 2N − 3 factors.

PROOF. Let Ti0 be the matrix

Ti0 = [c0 � H
...ci0 � H],

where c0 = 1N and H = [1N

...X]. Then subject to reordering of the columns, we
can write Ti0 = [1N

...1N

...Xi0
...ci0]. Since both c0 � H and ci0 � H are Hadamard

matrices, the row vectors of Ti0 are mutually orthogonal. Thus by Theorem 2.1
of Cheng (1997), [Xi0

...ci0] would be an E(s2)-optimal supersaturated design with
N runs and 2N − 2 factors if it has no completely aliased columns. Since ci0 also
appears in Xi0 , [Xi0

...ci0] is not a legitimate design, but removing ci0 from [Xi0
...ci0]
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results in a legitimate supersaturated design Xi0 with 2N − 3 factors, which by the
discussion in case 3.2 on page 934 of Cheng (1997) is E(s2)-optimal. �

Note that the design in Theorem 3.1 consists of all the main-effect and two-
factor interaction columns in a saturated main-effect plan, that in Corollary 3.2
consists of the two-factor interaction columns only and that in Corollary 3.3
consists of all the main-effect columns and the two-factor interactions involving
a given factor. If we take X to be a Paley design DN of size N , N ≥ 12, then by
Theorem 2.2, the resulting designs always have no completely aliased columns and
hence are E(s2)-optimal. These are the only designs constructed by Wu’s (1993)
method whose E(s2)-optimality we are able to prove. For example, if we try to
apply the same argument as in Corollary 3.3 to show the optimality of the design
given by adding all pairwise Hadamard products involving two particular factors
to a saturated orthogonal array, then three columns would have to be removed from
a design that minimizes E(s2). There is no guarantee that the resulting design is
still E(s2)-optimal.

4. Some s-level designs with good projection properties. Unlike two-level
designs, projection properties of designs with more than two levels have been
relatively unexplored. Cheng and Wu (2001) found a nonregular OA(27, 38,2)

such that in all projections onto four factors, the quadratic model can be estimated.
Here a quadratic model refers to the second-order model that contains the intercept,
all the linear and quadratic components of main effects, and all the linear×linear
interactions. Specifically, when there are k factors each with three quantitative
levels, under the quadratic model, the mean of each response at the combination
(x1, . . . , xk) is given by µ + ∑k

i=1 βixi + ∑k
i=1 βiix

2
i + ∑

1≤i<j≤k βij xixj , where
xi is the level of factor i, and µ,βi, βii, βij are unknown constants. Suppose
the levels are equally spaced. Then they can be coded as 0, 1 and 2, with
0 corresponding to the lowest level and 2 corresponding to the highest level.

The four-factor projection property as described in the previous paragraph
cannot be satisfied by a regular 38−5 design due to the presence of some defining
words of length 3. Cheng and Wu’s (2001) design is constructed by taking the
union of three disjoint regular 38−6 fractional factorial designs of resolution two.
The three 38−6 fractions are chosen in such a way that there is no defining word of
length three when they are pieced together. The projection property is then verified
by computer. The choice of the three fractions seems to have been done by trial
and error. Cheng and Wu’s design almost achieves the same property for five-
factor projections; among the five-factor projections, only one fails to estimate the
quadratic model.

In fact, an OA(27, 38,2) with a slightly better projection property can be found.
We have been able to find an OA(27, 38,2) with the property that in all projections
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onto five factors, the quadratic model can be estimated. This design is displayed in
the following:



0 0 0 0 2 0 0 0

0 1 0 1 0 2 1 2

0 2 0 2 1 1 2 1

1 0 1 0 0 2 2 1

1 1 1 1 1 1 0 0

1 2 1 2 2 0 1 2

2 0 2 0 1 1 1 2

2 1 2 1 2 0 2 1

2 2 2 2 0 2 0 0

0 0 1 1 0 0 1 0

0 1 1 2 2 1 0 1

0 2 1 0 1 2 2 2

1 0 2 1 2 1 2 2

1 1 2 2 1 2 1 0

1 2 2 0 0 0 0 1

2 0 0 1 1 2 0 1

2 1 0 2 0 0 2 2

2 2 0 0 2 1 1 0

0 0 2 2 0 1 0 2

0 1 2 0 1 0 2 0

0 2 2 1 2 2 1 1

1 0 0 2 1 0 1 1

1 1 0 0 2 2 0 2

1 2 0 1 0 1 2 0

2 0 1 2 2 2 2 0

2 1 1 0 0 1 1 1

2 2 1 1 1 0 0 2



.
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If the design is not required to be an orthogonal array, then a smaller design with
the same projection property can be constructed. We describe in the following a
general construction mimicking that of Paley designs.

Let s be a positive integer with s ≥ 3. Denote by Zs the set {0,1, . . . , s − 1} of
integers modulo s. As before, for each prime power q , let GF(q) be a finite field
with q elements α1, α2, . . . , αq . Then the nonzero elements of GF(q) form a cyclic
group under the field multiplication. Let g be a generator of this group, called a
primitive element. Define a q × q matrix Aq

s such that all the diagonal elements
are equal to zero, and the (i, j)th off-diagonal element is the remainder when k is
divided by s, where k is the integer such that gk = αi − αj with 0 ≤ k ≤ q − 2.
Supplementing this matrix by a row of zeros, we obtain a matrix

Mq
s =

[
0T
q

Aq
s

]
,

where 0q is a q × 1 vector of zeros.
Now for each 1 ≤ c ≤ s − 1, let Mq

s + c be the matrix obtained by adding c to
each entry of Mq

s , where the addition is carried out modulo s. Finally let

Dq
s =



Mq
s

Mq
s + 1

...

Mq
s + (s − 1)


.(4.1)

Then Dq
s is a design of size s(q + 1) for q s-level factors.

Design Dq
s has two variants D′q

s and D′′q
s which sometimes have better

projection properties. Let

M′q
s =

[
0T
q

Aq
s + Iq

]

and

M′′q
s =

[
0T
q

Aq
s + Îq

]
,

where Îq is the q × q diagonal matrix with the ith diagonal entry equal to the
ith entry of the q × 1 vector (0,1, . . . , s − 1,0,1, . . . , s − 1,0,1, . . .). Then
D′q

s and D′′q
s are as defined in (4.1) except that each Mq

s is replaced by M′q
s

and M′′q
s , respectively. Finally, by adding the column (0 · 1T

q+1
...1 · 1T

q+1
... · · ·

...(s − 1) · 1T
q+1)

T
to Mq

s , M′q
s or M′′q

s , one can accommodate one more factor.
For example, let s = 3, q = 7, g = 2, and αi = i − 1, i = 1, . . . ,7. Then the
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following 24-run design for eight 3-level factors is obtained by adding the column
(0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2)T to D7

3:



0 0 0 0 0 0 0 0

0 0 1 2 2 1 0 0

0 0 0 1 2 2 1 0

1 0 0 0 1 2 2 0

2 1 0 0 0 1 2 0

2 2 1 0 0 0 1 0

1 2 2 1 0 0 0 0

0 1 2 2 1 0 0 0

1 1 1 1 1 1 1 1

1 1 2 0 0 2 1 1

1 1 1 2 0 0 2 1

2 1 1 1 2 0 0 1

0 2 1 1 1 2 0 1

0 0 2 1 1 1 2 1

2 0 0 2 1 1 1 1

1 2 0 0 2 1 1 1

2 2 2 2 2 2 2 2

2 2 0 1 1 0 2 2

2 2 2 0 1 1 0 2

0 2 2 2 0 1 1 2

1 0 2 2 2 0 1 2

1 1 0 2 2 2 0 2

0 1 1 0 2 2 2 2

2 0 1 1 0 2 2 2



.

We expect designs such as Dq
s , D′q

s and D′′q
s to have good projection properties,

although they need to be verified case by case. For example, the 24-run design for
eight three-level factors displayed above can estimate the quadratic model in all
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its projections onto five factors, even though it has three fewer runs than the two
OA(27, 38,2)’s reported in Cheng and Wu (2001) and earlier in the present paper.

For a given model, we can evaluate the overall performance of a design with
respect to the D-criterion by computing the average of [det(XT X)]1/h over all
p-factor projections, where XT X is the information matrix of the design when it
is projected onto a specific subset of p-factors, h is the number of independent
parameters in the model, and [det(XT X)]1/h = 0 if the model is not estimable.
Denote this averaged D-criterion by Dp . Clearly for models without three-
factor and higher-order interactions, Dp is maximized by an orthogonal array of
strength 4 if such an array exists. When an orthogonal array of strength 4 does not
exist, the hypothetical value of Dp that would be achieved by an orthogonal array
of strength 4 provides a simple upper bound for Dp . Let this upper bound be D∗

p .
Then Dp/D∗

p is a lower bound for the average D-efficiency of the design over all
p-factor projections. For the 24-run design with eight three-level factors displayed
above, a lower bound for the average D-efficiency under the quadratic model over
all the five-factor projections is 65.6%. The corresponding value for Cheng and
Wu’s (2001) 27-run design is 69.60%.

Under D13
3 , a 42-run design for thirteen three-level factors, all the main effects

and two-factor interactions can be estimated in all its three-factor projections;
a lower bound on the average D-efficiency is 92.36%. Among 1,664 of the(13

7

) = 1,716 seven-factor projections, the quadratic model can be estimated. On
the other hand, D′′13

3 can estimate the quadratic model in all the 1,716 seven-factor
projections, with a lower bound of 59.78% for the average D-efficiency.

Unlike two-level designs, we do not yet have general theoretical results on the
projection properties of designs with more than two levels. This deserves further
study.
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