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STOCHASTIC APPROXIMATION1

BY TZE LEUNG LAI

Stanford University

Stochastic approximation, introduced by Robbins and Monro in 1951,
has become an important and vibrant subject in optimization, control and
signal processing. This paper reviews Robbins’ contributions to stochastic
approximation and gives an overview of several related developments.

1. Introduction. In 1951, Herbert Robbins and his student, Sutton Monro,
founded the subject of stochastic approximation (SA). Not only did their celebrated
paper attract immediate attention in the statistics literature, resulting in many
important developments and advances in the 1950s and 1960s, but SA also
eventually developed into an important area in systems control and optimization,
to which Robbins made further seminal contributions in the late 1970s and early
1980s. Sections 2–5 review Robbins’ work in SA and related adaptive control
problems. They also provide a road map for certain portions of the extensive
literature on these topics. SA has served as a prototype for the development and
analysis of recursive algorithms for on-line estimation and control of stochastic
systems, a brief account of which is given in Section 6 together with a discussion
of its connections to Robbins’ work. After five decades of continual development,
SA still remains vibrant and Section 7 gives examples of new developments and
some concluding remarks.

2. The Robbins–Monro and Kiefer–Wolfowitz schemes. The seminal pa-
per of Robbins and Monro (1951) considers the problem of using successive
approximations xn to find the unique root θ of a regression function M in the
regression model

yn = M(xn) + εn, n = 1,2, . . . ,(1)

where the εn represent unobservable random errors. If one uses Newton’s scheme
xn+1 = xn − yn/M

′(xn) as in the deterministic case εn ≡ 0 [assuming M to be
smooth with M ′(θ) �= 0], then the presence of random errors εn in (1) implies that

xn+1 = xn − M(xn)/M
′(xn) − εn/M

′(xn).(2)
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Hence, if xn should converge to θ , so that M(xn) → 0 and M ′(xn) → M ′(θ),
then (2) entails that εn → 0, which is not possible for many kinds of random errors
(e.g., i.i.d. εn with positive variance). To average out the errors εn, Robbins and
Monro (1951) proposed using a recursive scheme of the form

xn+1 = xn − anyn,(3)

where an are positive constants such that
∑

a2
n < ∞ and

∑
an = ∞, assuming that

M(x) > 0 if x > θ and M(x) < 0 if x < θ . The assumption
∑

a2
n < ∞ ensures

that
∑

anεn converges in L2 and a.s. for many stochastic models of random noise.
Under certain regularity conditions, this in turn implies that xn − θ converges in
L2 and a.s., and the assumption

∑
an = ∞ then ensures that the limit of xn − θ

is 0; see Section 3 for a more detailed discussion.
A specific application of (3) mentioned by Robbins and Monro (1951) is

estimation of the pth quantile θp of a distribution function F , for which M(x) =
F(x) − p and yn + p is a Bernoulli random variable with mean F(xn) in (1).
Their interest in such applications might have been inspired by the “up-and-down”
method of Dixon and Mood (1948), which requires parametric assumptions on F

to estimate θp and for which the design levels xn do not converge to θp (although
the Dixon–Mood method aims at choosing design levels concentrated around the
unknown θp).

There was substantial interest during the 1940s in the problem of finding
the maximum (or minimum) of a regression function M and choosing design
levels around the unknown optimum, beginning with Hotelling’s (1941) paper
on polynomial regression models. The basic ideas of the Robbins–Monro scheme
can be readily modified to provide successive approximations for the minimum
(or maximum) of a unimodal regression function, as was shown by Kiefer and
Wolfowitz (1952) who introduced a recursive scheme of the form

xn+1 = xn − an�(xn)(4)

to find the minimum θ of M (or, equivalently, the solution of dM/dx = 0).
During the nth stage of the Kiefer–Wolfowitz scheme, observations y′′

n and y′
n

are taken at the design levels x′′
n = xn + cn and x′

n = xn − cn,respectively. In (4),
�(xn) = (y′′

n − y′
n)/2cn, an and cn are positive constants such that cn → 0,∑

(an/cn)
2 < ∞ and

∑
an = ∞.

3. Convergence analysis and stochastic Liapounov functions. The ap-
proach used by Robbins and Monro (1951) in the convergence analysis of their
scheme (3) is to convert (3) to a corresponding recursion for E(xn+1 − θ)2.
This approach, which proves L2 convergence of the Robbins–Monro scheme, was
also used by Kiefer and Wolfowitz (1952) for the scheme (4), first showing that
E(xn+1 − θ)2 converges to some limit and then using this to arrive at a contradic-
tion if xn does not converge to θ in probability. Their argument also requires that∑

ancn < ∞.
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Blum (1954) made use of the a.s. convergence of
∑

anεn to prove first that
xn+1 + ∑n

j=1 ajM(xj ) converges a.s. and then that xn converges a.s. to θ for the
Robbins–Monro scheme (3), under the following conditions on M that are weaker
than those of Robbins and Monro:

|M(x)| ≤ c(|x − θ | + 1) for all x and some c > 0,(5)

inf
ε≤|x−θ |≤ε−1

{
M(x)(x − θ)

}
> 0 for all 0 < ε < 1.(6)

He also established by a similar argument the a.s. convergence of (4) to θ under
weaker assumptions than those of Kiefer and Wolfowitz (1952), in particular,
removing the assumption

∑
ancn < ∞. Dvoretzky (1956) subsequently proved the

a.s. and L2 convergence of a general class of recursive stochastic algorithms which
include the Robbins–Monro and Kiefer–Wolfowitz schemes as special cases. This
result is commonly called “Dvoretzky’s approximation theorem.”

In 1971, generalizing Gladyshev’s (1965) approach to prove a.s. convergence
of the Robbins–Monro scheme (3), Robbins and Siegmund proved a general
convergence theorem which yields the a.s. part of Dvoretzky’s approximation
theorem as a corollary. Instead of using (3) or (4) to find a recursion for
E(xn+1 − θ)2 as in Robbins and Monro (1951), this convergence theory starts
with a corresponding recursive relation for Vn := (xn+1 − θ)2 and then takes
conditional expectation with respect to Fn−1, where Ft is the σ -field generated
by {(xi, yi) : i ≤ t}. Note in this connection that xn+1 is Fn-measurable, and it will
be assumed that the εn in the regression model (1) form a martingale difference
sequence with respect to {Fn} such that supn E(ε2

n|Fn−1) < ∞ a.s. In particular,
the recursion (3) in conjunction with (5) implies that

E(Vn|Fn−1) ≤ (1 + αn−1)Vn−1 + βn−1 − γn−1,(7)

where αn−1 = 2c2a2
n, βn−1 = a2

n{2c2 + E(ε2
n|Fn−1)} and γn−1 = 2anM(xn) ×

(xn − θ) ≥ 0.
Calling a sequence Vn that satisfies (7), in which Vi , αi , βi and γi are

nonnegative Fi-measurable random variables such that
∑

αi + ∑
βi < ∞ a.s.,

a nonnegative almost supermartingale, Robbins and Siegmund (1971) proved the
following convergence theorem:

Vn converges a.s. and
∑

γn < ∞ a.s.(8)

Applying this result to the Robbins–Monro scheme (3) yields the a.s. convergence
of |xn − θ | (= V

1/2
n−1) and of

∑
anM(xn)(xn − θ) (= ∑

γn−1/2). Since
∑

an = ∞
and (6) holds, it then follows that xn → θ a.s. This approach is particularly useful
for multidimensional SA schemes for which Vn takes the form ‖xn+1 − θ‖2; see
Robbins and Siegmund (1971) for an application of (8) to the infinite-dimensional
case where the xn belong to a Hilbert space.

Without taking conditional expectation with respect to Fn−1, Lai (1989)
modified the Robbins–Siegmund theorem for the case where

∑
βn need not
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be finite. Let {εn,Fn, n ≥ 1} be a martingale difference sequence such that
supn E(ε2

n|Fn−1) < ∞ a.s. Let αn,βn, γn,Vn be nonnegative Fn-measurable
random variables such that

∑
αn < ∞ a.s. and let wn be Fn-measurable. Suppose

that, for n ≥ 2,

Vn ≤ (1 + αn−1)Vn−1 + βn − γn + wn−1εn a.s.(9)

Then, for every δ > 0,

max

(
Vn,

n∑
i=1

γi

)
= O

(
n∑

i=1

βi +
(

n−1∑
i=1

w2
i

)1/2+δ)
a.s.(10)

Moreover, Vn converges a.s. and
∑

E(γn|Fn−1) < ∞ a.s. on {∑E(βn|
Fn−1) < ∞}.

The convergence of Vn on {∑E(βn|Fn−1) < ∞} basically follows by the same
argument as that leading to (8) upon taking conditional expectation with respect to
Fn−1 in (9). On the other hand, on {∑E(βn|Fn−1) = ∞}, Vn need not converge
and (10) provides a bound on the order of magnitude of Vn and

∑n
i=1 γi . The

function Vn = ‖xn+1 − θ‖2 used by Robbins and Siegmund (1971) is closely
related to Liapounov functions in the stability theory of ordinary differential
equations (ODEs); see Lai (1989). Analogous to Liapounov functions in ODEs,
the stochastic Liapounov function Vn inherits an almost supermartingale structure
from the dynamics of the original stochastic system. The idea behind Lai’s (1989)
extended stochastic Liapounov functions (9), whose applications will be discussed
in Section 5, is to achieve greater flexibility by not insisting on the almost
supermartingale property that guarantees convergence.

4. Asymptotic normality and adaptive stochastic approximation. Whereas
the Liapounov function approach (also called Liapounov’s second method) studies
stability properties of an equilibrium of an ODE via a Liapounov function, Lia-
pounov’s first method uses the explicit solution of an ODE to study stability of
an equilibrium. Beginning with Sacks (1958), a commonly used method to prove
asymptotic normality of SA schemes is to first show convergence to θ and then
to replace the regression function (or its gradient vector) with a linear approxi-
mation in a small neighborhood of θ to develop an explicit nonrecursive repre-
sentation of xn. This is, therefore, similar in spirit to Liapounov’s first method. In
particular, Sacks (1958) showed that under certain regularity conditions an asymp-
totically optimal choice of an in the Robbins–Monro scheme (3) is an ∼ (nβ)−1,
for which

√
n(xn − θ) has a limiting N(0, σ 2/β2) distribution, where β = M ′(θ)

[which also appears in Newton’s scheme (2)] and σ 2 = limn→∞ E(ε2
n|Fn−1). This

result was obtained earlier under stronger assumptions by Chung (1954), Hodges
and Lehmann (1956) and Burkholder (1956) who used recursions for E(xn − θ)k

[similar to those of Robbins and Monro (1951) for k = 2] and the method of mo-
ments. By the late 1970s when Robbins returned to work on SA, there was a rela-
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tively complete theory on convergence and asymptotic normality of the Robbins–
Monro and Kiefer–Wolfowitz schemes and their multivariate extensions; see, for
example, the review papers by Schmetterer (1969) and Fabian (1971) and the
monographs by Albert and Gardner (1967), Tsypkin (1971) and Nevel’son and
Has’minskii (1973).

In 1976, Anderson and Taylor proposed a certainty equivalence rule for the
“multiperiod control problem” in econometrics, which is concerned with choosing
the inputs x1, . . . , xN sequentially in the linear regression model yi = α +βxi + εi

(with unknown parameters β �= 0 and α and i.i.d. random errors εi having mean 0
and variance σ 2) so that the outputs are as close as possible to a target value y∗.
Assuming prior knowledge of bounds K1 and K2 such that K1 < θ := (y∗ −
α)/β < K2, the Anderson–Taylor rule is defined recursively by

xn+1 = K1 ∨ {
β̂−1

n (y∗ − α̂n) ∧ K2
}
, n ≥ 2,(11)

where α̂n and β̂n are the least squares estimates of α and β at stage n. Based on
the results of simulation studies, Anderson and Taylor (1976) conjectured that this
certainty equivalence rule converges to θ a.s. and that

√
n(xn − θ) has a limiting

N(0, σ 2/β2) distribution. They also raised the question whether α̂n and β̂n are
strongly consistent. Clearly, if the xi should cluster around θ , then there would not
be much information for estimating the slope β . There is, therefore, an apparent
dilemma between the control objective of setting the design levels as close as
possible to θ and the need for an informative design with sufficient dispersion
to estimate β .

To resolve this dilemma, Lai and Robbins (1979) began by considering the
case of known β . Replacing yi by yi − y∗, it can be assumed without loss
of generality that y∗ = 0 so that yi = β(xi − θ) + εi . Let x̄n = n−1 ∑n

i=1 xi ,
ȳn = n−1 ∑n

i=1 yi . With known β , the least squares certainty equivalence rule
becomes xn+1 = x̄n − ȳn/β , which turns out to be equivalent to the SA scheme (3)
with an = (nβ)−1. Since x̄n − ȳn/β = θ − ε̄n/β , E(xn+1 − θ)2 = σ 2/(nβ2) for
n ≥ 1 and therefore

E

(
N∑

n=1

y2
n

)
=

N∑
n=1

E
{
β2(xn − θ)2 + ε2

n

} = Nσ 2 + β2
N−1∑
n=0

E(xn+1 − θ)2

= σ 2(N + logN + O(1)
)
.

Moreover,

N∑
n=1

(xn − θ)2 ∼ (σ 2/β2) logN a.s. and
√

N(xN − θ) ⇒ N(0, σ 2/β2).(12)

As shown by Lai and Robbins (1982a) who used dynamic programming after
putting a prior distribution on θ , the optimal control rule when the εi are
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normal also has expected regret σ 2 logN + O(1), where β2 ∑N
n=1(xn − θ)2

[= ∑N
n=1(yn − εn)

2] is called the regret (due to ignorance of θ ) of the design.
Thus, for normally distributed errors, (12) shows that the least squares certainty
equivalence rule when β is known yields both asymptotically minimal regret and
an efficient final estimate. The next step, therefore, is to try also to achieve (12)
even when β is unknown.

An obvious way to modify the preceding rule for the case of unknown β is to
use an estimate bn to substitute for β either in the recursion xn+1 = x̄n − ȳn/β or
in the equivalent SA scheme xn+1 = xn − yn/(nβ). The equivalence between the
two recursive schemes, however, no longer holds when β is replaced by bn. The
first recursion (with β replaced by bn) is called iterated least squares and treated
in Lai and Robbins (1982a, b). The second recursion, called adaptive stochastic
approximation, is treated in Lai and Robbins (1979, 1981).

Under the assumptions (5) and (6) on the regression function M and also
assuming that M ′(θ) = β > 0, Lai and Robbins (1979) consider SA schemes of
the type

xn+1 = xn − yn/(nbn),(13)

where bn is Fn−1-measurable and limn→∞ bn = b > 0 a.s. By representing xn as a
weighted sum of the i.i.d. random variables εi , they prove limit theorems on xN −θ

and
∑N

n=1(xn − θ)2. In particular, for 0 < b < 2β , they generalize (12) to

N∑
n=1

(xn − θ)2 ∼ (σ 2/β2)f (b/β) logN a.s. and

(14) √
N(xN − θ) ⇒ N

(
0, (σ 2/β2)f (b/β)

)
,

where f (t) = 1/{t (2 − t)} for 0 < t < 2 and has a minimum value of 1 at t = 1.
Lai and Robbins (1981) showed that by choosing bn to be a truncated version of
the least squares estimate in the adaptive SA scheme (13), one indeed has bn → β

a.s. and therefore (12) still holds for (13). Another way to achieve (12) for the
adaptive SA scheme (13), used by Lai and Robbins (1979), is to take two points

x
(1)
n = xn − cn and x

(2)
n = xn + cn at stage n, following an earlier idea of Venter

(1967). Whereas Venter estimated β by bn = ζ ∨{ξ ∧n
∑n−1

j=1(y
(2)
j − y

(1)
j )/(2cj)},

with 0 < ζ < β < ξ and cn ∼ cn−γ for some constants c > 0 and 1
4 < γ < 1

2 , Lai
and Robbins (1979) proposed using

bn = ζn ∨
{
ξn ∧

n−1∑
j=1

cj

(
y

(2)
j − y

(1)
j

)/(
2

n−1∑
j=1

c2
j

)}
,(15)

with ζn → 0 and ξn → ∞ such that
∑∞

1 (iζi )
−2 < ∞ and

∑∞
1 (iξi )

−1 = ∞,
and 0 < cj = O(j−γ ) for some γ > 1

4 but
∑∞

1 c2
j = ∞,

∑n
1 c2

j = o(log n).
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The yn in the SA scheme (13) is given by yn = (y
(1)
n + y

(2)
n )/2. Both (15) and

Venter’s estimate of β converge to β a.s., but the regret β2{∑m
n=1(x

(1)
n − θ)2 +∑m

n=1(x
(2)
n − θ)2} of Venter’s design is on the order of 2β2c2m1−2γ /(1 − 2γ ),

whereas that of its modification by Lai and Robbins (1979) using (15) instead
has order σ 2 logm. Generalizations of these results to adaptive multivariate SA
schemes have been provided by Wei (1987).

5. Strong consistency of least squares estimates and associated adaptive
control rules. A key step in the analysis of adaptive SA and iterated least squares
procedures in Lai and Robbins (1981, 1982a) is to establish strong consistency of
the least squares estimate

β̂n =
{

n∑
i=1

(xi − x̄n)yi

}/
n∑

i=1

(xi − x̄n)
2

when the xi are sequentially determined random variables. Also encountering
such consistency issues in the analysis of their certainty equivalence control
rule (11), Anderson and Taylor (1979) considered the more general multiple
regression model yn = θT ψn + εn and showed for the least squares estimate
θ̂n = (

∑n
i=1 ψiψ

T
i )−1 ∑n

i=1 ψiyi that

θ̂n → θ a.s. if λmin

(
n∑

i=1

ψiψ
T
i

)
→ ∞ and

λmax

(
n∑

i=1

ψiψ
T
i

)
= O

(
λmin

(
n∑

i=1

ψiψ
T
i

))
a.s.

(16)

When specialized to the simple linear model yn = α + βxn + εn, (16) yields
the strong consistency of α̂n and β̂n if lim inf

∑n
i=1(xi − x̄n)

2/n > 0 with
probability 1. Lai and Robbins (1981) proved strong consistency of β̂n under
the substantially weaker condition

∑n
i=1(xi − x̄n)

2/ logn → ∞ a.s. and gave
a counterexample in which xi is Fi−1-measurable and

∑n
i=1(xi − x̄n)

2/ logn

converges a.s. to some constant c > 0 but in which β̂n → β − c−1 a.s. Since∑n
i=1(xi − θ)2 is desired to have the order (σ 2/β2) logn in view of (12), this

counterexample also shows that proving strong consistency of β̂n in an adaptive SA
environment requires delicate arguments that involve monitoring how

∑n
1(xi −θ)2

and x̄n − θ evolve over time. Theorem 8 of Lai and Robbins (1981) provides a
set of sufficient conditions on

∑n
1(xi − θ)2 and x̄n − θ that can be verified for

adaptive SA schemes, thereby proving the desired strong consistency of β̂n and
establishing (12) for these schemes.

Lai and Wei (1982) subsequently generalized the Lai–Robbins condition∑n
i=1(xi − x̄n)

2/ logn → ∞ a.s. to multiple regression models, giving the
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following improvement of (16):

θ̂n → θ a.s. on

{
λmin

(
n∑

i=1

ψiψ
T
i

)/
log λmax

(
n∑

i=1

ψiψ
T
i

)
→ ∞

}
.(17)

Whereas Lai and Robbins (1981) assumed the εn to be i.i.d. with mean 0
and finite variance, Lai and Wei (1982) established (17) under the assumption
that {εn,Fn, n ≥ 1} is a martingale difference sequence such that
supn E(|εn|2+δ|Fn−1) < ∞ a.s. for some δ > 0. When the ψi are nonrandom,
Lai, Robbins and Wei (1979) proved strong consistency of θ̂n under the mini-
mal condition λmin(

∑n
i=1 ψiψ

T
i ) → ∞, assuming only that {εn} is a “convergence

system” (i.e.,
∑∞

1 ciεi converges a.s. for all nonrandom sequences {cn} such that∑∞
1 c2

i < ∞). For nonrandom ψi , the j th component θ̃nj of θ̂n − θ can be ex-
pressed as (

∑n
i=1 aniεi)/

∑n
i=1 a2

ni , where the ani are nonrandom constants (de-
pending also on j ) such that

∑n
i=1 aniami = ∑m

i=1 a2
mi for n ≥ m. The ani are no

longer nonrandom if the ψi are sequentially determined random variables, and this
is why stronger assumptions as in (17) are needed for the strong consistency of θ̂n.

Like SA schemes that are defined by recursions, the least squares estimate θ̂n

also has a recursive representation of the form

θ̂n = θ̂n−1 + Pnψn

(
yn − θ̂ T

n−1ψn

)
,(18a)

Pn = Pn−1 − Pn−1ψnψ
T
n Pn−1/(1 + ψT

n Pn−1ψn),(18b)

where Pn = (
∑n

i=1 ψiψ
T
i )−1. The recursion (18) leads to a corresponding

recursive inequality (9) for Vn := (θ̂n − θ)T P −1
n (θ̂n − θ) with αn = 0, βn =

ψT
n Pnψnε

2
n, γn = {(θ̂n−1 − θ)T ψn}2(1 − ψT

n Pnψn) ≥ 0 and wn−1 = 2{(θ̂n−1 −
θ)T ψn}(1 − ψT

n Pnψn). Therefore, assuming that {εn,Fn, n ≥ 1} is a martingale
difference sequence with supn E(ε2

n|Fn−1) < ∞ a.s., it follows from (10) that
max(Vn,

∑n
i=1 γi) = O(

∑n
i=1 ψT

i Piψiε
2
i ) + O((

∑n
i=1 γi)

2/3) a.s. If we assume
the stronger moment condition supn E(|εn|2+δ|Fn−1) < ∞ a.s. for some δ > 0,
then

∑n
i=1 ψT

i Piψiε
2
i = O(

∑n
i=1 ψT

i Piψi) = O(log λmax(
∑n

i=1 ψiψ
T
i )) a.s. by

Lemma 2 of Lai and Wei (1982). Therefore,

max

(
Vn,

n∑
t=1

γt

)
= O

(
logλmax

(
n∑

i=1

ψiψ
T
i

))
a.s.(19)

Since Vn ≥ ‖θ̂n − θ‖2λmin(
∑n

i=1 ψiψ
T
i ), (19) implies (17). Lai and Wei (1982)

essentially proved the strong consistency of θ̂n for stochastic regressors ψn that
are Fn−1-measurable by this argument, for which Lai (1989) later provided a more
general framework extending the Robbins–Siegmund theorem (8). Moreover, by
the definition of γn, (19) also yields

n∑
t=1

(
θ̂ T
t−1ψt − θT ψt

)2
I{ψT

t Ptψt≤δ} = O

(
logλmax

(
n∑

i=1

ψiψ
T
i

))
a.s.(20)
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for every 0 < δ < 1. Note that θT ψt is the minimum-variance Ft−1-measurable
predictor of yt when θ is known and that θ̂ T

t−1ψt is the adaptive predictor of yt

using the least squares estimate θ̂t−1 to replace θ . Therefore, (20) gives an
asymptotic bound on the cumulative squared difference between these adaptive
and optimal predictors, without consistency assumptions on the least squares
estimates θ̂t .

For the special case of the simple linear regression model yn = α + βxn + εn

considered by Anderson and Taylor (1976), θ̂t = (α̂t , β̂t )
T , ψt = (1, xt )

T and
the certainty equivalence rule (11) (with y∗ = 0) is tantamount to θ̂ T

n ψn+1 = 0,
modulo truncation of xn+1 by K1 and K2. Strictly speaking, (11) is undefined when
β̂n = 0, but this is a zero-probability event in the simulation studies of Anderson
and Taylor involving continuous (normal) εn. Lai and Robbins (1982b) showed
that (11) does not converge a.s. to θ by exhibiting an event which has positive
probability and on which xn gets stuck at one of the end points K1, K2 for n ≥ 2.
They also showed that for a recursive scheme of the type xn+1 = x̄n − ȳn/bn,
xn → θ a.s. if bn → b a.s., where b has the same sign as β; moreover, (14) still
holds for this scheme if 0 < b/β < 2. The next step, therefore, was to modify (11)
so that the design has enough information for β̂n to estimate β consistently. Instead
of assuming a priori bounds on θ , Lai and Robbins (1982a) assumed that the sign
of β is known (say, to be positive) and that there are a priori bounds B1,B2
such that 0 < B1 < β < B2. Using σ̂ 2

n = n−1 ∑n
i=1(yi − ȳn)

2 to estimate σ 2

and setting bn = bn−1 if
∑n

i=1(xi − x̄n)
2 < (σ̂ 2

n /2B2
2 ) logn, and otherwise setting

bn = B1 ∨ (β̂n ∧ B2), they showed that bn → β a.s. for the modified least squares
certainty equivalence rule xn+1 = x̄n − ȳn/bn which, therefore, satisfies (12).

Adaptive control has been an active area of research in the engineering lit-
erature. Unlike the static regression models considered above, control engineer-
ing involves time series models and stochastic dynamical systems, for which the
input un at stage n affects not only the output yn+1 at stage n + 1 but also
the future dynamics of the system, as in the case of the ARX model (autore-
gressive model with exogenous inputs) A(q−1)yn = B(q−1)un−1 + εn, where
A(q−1) = 1+a1q

−1 +· · ·+apq−p , B(q−1) = b1 +· · ·+brq
−(r−1) and q−1 is the

unit delay operator (defined by q−1xn = xn−1). Rewriting the ARX model as a sto-
chastic regression model yn = θT ψn + εn with θ = (−a1, . . . ,−ap, b1, . . . , br)

T

and ψn = (yn−1, . . . , yn−p,un−1, . . . , un−r)
T , we can apply (19) and (20) to ana-

lyze the least squares estimates θ̂t and the adaptive least squares predictors θ̂ T
t−1ψt .

The adaptive control problem for the ARX model is to choose the inputs ut sequen-
tially so that the outputs yt are as close as possible to some bounded reference sig-
nals y∗

t . Assuming that b1 �= 0, the minimum-variance controller ut−1 is given by
θT ψt = y∗

t when θ is known, yielding outputs yt = y∗
t + εt . When θ is unknown,

we define the regret RN (at stage n) of a control rule by RN = ∑N
t=1(yt −y∗

t −εt )
2,

as in Lai and Robbins (1979). Beginning with the landmark paper of Åström and
Wittenmark (1973), there was considerable effort for nearly two decades to ad-



400 T.-L. LAI

dress the problem whether using the least squares estimate θ̂t−1 to substitute for
the unknown θ in θT ψt = y∗

t can “self-tune” the ARX system in the sense that

Rn/n → 0 a.s. and
n∑

i=1

(u2
i + y2

i ) = O(n) a.s.(21)

[The first property in (21) is equivalent to minimizing the long-run average squared
tracking error, while the second property says that the closed-loop system is
globally stable.] An essentially affirmative answer was provided by Guo and Chen
(1991) who slightly modified the least squares estimate θ̂i by truncating b̂1,i when
it falls below 1/ log ri−1, where rt = ∑t

j=1 ‖ψj‖2 and b̂1,i is the component of θ̂i

estimating b1. Important tools in their analysis are (20) and the Bellman–Gronwall
inequality that uses the dynamics of yt to bound ‖ψt‖2.

6. Recursive stochastic algorithms in system identification and control.
The ARX model corresponds to the so-called “white noise” case in the control
systems literature, which usually deals with the more general ARMAX model (in
which MA stands for “moving average” disturbances or “colored noise”):

A(q−1)yn = B(q−1)un−1 + C(q−1)εn,(22)

where C(q−1) = 1 + c1q
−1 + · · · + ckq

−k , the polynomials A(z), B(z) and C(z)

are relatively prime and {εn,Fn, n ≥ 1} is a martingale difference sequence satis-
fying supn≥1 E(|εn|2+δ|Fn−1) < ∞ a.s. for some δ > 0. Fuchs (1982) proposed
estimating the parameter vector θ = (−a1, . . . ,−ap, b1, . . . , br , c1, . . . , ck)

T re-
cursively by the stochastic gradient (SG) algorithm

θn = θn−1 + (α/rn)φn(yn − θT
n−1φn), rn = rn−1 + ‖φn‖2,(23)

where φn = (yn−1, . . . , yn−p,un−1, . . . , un−r , ε̂n−1, . . . , ε̂n−k)
T and ε̂t =

yt − θ T
t−1φt . Note that φn is a surrogate for the Fn−1-measurable regressor

ψn = (yn−1, . . . , yn−p,un−1, . . . , un−r , εn−1, . . . , εn−k)
T . A similar SG algorithm

was introduced earlier by Goodwin, Ramadge and Caines (1981) after reparame-
terizing the model as C(q−1)E(yn+1|Fn) = G(q−1)yn + B(q−1)un, where the
polynomial division algorithm is applied to yield C(z) = A(z) + zG(z). Assume
the stability and positive real conditions

C(z) has all zeros outside the unit circle and min|z|=1
Re{C(z) − α/2} > 0.(24)

By continuity and compactness, (24) also holds with α replaced by α + ρ for
some ρ > 0. Let ηn = ε̂n − εn = θT ψn − θT

n−1φn, hn = {C(q−1) − 1
2 (α + ρ)}ηn.

Then there exists K > 0 such that Sn := 2ρ
∑n

i=1 hiηi + K ≥ 0 for all n. Letting
Vn = ‖θn − θ‖2 + Sn/rn, the analysis of Goodwin, Ramadge and Caines (1981)
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and Fuchs (1982) shows, among other things, that (7) holds with αn−1 = 0, βn−1 =
(α/rn)

2‖φn‖2E(ε2
n|Fn−1) and γn−1 = ραη2

n/rn. Therefore, it follows from (8) that
Vn converges a.s. and

∞∑
n=1

(θT
n−1φn − θT ψn)

2/rn < ∞ a.s.(25)

Making use of (25) and the dynamics of yt under a stability assumption on B(z)

[but not on A(z)], Fuchs (1982) showed that the certainty equivalence rule
θT
n−1φn = y∗

n satisfies the self-tuning property (21), while Goodwin, Ramadge and
Caines (1981) obtained the same result for a reparameterized version of the rule.

The SG algorithm (23) is reminiscent of most multivariate extensions of the
Robbins–Monro and Kiefer–Wolfowitz schemes in the statistics literature, taking
the form Xn+1 = Xn − anYn, where the Xi and Yi are d × 1 vectors and an is a
scalar, as in (3) or (4) in the case d = 1; see Nevel’son and Has’minskii (1973).
A common feature of these algorithms is that they have scalar gain sequences
(α/rn or an), which enable them to be analyzed via stochastic Liapounov functions
of the form ‖θn − θ‖2 or ‖Xn − θ‖2. An exception to using scalar gains is the
extension of the adaptive SA scheme (13) to the multivariate case (with M : Rd →
Rd ) by Wei (1987) who used a matrix gain algorithm Xn+1 = Xn − (nBn)

−1Yn,
in which Bn is an estimate of the Jacobian matrix ∂M/∂x|x=θ that is assumed to
be nonsingular. Matrix gain SA schemes are also used in extending the Robbins–
Monro scheme to derive recursive estimates of multidimensional parameters that
are asymptotically as efficient as the maximum likelihood estimates in certain
parametric models; see Chapters 8 and 9 of Nevel’son and Has’minskii (1973).

Returning to the ARMAX model (22), a matrix gain alternative to the SG
algorithm is the extended least squares (ELS) algorithm given by (18) with
φt replacing the unobservable ψt . Note that SG with α = 1 essentially replaces
the matrix P −1

n = ∑n
1 φiφ

T
i in ELS by its trace rn. Defining the ε̂t (to form the φi)

by yt − θT
t φt (instead of yt − θ T

t−1φt ), Lai and Wei (1986) proved that (20) (with
ψt replaced by φt ) still holds for the ELS algorithm under the stability and positive
real conditions

C(z) has zeros outside the unit circle and min|z|=1
Re{1/C(z) − 1/2} > 0.(26)

Their argument essentially shows that (9) holds for the extended stochastic
Liapounov function Vn = (θ̂n − θ)T P −1

n (θ̂n − θ) so that (10) can be applied. For
the ELS algorithm θ̂t , (20) with φt in place of ψt was used by Guo and Chen
(1991) to prove that (21) holds for the certainty equivalence rule θ̂ T

n−1φn = y∗
n in

the ARMAX model (22).
The self-tuning property (21) is considerably weaker than the order σ 2 logn

for the regret established by Lai and Robbins (1979, 1981, 1982a, b) for the mul-
tiperiod control problem in simple linear regression models. Although the ELS
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algorithm has been sometimes called “approximate maximum likelihood” (AML),
its statistical properties are actually unrelated to those of the maximum likelihood
estimator (MLE) even when the εi are normal. Linear approximations to the esti-
mating equations defining the MLE in some neighborhood of the true parameter
lead to another recursive algorithm called RML2. Lai and Ying (1991) showed
how parallel recursive algorithms can be used to develop an adaptive control rule
with regret no larger than {C + o(1)} logn, where the constant C can be shown to
be the smallest possible under much more restrictive assumptions. These parallel
recursive algorithms involve an SG component to stabilize the system so that oc-
casional blocks of white noise inputs can be used to generate enough information
for consistent estimation of θ , and an RML2 component that is constrained to lie
within diminishing neighborhoods of the auxiliary consistent estimates.

Closely related to the stochastic Liapounov functions and extended stochastic
Liapounov functions described above is the ODE approach introduced by
Ljung (1977) for the convergence analysis of SA and other recursive stochastic
algorithms. To fix the ideas, consider the multivariate Robbins–Monro scheme
Xn+1 = Xn − an{M(Xn) + εn}. Let tn = ∑n

1 ai (→ ∞ as n → ∞), X(t) = Xn+1
at t = tn, and define X(t) by linear interpolation when tn < t < tn+1. Noting
that tn − tn−1 = an → 0 and that supm≥n ‖∑m

i=n aiεi‖ → 0 as n → ∞, the SA
scheme can be approximated by the ODE dX/dt = −M(X(t)), suggesting that
Xn → θ if θ is a globally asymptotically stable equilibrium of the ODE. This
argument can be made rigorous by using compactness arguments under additional
assumptions such as continuity of M and a.s. boundedness of Xn. For more
general recursive stochastic algorithms, different sets of technical assumptions
have been developed to ensure the validity of the ODE approach; see Kushner and
Clark (1978), Ljung and Söderström (1983) and Benveniste, Métivier and Priouret
(1987). However, the ODE approach is often used heuristically to obtain a quick
understanding of the dynamics of the algorithm, especially how it is coupled to the
dynamics of the underlying system (e.g., the ELS algorithm in the ARMAX model
above). Although these technical assumptions are often either too stringent or too
difficult to check, one often bypasses them and tries to find useful clues from the
limiting ODE. A case in point is the least squares recursion (18) in the stochastic
regression model yn = θT ψn + εn, as pointed out in Lai (1989), page 213.
Here Ljung’s ODE approach (with an = n−1) can be justified under the overly
restrictive “persistent excitation” condition n−1 ∑n

1 ψiψ
T
i (= n−1P −1

n ) → Q a.s.
for some positive definite matrix Q, and stability analysis of the limiting ODE
involves the Liapounov function V (θ(t),P (t)) = (θ(t) − θ)T P −1(t)(θ(t) − θ).
Instead of working with the Liapounov function of the limiting ODE, an obvious
alternative is to work directly with its analog Vn = (θ̂n − θ)T P −1

n (θ̂n − θ), which
is an “extended stochastic Liapounov function” that need not even converge. This
yields the asymptotic behavior (19) not only for Vn but also for

∑n
1(θ̂

T
t−1ψt −

θT ψt )
2(1 − ψT

t Ptψt ) that has played an important role in the solution of the
Åström–Wittenmark problem.
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7. Some recent developments and concluding remarks. The subject SA
founded by Robbins and Monro 50 years ago is still showing vigor and vibrancy.
As evidenced by the relatively recent survey articles and monographs by Ruppert
(1991), Yin (1991), Ljung, Pflug and Walk (1992) and Duflo (1997), the subject
has been growing steadily in different directions over these decades. There is now
a rich arsenal of theories and techniques which have found and been inspired
by new applications from other fields. For example, interactions of SA with
neural network modeling, neuro-dynamic programming, reinforcement learning,
perturbation analysis of discrete-event dynamic systems, simulated annealing,
spatial statistics and maximum likelihood estimation based on incomplete data
have led to advances in these areas and in SA; see Younes (1989), Gelfand
and Mitter (1991), Moyeed and Baddeley (1991), Spall (1992, 2000), Chong
and Ramadge (1993), Spall and Cristion (1994), Bertsekas and Tsitsiklis (1996),
Tsitsiklis and Van Roy (1997), Gu and Kong (1998), Delyon, Lavielle and
Moulines (1999), Yin (1999) and Gu and Zhu (2001).

An attractive feature of SA and other recursive stochastic algorithms is that
they allow fast updating at each instant when new data arrive and therefore
can be used to support decisions “on-line,” that is, during the operation of the
system. Moreover, they can be asymptotically as efficient as their “off-line”
counterparts that require much greater computational complexity and whose
memory requirements grow to ∞ with the sample size. However, the loss of
information in using only the previous estimate θ̂t−1 and the current observation yt

to form the current estimate θ̂t of θ often results in unsatisfactory finite-sample
performance except for linear problems in which off-line estimates have simple
recursive forms such as (18). For example, in applying the Robbins–Monro
scheme (3) to estimate the pth quantile θp of a distribution function F , the
nonlinearity of F and the binary nature of the response suggest that there is
substantial loss of information in using an SA scheme instead of regression
modeling with all the data collected so far. The simulation study of Cochran
and Davis (1965) involving sample size n = 24 for estimating the median lethal
dose (p = 1

2 ) confirms this. In fact, it seems too ambitious to use a nonparametric
approach to model F for samples of such size, and initializing with a parametric
model as in Wu (1985) for moderate sample sizes before switching to SA is a
better idea. Another way to improve the finite-sample performance of SA schemes,
proposed by Kesten (1958), is to keep the gains an constant until xn − xn−1
changes sign. Alternatively, using parallel recursive algorithms as in Yin (1991)
and Lai and Ying (1991) can take advantage of parallel computation to incorporate
more features of efficient off-line procedures into an on-line estimation or control
scheme. As pointed out in Section 7 of Gu and Zhu (2001), it is often important
to “tweak” the Robbins–Monro procedure appropriately for the application being
considered in order to obtain satisfactory finite-sample performance besides
attaining the desired asymptotic properties.
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Robbins (1952) mentioned the two-armed bandit problem (introduced in that
paper) and SA as two new problems in sequential design of experiments “different
from those usually met in statistical literature.” Whereas the Kiefer–Wolfowitz
scheme (4) chooses design points sequentially from R (continuous action space)
in order to maximize E(

∑N
i=1 yi), with yi given by the regression model (1),

the k-armed bandit problem is concerned with sampling y1, . . . , yN sequentially
from k populations so that E(

∑N
i=1 yi) is maximized, where the conditional

distribution of yi given that it is sampled from population �j is the same as that
of �j . Section 6 of Lai (2001) gives a survey of the multi-armed bandit (MAB)
problem. Like SA, MAB has undergone many far-reaching generalizations and
has become another important topic (concerning finite action spaces) in the field
of stochastic adaptive control. Through SA and MAB, Robbins has indeed greatly
broadened the scope of sequential experimentation and pushed it to new heights
and in new directions.
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