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We propose a new test, based on model selection methods, for testing that
the expectation of a Gaussian vector with n independent components belongs
to a linear subspace of R

n against a nonparametric alternative. The testing
procedure is available when the variance of the observations is unknown and
does not depend on any prior information on the alternative. The properties
of the test are nonasymptotic and we prove that the test is rate optimal [up to
a possible log(n) factor] over various classes of alternatives simultaneously.
We also provide a simulation study in order to evaluate the procedure when
the purpose is to test goodness-of-fit in a regression model.

1. Introduction. We consider the regression model

Y = f + σε,(1)

where f is an unknown vector of R
n, ε a Gaussian vector with i.i.d. components

distributed as standard Gaussian random variables, εi ∼ N (0,1), and σ some
unknown positive quantity. Let V be some linear subspace of R

n. The aim of
this paper is to propose a test of the null hypothesis “f belongs to V ” against the
alternative that it does not under no prior information on f .

The testing procedure can be described in the following way. We consider a
finite collection of linear subspaces of V ⊥, {Sm, m ∈ M}, such that for each m,
Sm �= V ⊥ and Sm �= {0}. The index set M is allowed to depend on the number
of observations n. Our testing procedure consists of doing several tests. Let
{αm, m ∈ M} be a suitable collection of numbers in ]0,1[, we consider for each
m ∈ M the Fisher test of level αm of the null hypothesis

H0: f ∈ V against the alternative H1,m: f ∈ (V + Sm) \ V

and we decide to reject the null hypothesis if one of the Fisher tests does.
In the particular case where σ is known and equal to 1/

√
n, our statistical

framework is related to the Gaussian sequence model. In this latter framework,
Spokoiny (1996) proposed a procedure for testing f = 0 against f �= 0 which
has the property of achieving the minimax rate of testing [up to an unavoidable
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log log(n) factor] for a wide range of Besov classes. The procedure is based on
thresholding techniques, the choice of the threshold being judiciously calibrated
for the problem at hand.

When f takes the particular form (F (x1), . . . ,F (xn))
T , for some function F

(we shall call this framework the functional regression model), many tests of
linear hypotheses have been proposed. Some are based on nonparametric function
estimation methods, a very natural idea being to compare a nonparametric
estimation of F to a parametric one computed under the null hypothesis. We
refer, for example, to Staniswalis and Severini (1991), Müller (1992), Härdle
and Mammen (1993), Hart (1997), Chen (1994) and Eubank and LaRiccia
(1993) for an overview. Such methods present several drawbacks. First, when
the nonparametric estimation is based on some a priori choice of the regularity
of F , the same holds for the testing procedure. In particular, the issue of the
test depends upon this choice. Besides, a data-driven choice may affect the level
of the test. Dette and Munk (1998) proposed a test based on the estimation of
some L

2-distance between F and the null. The procedure does not depend on the
choice of a smoothing parameter. In addition the asymptotic distribution of the test
statistic under the null approximates well its distribution for a small sample size.
However, in the papers previously mentioned, the authors give no hint as to how
their procedures perform from the minimax point of view.

In a recent paper, Horowitz and Spokoiny (2001) proposed a test for parametric
hypotheses against nonparametric alternatives in the functional regression model
with heteroscedastic errors, that does not require any prior knowledge of the
smoothness of F . Their procedure rejects the null hypothesis if for some
bandwidth among a grid, the distance between the nonparametric kernel estimator
and the kernel-smoothed parametric estimator of F under the null hypothesis
is large. This so-defined test achieves asymptotically the desired level. It is
rate optimal among adaptive procedures over Hölder classes of alternatives and
achieves nearly the parametric rate of testing for directional alternatives.

Several methods based on model selection by penalized criteria, originally
used for estimation inference, have been proposed in order to avoid using a prior
assumption on f . The test proposed by Eubank and Hart (1992) is based on a
penalized criterion which is related to the well-known Mallows Cp and has the
property to achieve the parametric rate of testing over directional alternatives. This
criterion (and related ones) is used for nonparametric estimation in the regression
framework. We refer, for example, to the work of Birgé and Massart (2001) in the
context of Gaussian errors and to Baraud (2000a) under weaker assumptions.

Another way to handle the problem of testing f ∈ V is to consider the
coordinates of the vector Y onto an orthonormal basis of V ⊥. Then, the problem
of testing f ∈ V amounts to testing that these coordinates are distributed as i.i.d.
centered Gaussian random variables of common variance σ 2. By so doing, one
shifts the original problem of goodness-of-fit in the regression framework with
known variance to the problem of goodness-of-fit in the density framework. In this
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latter framework, testing procedures based on penalized criteria which are akin to
Schwarz’s have been proposed by Inglot and Ledwina (1996). Schwarz’s criterion
(and related ones) can be used for estimation issues in the density model; see, for
example, Nishii (1988) and Castellan (2000) for more recent work.

Our procedure is based on a penalized criterion which is connected to that
proposed by Laurent and Massart (2000) for the estimation of a quadratic
functional in the regression framework. Such a connection will be highlighted in
Section 2.3. A key point of our procedure is that it permits mixing several kinds
of linear spaces Sm, increasing thus our chance to capture some specific feature of
the discrepancy between f and the null for a fixed value of n. Consequently, when
the collection of Sm’s is suitably chosen, we show that the testing procedure is
powerful over a large class of alternatives, both from the theoretical and practical
point of view. The theory developed in this paper is restricted to the case where the
errors are i.i.d. Gaussian. However the procedure offers the following advantages.
The properties of the testing procedure are nonasymptotic. For each n the test
has the desired level and we characterize a set of vectors over which our test is
powerful. We establish that the procedure is both minimax over some classes of
alternatives (up to a logarithmic factor) and 1/

√
n-consistent over directional ones.

Its performance from the practical point of view is illustrated in simulation studies.
It is shown there that the procedure is very easy to implement and robust with
respect to some discrepancy to the Gaussian assumption.

The paper is organized as follows: in Section 2 we present the testing procedure.
Our main result is stated in Section 3 and rates of testing are given in Section 4.
The simulation studies are presented in Section 5. Sections 6–9 contain the proofs.

Let us now introduce some notation that is repeatedly used throughout the paper.
In the sequel, Pf denotes the law of the observation Y and d is the dimension of
V . For s, t in R

n we set ‖s‖2
n = ∑n

i=1 s2
i /n and dn(t, s) = ‖s − t‖n. For each

m ∈ M, we set Vm = V ⊕ Sm and, respectively, denote by Dm and Nm the
dimension of Sm and V ⊥

m . For any linear subspace W of R
n we denote by �W

the orthogonal projector onto W (with respect to the Euclidean norm). In order
to keep the notation as short as possible we set for each m ∈ M, �m = �Sm .
For any u ∈ R, �̄(u), χ̄D(u), F̄D,N(u) denote, respectively, the probability for
a standard Gaussian variable, a chi-square with D degrees of freedom and a Fisher
with D and N degrees of freedom to be larger than u.

2. The testing procedure.

2.1. Description of the procedure. Let us fix some α ∈]0,1[. Let n ≥ d + 2
and consider a finite collection of linear spaces {Sm, m ∈ M} of V ⊥ such that for
all m ∈ M, 1 ≤ Dm ≤ n − d − 1. We set

Tα = sup
m∈M

{
Nm‖�mY‖2

n

Dm‖Y − �VmY‖2
n

− F̄−1
Dm,Nm

(αm)

}
,(2)
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where {αm, m ∈ M} is a collection of numbers in ]0,1[ such that

∀f ∈ V, Pf (Tα > 0) ≤ α.(3)

We reject the null hypothesis when Tα is positive. In the sequel, we choose the
collection {αm, m ∈ M} in accordance with one of the two following procedures:

P1. For all m ∈ M, αm = an where an is the α-quantile of the random variable

inf
m∈M

F̄Dm,Nm

(
Nm‖�mε‖2

n

Dm‖ε − �Vmε‖2
n

)
.

P2. The αm’s satisfy the equality ∑
m∈M

αm = α.

2.2. Behavior of the test under the null hypothesis. The test associated with
procedure P1 has the property to be of size α. More precisely, we have

∀f ∈ V, Pf (Tα > 0) = α.(4)

This result follows from the fact that an satisfies

P

(
sup
m∈M

{
Nm‖�mε‖2

n

Dm‖ε − �Vmε‖2
n

− F̄−1
Dm,Nm

(an)

}
> 0

)
= α,(5)

and that for f ∈ V, �mY = �mε and Y − �VmY = ε − �Vmε.
The choice of the αm’s as proposed in procedure P2 allows us to deal with the

computation of the α-quantile an. In fact no preliminary computation is required
at all. A test associated to procedure P2 leads to a Bonferonni test for which we
only have (3) by arguing as follows:

Pf (Tα > 0) ≤ ∑
m∈M

Pf

(
Nm‖�mY‖2

n

Dm‖Y − �VmY‖2
n

> F̄−1
Dm,Nm

(αm)

)
≤ ∑

m∈M

αm = α.

The procedure is therefore conservative. Another drawback lies in the fact that
the choice of αm’s is arbitrary, which gives a Bayesian flavor to the procedure.
Nevertheless, we see in Section 5 that for suitable Sm’s associated with the choice
αm = α/|M| for all m ∈ M, the procedure P2 is powerful and, because of its
conservative character, more robust with respect to a discrepancy to Gaussianity.
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2.3. Connection with model selection. The aim of this section is to explain the
underlying ideas of the procedure we propose and to relate it to model selection.
In order to simplify our task, we assume that the quantity σ is known and that
V = {0}. Let us start with a collection of linear subspaces of R

n, {Sm, m ∈
M = {0,1, . . . , n}}, which is totally ordered for inclusion and such that for each
m ∈ M,dim(Sm) = m (note that we add 0 to the index set M). As σ is known, our
test statistic Tα can be replaced by the simpler one,

T̂α = sup
m∈M\{0}

[
‖�mY‖2

n − σ 2

n
χ̄−1

m (αm)

]
,(6)

where χ̄−1
m (u) denotes the 1 − u quantile of a χ2-random variable with m degrees

of freedom. Similarly, we reject the null f = 0 if T̂α > 0. The connection with
model selection is made as follows: Note that the critical region is equivalently
defined as m̂ ≥ 1, where m̂ is a maximizer among M of the penalized criterion
Crit(m) given by

Crit(m) = ‖�mY‖2
n − pen(m),(7)

with pen defined here by

pen(0) = 0 and ∀m ∈ M \ {0}, pen(m) = χ̄−1
m (αm)

σ 2

n
.(8)

The test proposed by Eubank and Hart (1992) is based on the same critical region
with a penalty function pen defined as pen(m) = σ 2mCα/n. The constant Cα

is greater than 1 and is calibrated for the test to be asymptotically of level α.
Therefore, the difference between Eubank and Hart’s procedure and ours lies in the
choice of the penalty function. The penalty function chosen by Eubank and Hart is
related to Mallows’ Cp . Criteria based on penalty functions of the form Cσ 2m/n

with C > 1 aim at selecting a “good” model for the purpose of estimating f with
respect to quadratic loss [see Baraud (2000a) or Birgé and Massart (2001)]. In
contrast, the penalty function involved in our procedure is related to that proposed
in Laurent and Massart (2000) and is calibrated for the purpose of estimating the
quadratic functional ‖f ‖2

n = d2
n(f,V ).

3. The power of the test. Let α and β be two numbers in ]0,1[, and let
{Sm, m ∈ M} and {αm, m ∈ M} be the collections defined in Section 2. The aim
of this section is to describe a set of R

n-vectors over which the test defined in
Section 2.1 is powerful.

Let us first introduce some quantities that depend on αm,β , Dm and Nm.
For each u > 0 and m ∈ M, let us set Lm = log(1/αm), L = log(2/β), km =
2 exp(4Lm/Nm),

Km(u) = 1 + 2

√
u

Nm

+ 2km

u

Nm

,
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�1(m) = 2.5
(
1 + Km(Lm) ∨ km

)Dm + Lm

Nm

,

�2(m) = 2.5
√

1 + K2
m(L)

(
1 +

√
Dm

Nm

)
,

�3(m) = 2.5
[(

kmKm(L)

2

)
∨ 5

](
1 + 2

Dm

Nm

)
.

Under the following condition the quantities �1(m), �2(m) and �3(m) behave
like constants.

(HM) For all m ∈ M, αm ≥ exp(−Nm/10) and β ≥ 2 exp(−Nm/21).

These conditions are usually met for reasonable choices of the collections
{Sm, m ∈ M} and {αm, m ∈ M}. Let us now give our main result.

THEOREM 1. Assume that n ≥ d + 2 and let Tα be the test statistic defined
by (2). Then Pf (Tα > 0) ≥ 1 − β for all f belonging to the set

Fn(β) =
{
f ∈ R

n, d2
n(f,V ) ≥ inf

m∈M
	(f,m)

}
,

where

	(f,m) = [1 + �1(m)]d2
n(�V ⊥f,Sm)

+
[
�2(m)

√
Dm log

(
2

αmβ

)
+ �3(m) log

(
2

αmβ

)]
σ 2

n
.

Moreover, under Condition (HM) the following inequalities hold:

�1(m) ≤ 10
Dm + Lm

Nm

, �2(m) ≤ 5

(
1 +

√
Dm

Nm

)
and

�3(m) ≤ 12.5
(

1 + 2
Dm

Nm

)
.

COMMENT. For the sake of simplicity, let us assume that V = {0} and that the
αm’s are chosen to be all equal to α/|M| (procedure P2). As already mentioned,
the test described in Section 2 consists of doing several Fisher tests of f = 0
(V = {0} here) against f ∈ Sm at level αm and of rejecting the null hypothesis if
one of the Fisher tests does. Then a natural question arises: what advantage should
be expected of such a procedure compared to a classical Fisher test? In order to
answer this question, let us fix some m ∈ M and consider the test statistic

Tm =
{

Nm‖�mY‖2
n

Dm‖Y − �VmY‖2
n

− F̄−1
Dm,Nm

(α)

}
.
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By applying Theorem 1 with M = {m} and αm = α, we obtain that the Fisher test
φm = 1{Tm > 0} has power greater than 1 − β over the set Fm(β) of vectors f

satisfying

‖f ‖2
n ≥ C1d

2
n(f,Sm) + C2

[√
Dm log

(
2

αβ

)
+ log

(
2

αβ

)]
σ 2

n
,(9)

where C1 and C2 behave like constants with respect to n if the ratio (Dm +
log(1/α))/Nm remains bounded, and where C1 is close to 1 if this ratio is small.
Inequality (9) gives a good description of the class of functions f over which this
test is powerful since the following result holds.

PROPOSITION 1. Let β ∈]0,1 − α[ and

θ(α,β) =
√

2 log
(
1 + 4(1 − α − β)2

)
.

If

‖f ‖2
n ≤ d2

n(f,Sm) + θ(α,β)
√

Dm

σ 2

n
,

then Pf (Tm > 0) ≤ 1 − β .

If we now consider the test statistic Tα defined by (2), we obtain from Theorem 1
that the corresponding test has power greater than 1 − β over the set of vectors for
which there exists m ∈ M such that

‖f ‖2
n ≥ C1d

2
n(f,Sm) + C2

[√
Dm log

(
2

αmβ

)
+ log

(
2

αmβ

)]
σ 2

n
.(10)

The difference between (9) and (10) lies in the fact that log(1/α) has been
replaced by log(1/αm). For typical collections of Sm’s and αm’s, the difference
log(1/αm) − log(1/α) is of order log(n) or log log(n). Therefore, we deduce
from (10) that for each β ∈]0,1 − α[, the test based on Tα has power greater
than 1 − β over a class of vectors which is close to

⋃
m∈M Fm(β). It follows that

for each f �= 0 the power of this test under Pf is comparable to the power of the
best of the Fisher tests among the family {φm, m ∈ M}.

4. Rates of testing. In this section, we consider the case where V = {0} and
establish rates of testing in the two following statistical models.

The functional regression model. Let x1, . . . , xn be deterministic points
in [0,1] and let F be some unknown function of the Hilbert space L2([0,1], dx).
We consider the regression model given by (1) where

f = (
F(x1), . . . ,F (xn)

)T
and where σ 2 is unknown.
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The truncated Gaussian sequence model. Let (φj )j≥1 be some Hilbert basis
of L2([0,1], dx) endowed with the usual inner product denoted by 〈·, ·〉, and let
F be some function in this space. We consider the regression model given by (1)
where

f = (〈F,φ1〉, . . . , 〈F,φn〉)T
and σ 2 = τ 2/n, where τ is unknown.

If τ is known and equals 1, the truncated Gaussian sequence model is related
to the Gaussian sequence model for which one observes the whole sequence
(Yi, i ≥ 1) given by

Yi = fi + 1√
n
εi, i ∈ N \ {0}.

This model is the ideal framework for doing statistical inference in the Gaussian
white noise model by filtering the latter onto the φj ’s. For a suitable choice of
the basis (φj )j≥1, for example, the Fourier or a wavelet basis, it is possible to
establish connections between the regularity of the function F and the fact that the
sequence of its coefficients belongs to some sets such as ellipsoids, lp-balls and so
forth. Such results are recalled in Laurent and Massart (2000).

The main difference between the functional regression model and the truncated
Gaussian sequence model lies in the meaning of the vector f . In the functional
regression model, the main feature of f = (F (x1), . . . , F (xn))

T is that the
differences between its successive components are all the smaller because F is
regular. In contrast, the main feature of f in the truncated Gaussian sequence
model lies in the fact that its components tend to decrease. These particular features
can be taken into account by the choice of the collection of Sm’s.

4.1. The functional regression model. In this section, we take full advantage of
the possibility of mixing several linear spaces in the collection {Sm, m ∈ M}, each
of them being appropriate for detecting specific alternatives. We show that for an
adequate choice of the collection, we obtain a test that is both rate optimal (in some
sense) over the s-Hölderian balls of radius R, simultaneously for all s ∈]1/4,1]
and R > 0, and that is able to detect local alternatives at the parametric rate of
testing. For this aim, we introduce the following collections of αm’s and Sm’s.

1. For each k ∈ M1 = {2j , j ≥ 0} ∩ {1, . . . , [n/2]} ([x] denotes the integer part of
x), we define α(k,1) = α/(2|M1|) and S(k,1) as the linear space spanned by the
vectors {(

1](j−1)/k,j/k](x1), . . . ,1](j−1)/(k),j/k](xn)
)T

, j = 1, . . . , k
}
.

2. Let (φj )j≥1 be a Hilbert basis of L2([0,1], dx). For each k ∈ M2 = {1, . . . , n}
we define α(k,2) = 3α/(π2k2) and S(k,2) as the linear space spanned by the
vector (φk(x1), . . . , φk(xn))

T .
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In the sequel, we set M = {(k,1), k ∈ M1} ∪ {(k,2), k ∈ M2} and consider the
collections {Sm, m ∈ M} and {αm, m ∈ M}. For R > 0 and s ∈]0,1], we define
Hs(R) ⊂ R

n as

Hs(R) = {(
F(x1), . . . ,F (xn)

)T
/F ∈ Hs(R)

}
,

where

Hs(R) = {
F : [0,1] → R, ∀ (x, y) ∈ [0,1]2, |F(x) − F(y)| ≤ R|x − y|s}.

COROLLARY 1. Let α and β be two numbers in ]0,1[. Let Tα be the test
statistic defined by (2). Then the following holds:

(i) Assume that

n ≥ 42 max
{

log
(

45

α

)
, log

(
2

β

)}
(11)

and that R2 ≥ √
log log(n)σ 2/n. Then there exists a constant C(α,β) depending

only on α and β such that for all s ∈]0,1] and for all f ∈ Hs(R), satisfying
‖f ‖2

n ≥ C(α,β)ρ2
n,1 with

ρ2
n,1 = R2/(1+4s)

(√
log log(n)

n
σ 2

)4s/(1+4s)

+ R2n−2s + log log(n)

n
σ 2,

we have Pf (Tα > 0) ≥ 1 − β .
(ii) Let F ∈ L2([0,1], dx) and f = (F (x1), . . . ,F (xn))

T . Assume that the xi ’s
satisfy for all k ≥ 1,

lim
n→+∞

1

n

n∑
i=1

F(xi)φk(xi) =
∫ 1

0
F(x)φk(x) dx,

lim
n→+∞

1

n

n∑
i=1

φ2
k (xi) = 1, lim

n→+∞
1

n

n∑
i=1

F 2(xi) =
∫ 1

0
F 2(x) dx.

If for some k0 ≥ 1, (
∫ 1

0 F(x)φk0(x) dx)2 > −17.5 log(α(k0,2)β/2)σ 2, then for
n large enough,

Pf/
√

n(Tα > 0) ≥ 1 − β.

COMMENTS. The results of this corollary are obtained by taking the union
of the two collections {S(k,1), k ∈ M1} and {S(k,2), k ∈ M2}. It can be seen in the
proof that the first collection allows us to obtain (i) and the second one (ii). By
mixing the two collections, we increase the performance of the test.

In case (i), note that the rate of testing is free from any assumption on the xi’s.
This rate is of order (

√
log log(n)/n)2s/(1+4s) for s > 1/4. In the Gaussian white
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noise model, the rate n−2s/(1+4s) is known to be minimax over s-Hölderian balls
[Ingster (1993)]. The loss of efficiency of a log log(n) factor is because the test is
adaptive, which means that it does not use any prior knowledge on s and R [for
further details see Spokoiny (1996)].

When s < 1/4, the rate of testing is of order n−s and we do not know whether
this rate is optimal or not. If the variance were known, the procedure based on T̂α

defined at (6) would lead to a rate of testing of order n−1/4, whatever the value of
s < 1/4 [see Baraud, Huet and Laurent (2001)]. This rate is known to be minimax
on related sets of vectors as proved in Baraud (2000b).

The result presented in (ii) is analogous to that previously given by Eubank and
Hart (1992). Namely, we get the parametric rate 1/

√
n in directional alternatives.

For each k ∈ M1, S(k,1) is related to the functional space generated by the
piecewise constant functions over the intervals ](j − 1)/k, j/k], j = 1, . . . , k.
The proof of (i) is based on the fact that these functional spaces have good
approximation properties in sup-norm with respect to the functions belonging
to Hs(R). In the same way, by using a collection of linear spaces, S(k,1), which
is now related to piecewise polynomials of degree not larger than r ≥ 1, one would
derive some nearly minimax results over the class of functions F on [0,1] such
that their derivatives of order r belong to Hs(R).

4.2. The truncated Gaussian sequence model. The aim of this section is to
establish uniform separation rates over lp-balls defined as

Ep,s(R) =
{
f ∈ R

n,

(
n∑

i=1

ips |fi |p
)1/p

≤ R

}
(12)

with s,p,R > 0.
Let us now introduce the collections {Sm, m ∈ M} and {αm, m ∈ M}. Let

(e1, . . . , en) be the canonical basis of R
n. For each k ∈ M1 = {2j , j ≥ 0} ∩

{1, . . . , [n/2]}, let S(k,1) be the linear space generated by {e1, . . . , ek} and for
all k ∈ M2 = {1, . . . , n}, let S(k,2) be the space generated by the vector ek . We
set M = {(k,1), k ∈ M1} ∪ {(k,2), k ∈ M2}. Let k0 = sup(M1); for all k ∈ M1
and k �= k0, we set α(k,1) = α/(4|M1|) and α(k0,1) = α/4. For all k ∈ M2, we set
α(k,2) = α/(2n). One observes

Yi = fi + τ√
n
εi, i = 1, . . . , n,

where the εi ’s are i.i.d. standard Gaussian variables. In this framework we establish
rates of testing relative to the Euclidean norm of f , say, n‖f ‖2

n.

COROLLARY 2. Let α and β be two numbers in ]0,1[ and assume that

n ≥ 42 max
{

log
(

90

α

)
, log

(
2

β

)}
.(13)
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Let Tα be the test statistic defined by (2) and Ep,s(R) the set defined by (12). Let
s > (1/2 − 1/p)+ and

s′ =
{

s − 1/2 + 1/p, if p ≥ 2,
s − 1/4 + 1/(2p), if p < 2.

Then there exists a constant C depending only on α,β , s and p, such that the
following holds:

(i) For all p ≥ 2, for all R > 0 such that R2 ≥ √
log log(n)τ 2/n, and for all

f ∈ Ep,s(R), satisfying n‖f ‖2
n ≥ Cρ2

n,2 with

ρ2
n,2 =

[
R2/(1+4s′)

(√
log log(n)

n

)4s′/(1+4s′)
τ 2

]
∧

[
τ 2
√

n

]
+R2n−2s′ + log logn

n
τ 2,

we obtain

Pf (Tα > 0) ≥ 1 − β.

(ii) For all p ∈]0,2[, R ≥ τ and for all f ∈ Ep,s(R) such that

n‖f ‖2
n ≥ C

{[(
R4/pτ 2−p)1/(1+4s′)

l(1/p−1/2)/(1+4s′)
n

(
τ 2√log log(n)

n

)4s′/(1+4s′)]

∧
[

τ 2
√

n

]
+ R2(log(n))1−p/2n−ps−1+p/2 + log log(n)

n
τ 2

}
,

where ln = log(n)/ log log(n), we obtain

Pf (Tα > 0) ≥ 1 − β.

COMMENTS. Before coming to the comments on the rates given in Corol-
lary 2, we mention that in case (ii) the condition R ≥ τ could be weakened at the
price of more technicalities in the proof.

Let us now turn to these comments. In the statistical framework considered
here, the problem of giving minimax rates of testing under no prior knowledge
on τ remains, to our knowledge, open. In the sequel, we shall compare the uniform
rates of testing established in Corollary 2 to lower bounds which were established
when τ is known. As we shall see those rates coincide [up to a possible log log(n)

or log(n) factor] when s is large enough, showing thus that the testing procedure
is rate optimal in those cases. However, for small values of s, those rates differ and
we do not know whether the procedure is rate optimal or not.

When p ≥ 2 and s′ > 1/4, the rate of testing is of order (
√

log log(n)
n

)2s′/(1+4s′)

which is the minimax rate of testing up to a logarithmic factor; see Lepski and
Spokoiny (1999) and Ingster and Suslina (1998).

When p = 2, it was shown by Spokoiny (1996) that the extra logarithmic
factor is due to the adaptive property of the test. Moreover, the rate of testing
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R2/1+4s(
√

log logn/n)4s/(1+4s) corresponds to the rate obtained by Laurent and
Massart (2000) for estimating n‖f ‖2

n in the Gaussian sequence model.
When p < 2 and s > 1/2 − 1/(2p), one obtains the rate n−2s′/(1+4s′) up to a

logarithmic factor. The rate n−2s′/(1+4s′) is known to be minimax for Besov bodies
from Lepski and Spokoiny (1999) and Ingster and Suslina (1998). The rate we get
differs from that obtained by Spokoiny (1996) by a log(n) factor.

When p < 2 and s < 1/2 − 1/(2p), or when p ≥ 2 and s < 1/4, the rate of
testing we get is of order n−(p∧2)(s+1/2−1/p) [up to a log(n) factor]. We do not
know if this rate is optimal or not.

5. Simulation studies in the functional regression model. We carry out
a simulation study in order to evaluate the performance of our procedure both
when the errors are normally distributed and when they are not. We compare
its performance with those for the testing procedures proposed by Horowitz and
Spokoiny (2001), Eubank and Hart (1992) and Dette and Munk (1998). We
consider three simulation experiments.

1. The first simulation experiment was performed by Dette and Munk (1998).
They considered standard normally distributed errors and five regression
functions F ,

Fc(x) = 1 + c cos(10πx),

for c = 0, 0.25, 0.5, 0.75, 1. We test that the function F is constant at level
α = 5%; the null hypothesis is “f belongs to V ” where V equals Vcste, the
linear space of R

n with dimension d = 1 spanned by the vector (1, . . . ,1)T . The
number of observations n equals 100, and for all i = 1, . . . , n, xi = (i −0.5)/n.

2. The second simulation experiment was performed by Horowitz and Spokoiny
(2001). They considered three distributions of the errors εi, i = 1, . . . , n.
(a) The Gaussian distribution: εi ∼ N (0,4).
(b) The mixture of Gaussian distributions: εi is distributed as πX1 +(1−π)X2

where π is distributed as a Bernoulli variable with expectation 0.9, X1 and
X2 are centered Gaussian variables with variance, respectively, equal to
2.43 and 25, π , and X1 and X2 are independent. This distribution has heavy
tails.

(c) The Type I distribution: εi has density (s/2)fX(µ+(s/2)x) where fX(x) =
exp{−x − exp(−x)}, and where µ and s2 are the expectation and the
variance of a variable X with density fX . These εi ’s are centered variables
with variance 4. This distribution is asymmetrical.

By considering the distributions (b) and (c), we evaluate the robustness of our
procedure with respect to the Gaussian assumption.

Three regression functions F are considered:

F0(x) = 1 + x,

Fτ (x) = 1 + x + 5

τ
φ

(
x

τ

)
with τ = 0.25 and τ = 1,
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where φ is the density of a standard Gaussian variable. When τ = 0.25 the
regression function Fτ presents a peak, and when τ = 1, Fτ presents a small
bump. We test the linearity of the function F at level α = 5%: the null
hypothesis is “f belongs to V ” where V equals Vlin, the linear space of R

n

with dimension d = 2 spanned by the vectors (1, . . . ,1)T and (x1, . . . , xn)
T .

The number n of observations equals 250. The xi’s are simulated once
and for all as centered Gaussian variables with variance equal to 25 and are
constrained to lie in the interval [�−1(0.05),�−1(0.95)], where � is the
distribution function of a standard Gaussian variable.

3. The third simulation experiment is similar to the first one except that we
consider four regression functions F :

Fδ(x) = −δ(x − 0.1)1x≤0.1

for δ = 0, 20, 30, 40.

5.1. Piecewise constant functions and trigonometric polynomials. The test-
ing procedure depends on the choice of the collections {Sm, m ∈ M} and
{αm, m ∈ M}.

The collection {Sm, m ∈ M}. We consider the spaces Sm based on piecewise
functions and trigonometric polynomials and two collections of indices M. More
precisely, for each k = 1, . . . , n, we consider the spaces S′

(k,pc) of piecewise
constant functions based on the intervals {](l −1)/k, l/k], l = 1, . . . , k} and S′

(k,tp)

the space of trigonometric polynomials of degree not larger than k. For each
δ ∈ {pc, tp}, and for each k = 1, . . . , n, S(k,δ) is the linear subspace of R

n defined
as the orthogonal projection of {(F (x1), . . . ,F (xn))

T ,F ∈ S′
(k,δ)} onto V ⊥. Now

let us set Jn = [log(n/2)/ log(2)], and define for δ ∈ {pc, tp},
Mdya,δ = {

k ∈ {1, . . . , n}, dim(S(k,δ)) ∈ {2j ,0 ≤ j ≤ Jn}},
Mall,δ = {

k ∈ {1, . . . , n}, dim(S(k,δ)) ∈ {1,2,3, . . . ,2Jn}},
Mdya = Mdya,pc ∪ Mdya,tp, and Mall = Mall,pc ∪ Mall,tp.

The collection {αm, m ∈ M}. We consider the procedures P1 and P2 defined
in Section 2.1. The quantity an is calculated by simulation. When we are using the
procedure P2, the αm’s equal α/|M| where |M| denotes the cardinality of M. The
test statistic is equal to Tα defined by (2) and is denoted TP,M with P ∈ {P1,P2}
and

M ∈ {Mdya,pc,Mdya,tp,Mall,pc,Mall,tp,Mdya,Mall}.
Let us now comment on these choices.
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1. For a given M, the test based on TP1,M is more powerful than the test based on
TP2,M. This comes from the fact that an is not smaller than the α/|M|. Since
the calculation of an requires additional computation, it is worth comparing the
procedures P1 and P2 in the simulation study.

2. We introduce two collections Mdya and Mall in order to evaluate the depen-
dency of our testing procedure with respect to the size of the collection. We
restrict ourselves to the procedure P1 for which both tests are of size α.

3. As already mentioned our procedure is driven by the idea that if F is close to
one of the functional spaces S′

(k,δ) the test rejects the null with probability close
to 1. Because we have no prior information on F , we propose mixing several
kinds of functional spaces as our procedure permits. We could also mix linear
spaces based on polynomials, piecewise polynomials, wavelets and so on.

5.2. Description of other procedures. Let us now describe the procedures with
which we compare ours.

The test proposed by Horowitz and Spokoiny (2001). They proposed an
adaptive procedure for testing that the regression function belongs to some
parametric family of functions. Their procedure rejects the null hypothesis if for
some bandwidth among a grid, the distance between the nonparametric kernel
estimator and the kernel smoothed parametric estimator of F under the null
hypothesis is large. The quantiles of their test statistic are estimated by a bootstrap
method.

The test proposed by Eubank and Hart (1992). They proposed a test based
on the penalized criterion defined by (7). Let us recall that the null hypothesis is
rejected if m̂, the maximizer of Crit(m), is greater than 1. They proposed to choose
the quantities �m and pen(m) as follows.

1. In the first simulation experiment, where the null hypothesis is f ∈ Vcste, �m is
the projector on the space generated by the cosine functions {√2 cos(πjx), j =
1, . . . ,m} calculated in xi = (i − 0.5)/n for i = 1, . . . , n.

In the second simulation experiment, where the null hypothesis is f ∈ Vlin,
�m is the projector on the space generated by the m last columns of Pm,
where Pm is the matrix of ortho-normalized polynomials 1, x, x2, . . . , xm+1

with respect to the design points.
2. The penalty function pen(m) is defined by pen(m) = σ̂ 2Cαm/n where σ̂ 2 is

the variance estimator proposed by Gasser, Sroka and Jennen-Steinmetz (1986)
and Cα = 4.18. This value of Cα , given by Eubank and Hart (1992), ensures
that the test is asymptotically of level α = 5%.
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The test proposed by Dette and Munk (1998). They proposed a test based on
estimation of the minimal distance between f and Vcste, say M̂ 2

n . In the particular
case considered in the second simulation study, the null hypothesis is rejected if√

9n

17

M̂ 2
n

σ̂ 2
> �̄−1(α),

where, for some (possibly negative) weights wi, i = 1, . . . , n, satisfying∑n
i=1 wi = n,

M̂ 2
n = 1

n

n∑
i=1

wiY
2
i − n − 1

n
σ̂ 2 −

∣∣∣∣∣1

n

n∑
i=1

wiYi

∣∣∣∣∣
2

.

5.3. Results of the simulations. The results of the first simulation study are
given in Table 1. The percentages of rejection of the null hypothesis given under
the columns DM-test and EH-test are reported from the paper by Dette and Munk
(1998). They used 5000 simulations for estimating the percentages of rejection.
The results corresponding to our procedure are based on 4000 simulations. We
compare procedures P1 and P2 when M equals Mdya and we evaluate the effect of
the size of the collection M when the chosen procedure is P1.

The results of the second simulation study are given in Table 2. The percentages
of rejection of the null hypothesis given under the column HS-test are reported
from the paper by Horowitz and Spokoiny (2001). They used 1000 simulations for
estimating the level of the test and 250 simulations for estimating the power. The
results corresponding to the procedure proposed by Eubank and Hart (1992) and
to our procedure are based on 4000 simulations. We evaluate the performance of
the procedures P1 and P2 for non-Gaussian errors when M = Mdya.

TABLE 1
First simulation study: percentages of rejection and value of the signal/noise ratio.

The nominal level of the test is α = 5%

Null hypothesis is true

c DM-test EH-test TP1,Mall TP1,Mdya TP2,Mdya

0 0.044 0.056 0.050 0.053 0.024

Null hypothesis is false

c signal/noise DM-test EH-test TP1,Mall TP1,Mdya TP2,Mdya

0.25 0.18 0.07 0.06 0.10 0.08 0.05
0.50 0.35 0.19 0.10 0.36 0.30 0.23
0.75 0.53 0.49 0.40 0.83 0.74 0.66
1 0.71 0.82 0.86 0.99 0.98 0.96



240 Y. BARAUD, S. HUET AND B. LAURENT

TABLE 2
Second simulation study: percentages of rejection and value of the signal/noise ratio

equal to dn(f,V )/σ . The nominal level of the test is α = 5%

Null hypothesis is true

Error distribution HS-test EH-test TP1,Mdya TP2,Mdya

Normal 0.066 0.054 0.054 0.036
Mixture 0.054 0.058 0.071 0.055
Type I 0.055 0.058 0.060 0.040

Null hypothesis is false: τ = 1, signal/noise = 0.31

Error distribution HS-test EH-test TP1,Mdya TP2,Mdya

Normal 0.79 0.87 0.96 0.94
Mixture 0.80 0.88 0.95 0.93
Type I 0.82 0.89 0.96 0.94

Null hypothesis is false: τ = 0.25, signal/noise = 0.69

Error distribution HS-test EH-test TP1,Mdya TP2,Mdya

Normal 0.92 0.95 1 1
Mixture 0.93 0.94 1 1
Type I 0.97 0.95 1 1

In Table 3 we study the effect of mixing two collections of linear subspaces.
This comparison is based on the three simulation studies with Gaussian errors.
We compare the percentages of rejection obtained for the procedure P1 when
we consider in the collection either the piecewise constant functions, or the
trigonometric polynomials, or a mixture of these collections.

As expected, under the null hypothesis, the percentage of rejection equals 5%
when we use the procedure P1 and is less than 5% when we use the procedure P2.
For the error distributions “mixture” and “Type I,” the levels of both procedures
increase slightly; see Table 2. As expected, the conservative procedure P2 is more
robust than P1.

In Table 1 the test based on TP1,Mall has the greatest power. The superiority of
TP1,Mall over TP1,Mdya is significant for c = 0.5 and c = 0.75, where the power of
the tests is far from 1.

The test based on the statistic TP2,Mdya has the smallest power among the
procedures we proposed, but is more powerful than the procedures proposed by
Eubank and Hart (1992), Horowitz and Spokoiny (2001) and Dette and Munk
(1998); see Tables 1 and 2. Though the testing procedure based on the statistic
TP2,Mdya is conservative, it seems to be a good compromise for practical issues; its
implementation is very easy and its performance is good.
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TABLE 3
Effect of mixing two collections: percentages of rejection and value of the signal/noise ratio.

The nominal level of the test is α = 5%

First simulation study

c signal/noise TP1,Mdya,pc TP1,Mdya,tp TP1,Mdya

0 0 0.054 0.054 0.053
0.25 0.18 0.08 0.08 0.08
0.50 0.35 0.22 0.32 0.30
0.75 0.53 0.58 0.78 0.74
1 0.71 0.90 0.99 0.98

Second simulation study

F signal/noise TP1,Mdya,pc TP1,Mdya,tp TP1,Mdya

1 + x 0 0.048 0.045 0.054
F1(x) 0.31 0.96 0.94 0.96

Third simulation study

δ signal/noise TP1,Mdya,pc TP1,Mdya,tp TP1,Mdya

0 0 0.050 0.049 0.053
20 0.35 0.36 0.31 0.36
30 0.53 0.78 0.69 0.77
40 0.70 0.97 0.94 0.97

In Table 3 we see that the power of the test based on TP 1,Mdya is equal (or nearly
equal) to the largest power of the tests based on TP 1,Mdya,pc and TP 1,Mdya,tp . Thus,
by mixing several collections of linear spaces, one can improve the performance
of the test. This should in fact be recommended in practice.

6. Proof of Theorem 1. For the sake of simplicity and to keep our formulae
as short as possible we assume that σ 2 = 1 and work with the Euclidean norm
of R

n, denoted by ‖ · ‖, instead of ‖ · ‖n = ‖ · ‖/√n. We shall denote by d(·, ·)
the distance

√
ndn(·, ·).

By definition of Tα , for any f ∈ R
n, Pf (Tα ≤ 0) ≤ infm∈M Pf (m) where

Pf (m) = Pf

(
Nm‖�mY‖2

Dm‖Y − �VmY‖2
≤ F̄−1

Dm,Nm
(αm)

)
.

Let us denote by Q(a,D,u) the 1 − u quantile of a noncentral χ2 variable with
D degrees of freedom and noncentrality parameter a. For each m ∈ M, the random
variables ‖�mY‖2 and ‖Y − �VmY‖2 are distributed as noncentral χ2 variables
with, respectively, Dm and Nm degrees of freedom and noncentrality parameters
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‖�mf ‖2 and ‖f − �Vmf ‖2. Hence,

Pf (m) ≤ Pf

(
‖�mY‖2 ≤ Dm

Nm

F̄−1
Dm,Nm

(αm)Q

(
‖f − �Vmf ‖2,Nm,

β

2

))
+ β

2

and therefore, Pf (Tα ≤ 0) ≤ β if for some m in M,

Dm

Nm

F̄−1
Dm,Nm

(αm)Q

(
‖f − �Vmf ‖2,Nm,

β

2

)
≤ Q

(
‖�mf ‖2,Dm,1 − β

2

)
.(14)

Thanks to Lemma 1 in Birgé (2001) we know that the following inequalities hold
for all u ∈]0,1[:

Q(a,D,u) ≤ D + a + 2
√

(D + 2a) log(1/u) + 2 log(1/u),(15)

Q(a,D,1 − u) ≥ D + a − 2
√

(D + 2a) log(1/u).(16)

By using that km ≥ 2 and the inequalities
√

u + v ≤ √
u+√

v, 2
√

uv ≤ θu+θ−1v,
which hold for all positive numbers u, v, θ , we derive that

Q

(
‖f − �Vmf ‖2,Nm,

β

2

)
≤ Nm + 2‖f − �Vmf ‖2 + 2

√
NmL + 2kmL(17)

and

Q

(
‖�mf ‖2,Dm,1 − β

2

)
≥ Dm + 4

5
‖�mf ‖2 − 2

√
DmL − 10L.(18)

Since ‖�mf ‖2 = d2(f,V ) − ‖f − �Vmf ‖2, (14) is satisfied as soon as

d2(f,V ) ≥ δm(f ) =
(

1 + 2.5
Dm

Nm

F̄−1
Dm,Nm

(αm)

)
‖f − �Vmf ‖2

+ 5

4
DmF̄−1

Dm,Nm
(αm)

(
1 + 2

√
L

Nm

+ 2km

L

Nm

)

− 5

4
(Dm − 2

√
DmL − 10L).

Hence, it remains to show that δm(f ) ≤ n	(f,m). Let us now set rm = Dm/Nm.
To bound DmF̄−1

Dm,Nm
(αm) we use the following lemma proved in Section 9.

LEMMA 1. Let u ∈]0,1[ and F̄−1
D,N(u) be the 1 − u quantile of a Fisher

random variable with D and N degrees of freedom. Then we have

DF̄−1
D,N(u) ≤ D + 2

√
D

(
1 + D

N

)
log

(
1

u

)

+
(

1 + 2
D

N

)
N

2

[
exp

(
4

N
log

(
1

u

))
− 1

]
.

(19)
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By using the inequality, exp(u) − 1 ≤ u exp(u) which holds for all u > 0, we
derive from (19) that

DmF̄−1
Dm,Nm

(αm) ≤ Dm + 2
√

DmLm(1 + √
rm) + km(1 + 2rm)Lm

≤ Dm

(
1 + 2

√
Lm

Nm

+ 2km

Lm

Nm

)
+ 2

√
DmLm + kmLm(20)

≤ [1 + Km(Lm) ∨ km](Dm + Lm).(21)

Using now (17), (18), (20), (21) and the inequality λ
√

u + γ
√

v ≤
√

λ2 + γ 2 ×√
u + v, which holds for any positive numbers λ,γ,u, v, we get

4

5
δm(f ) ≤ 4

5
[1 + �1(m)]‖f − �Vmf ‖2 − (Dm − 2

√
DmL − 10L)

+ (
Dm + 2

√
DmLm(1 + √

rm) + km(1 + 2rm)Lm

)
×

(
1 + 2

√
L

Nm

+ 2km

L

Nm

)

≤ 4

5
[1 + �1(m)]‖f − �Vmf ‖2 + Dm + 2

√
Dm

√
rmL + 2kmrmL

+2Km(L)(1 + √
rm)

√
DmLm + Km(L)km(1 + 2rm)Lm

−Dm + 2
√

DmL + 10L

≤ 4

5
[1 + �1(m)]‖f − �Vmf ‖2

+2
√

1 + K2
m(L)(1 + √

rm)
√

Dm(Lm + L)

+2[(kmKm(L)/2) ∨ 5](1 + 2rm)(Lm + L).

Hence, δm(f ) ≤ n	(f,m) and the first part of Theorem 1 follows. The inequalities
on �i(m)’s for i = 1,2,3 derive easily from the definition of the �i ’s noting that
under (HM) we have that Lm ≤ Nm/10 and L ≤ Nm/21 for all m ∈ M.

7. Proof of Proposition 1. In order to avoid technicalities, we shall only
prove this result in the case where σ 2 is known and equals 1 by considering the
test statistic

T̂m = T̂m(Y ) = ‖�mY‖2
n − 1

n
χ̄−1

m (α).

The proof of the result for the test statistic Tm is based on analogous arguments.
Let us prove that for all f ∈ R

n such that

‖f ‖2
n ≤ ‖f − �mf ‖2

n + θ(α,β)
√

Dm

σ 2

n
,(22)
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we have Pf (Tm ≤ 0) ≥ β .
By using Proposition 1 in Baraud (2000b), we know that for all ρ ≤

θ(α,β)
√

Dm there exists some gm ∈ Sm such that n‖gm‖2
n = ρ and Pgm(T̂m <

0) ≥ β . For any orthogonal transformation U keeping Sm invariant, �m and U

commute leading to the identity T̂m(Y ) = T̂m(UY ). Thus, for all fm ∈ Sm such
that n‖fm‖2

n = ρ, we have

Pgm(T̂m ≤ 0) = Pfm(T̂m ≤ 0) ≥ β.

Now for all f ∈ R
n satisfying (22), we have that

n‖�mf ‖2
n = n‖f ‖2

n − n‖f − �mf ‖2
n ≤ θ(α,β)

√
Dm

and therefore

Pf (T̂m ≤ 0) = P�mf (T̂m ≤ 0) ≥ β.

8. Proof of Corollaries 1 and 2. Throughout this section, C denotes some
constant that may vary from line to line. The dependency of C with respect to
various quantities is specified by the notation C(·).

8.1. Proof of Corollary 1(i). The proof is divided into consecutive steps.
Step 1. There exists a universal constant � such that for all m ∈ M1 × {1} and

for all i = 1,2,3, �i(m) ≤ � (one can take � = 37.5).
Let us first check that condition (HM) in Theorem 1 holds. Since

|M1| ≤ 1 + log(n/2)/ log(2) ≤ log(n)/ log(2),

we have for all m ∈ M1 × {1},
αm = α

2|M1| ≥ α log(2)

2 log(n)
.(23)

Since Dm ≤ n/2, condition (HM) therefore holds as soon as

α ≥ 2 log(n) exp(−n/21)/ log(2) and β ≥ 2 exp(−n/42).

Clearly, the latter inequality is fulfilled under (11). As for the former, noticing that
for all x ≥ 1, log(x) ≤ x ≤ 42 exp(x/42 − 1), we obtain that

2
log(n)

log(2)
exp(−n/21) ≤ 84

e log(2)
exp(−n/42) ≤ 45 exp(−n/42),

which leads to the result under (11). Since condition (HM) holds we obtain the
result claimed in Step 1 by using the inequalities on �i(m) for i = 1,2,3 and the
fact that for all m ∈ M, Dm ≤ Nm and Lm ≤ Nm/10.

Step 2. For all sequences of points (x1, x2, . . . , xn) ∈ [0,1]n, f ∈ Hs(R) and
k ≥ 1,

d2
n(f,S(k,1)) ≤ R2k−2s .(24)
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Let us set Ij,k = {i, xi ∈](j − 1)/k, j/k]}, i(j, k) = inf Ij,k when Ij,k �= ∅

and f k the R
n vector defined as f k

i = fi(j,k) = F(xi(j,k)) if i ∈ Ij,k. Clearly
f k belongs to S(k,1) and we have for all f ∈ Hs(R),

d2
n(f,S(k,1)) ≤ d2

n(f,f k)

≤ 1

n

k∑
j=1

∑
i∈Ij,k

|F(xi) − F(xi(j,k))|2 ≤ R2k−2s .

Step 3. For each f ∈ Hs(R) let

ρ2
n(f ) = inf

k∈M1
	

(
f, (k,1)

)
,(25)

where for each m ∈ M, 	(f,m) is defined in Theorem 1. There exists a constant
C(α,β) such that ρ2

n(f ) ≤ C(α,β)ρ2
n,1.

We deduce from (23) that for all m ∈ M1 × {1},

log
(

2

αmβ

)
≤ C(α,β) log log(n).

Setting Ln = log log(n), we deduce from Step 1 and Step 2 that for all f ∈ Hs(R),

C−1(α,β)ρ2
n(f ) ≤ inf

k∈M1

[
R2k−2s + √

kLn

σ 2

n

]
+ Ln

σ 2

n
.(26)

Note that R2k−2s ≤ √
kLnσ

2/n if and only if

k ≥ k∗ =
(

R2n

σ 2
√

Ln

)2/(1+4s)

.

Under the assumption on R we know that k∗ ≥ 1. Let us now distinguish between
two cases. If there exists k′ ∈ M1 such that k∗ ≤ k′ one can take k′ ≤ 2k∗ and then

inf
k∈M1

(
R2k−2s + √

kLn

σ 2

n

)
≤ 2

√
k′Ln

σ 2

n

≤ 2
√

2R2/(1+4s)

(√
log log(n)

n
σ 2

)4s/(1+4s)

.

(27)

Else, we take k′ ∈ M1 such that n/4 ≤ k′ ≤ n/2. Since k′ ≤ k∗ ∧ n/2 and since
s ≤ 1, we obtain that

inf
k∈M1

(
R2k−2s + √

kLn

σ 2

n

)
≤ 2R2k

′−2s ≤ 32R2n−2s .(28)

By gathering (26)–(28) we conclude the proof of Step 3. We conclude the proof of
case (i) by using Theorem 1 and Step 3.
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8.2. Proof of Corollary 1(ii). Let us set f n = f/
√

n and r2
n(k0) =∑n

i=1 φ2
k0

(xi)/n. Since

n‖f n‖2
n − nd2

n

(
f n,S(k0,2)

)
= n

(
1

nrn(k0)

n∑
i=1

f n
i φk0(xi)

)2

= 1

r2
n(k0)

(
1

n

n∑
i=1

F(xi)φk0(xi)

)2

,

(29)

by using Theorem 1 and the fact that d2
n(f n, S(k0,2)) ≤ ‖f n‖2

n = ‖f ‖2
n/n, it

suffices to show that for n large enough the right-hand side of (29) is larger than

�1(k0,2)‖f ‖2
n + (

�2(k0,2) + �3(k0,2)
)
σ 2 log

(
2

α(k0,2)β

)
.

This inequality is clearly satisfied for n large enough since under the assumption
of Corollary 1,

lim
n→+∞�1(k0,2)‖f ‖2

n = 0

and

lim sup
n→+∞

(
�2(k0,2) + �3(k0,2)

) ≤ 17.5.

8.3. Proof of Corollary 2 for p ≥ 2. In the sequel, we shall use the fact
that there exists a universal constant � such that for all m ∈ M and i = 1,2,3,
�i(m) ≤ �. Such a result is obtained by using (13) and by arguing as in the proof
of Corollary 1. We divide the proof into consecutive steps.

Step 1. For each f ∈ Ep,s(R) and each k ∈ M1,

nd2
n(f,S(k,1)) ≤ C(s,p)R2k−2s′

.

By using Hölder’s inequality we have that

nd2
n(f,Sk,1) =

n∑
i=k+1

f 2
i i2s i−2s ≤

(
n∑

i=k+1

|fi |pips

)2/p(
n∑

i=k+1

i−2qs

)1/q

≤ R2

(
n∑

i=k+1

i−2qs

)1/q

,

where 1/q = 1 − 2/p. The condition s > 1/2 − 1/p ensures that the series∑
i>k i−2qs converges and since∑

i>k

i−2qs ≤
∫ ∞
k

dx

x2qs
≤ k1−2qs

1 − 2qs
,(30)

the result follows.
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Step 2. For each f ∈ Ep,s(R) let

ρ2
n(f ) = inf

k∈M1
	

(
f, (k,1)

)
.

There exists a constant C = C(α,β, s,p) such that nρ2
n(f ) ≤ Cρ2

n,2.
By using Theorem 1, we have that

C−1nρ2
n(f ) ≤ inf

k∈M1

(
R2k−2s′ +

√
k log(1/α(k,1))

τ 2

n

)
+ log log(n)

n
τ 2.

On the one hand, arguing as in the proof of Corollary 1, case (i) with s′ in place
of s, σ 2 = τ 2/n and introducing

k� =
(

nR2

τ 2
√

Ln

)2/(1+4s′)
≥ 1

in place of k∗ where σ has been replaced by τ , one obtains that

C−1 inf
k∈M1

(
R2k−2s′ +

√
k log(1/α(k,1))

τ 2

n

)

≤ R2n−2s′ + R2/(1+4s′)
(

τ 2√log log(n)

n

)4s′/(1+4s′)
.

On the other hand, choosing k = k0 = supM1 (n/4 ≤ k0 ≤ n/2, α(k0,1) = α/4), we
obtain that

C−1 inf
k∈M1

(
R2k−2s′ +

√
k log(1/α(k0,1))

τ 2

n

)
≤ R2n−2s′ + τ 2

√
n
.

By taking the infimum between those two bounds, the result follows.

8.4. Proof of Corollary 2 for p < 2. For all k ∈ {1, . . . , n}, D(k,2) = 1,
log(1/α(k,2)) = log(2n/α) and so

�1(k,2) ≤ 10
(

1

n − 1
+ log(2n/α)

n − 1

)
≤ C(α)

log(n)

n
.

Hence for each f ,

n	
(
f, (k,2)

) ≤ (
1 + �1(k,2)

)∑
i �=k

f 2
i + C(α,β)

log(n)

n
τ 2

≤ ∑
i �=k

f 2
i + C1(α,β)

log(n)

n
(n‖f ‖2

n + τ 2).

Then we distinguish between two cases. Whether there exists some k ∈ {1, . . . , n}
such that

f 2
k ≥ C1(α,β)

log(n)

n
(n‖f ‖2

n + τ 2),
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then ‖f ‖2
n ≥ 	(f, (k,2)) and by Theorem 1 we get that

Pf (Tα > 0) ≥ 1 − β.

Or for all k ∈ {1, . . . , n},

f 2
k ≤ C1(α,β)

log(n)

n
(n‖f ‖2

n + τ 2).

By using the subadditivity of the function x �→ xp/2 for p < 2 we obtain that for
each f ∈ Ep,s(R),

n‖f ‖2
n ≤

n∑
i=1

i2sf 2
i ≤

(
n∑

i=1

ips |fi |p
)2/p

≤ R2

and therefore, τ 2 being smaller than R2, we deduce that for all i ∈ {1, . . . , n},

f 2
i ≤ 2C1(α,β)R2 log(n)

n
.(31)

Thus, for any f ∈ Ep,s(R) satisfying (31) and for any k ∈ M1,

nd2
n(f,S(k,1))

= ∑
i>k

f 2
i = ∑

i>k

|fi|2−p|fi |p

≤ C(α,β,p)

(
log(n)

n

)1−p/2

R2−p
∑
i>k

|fi |pipsi−ps

≤ C(α,β,p)R2
(

log(n)

n

)1−p/2

k−ps.

We compute an upper bound for the quantity nρ2
n(f ) for those f satisfying (31)

by arguing as in the proof of the case p ≥ 2 with

k� =
(

R2np/2

τ 2
√

Ln

(log(n))1−p/2
)2/(1+2ps)

and then obtain the desired result.

9. Proof of Lemma 1. Let UD,N be a Fisher random variable with D and N

degrees of freedom. Let XD and YN be independent random variables distributed
as a χ2 with respective degrees of freedom D and N . The random variable
DUD,N has the same distribution as that of NXD/YN . Let us fix u > D and
λ ∈ [0,1/(2N)[. The computation of the Laplace transform of a χ2 random
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variable allows one to derive the following inequalities:

P[DUD,N ≥ u] = P[NXD − uYN > 0] ≤ E[exp(λNXD − λuYN)]

= exp
[

− D

2
log(1 − 2Nλ) − N

2
log(1 + 2λu)

]
.

(32)

By minimizing the right-hand side of (32) with respect to λ (the minimum being
achieved for λ∗ = (u − D)/(2u(N + D)) ∈ [0,1/(2N)[) we obtain that

P[DUD,N ≥ u] ≤ exp[φD,N(u)],
where

φD,N(u) ≤
[

− N + D

2
log

(
1 + u − D

N + D

)
+ D

2
log

(
1 + u − D

D

)]
.

In the sequel we set

u(t) = D + 2

√
D

(
1 + D

N

)
t + 1

2

(
1 + 2

D

N

)
N

(
exp(4t/N) − 1

)
.

We obtain (19) by proving that for all t ≥ 0, φD,N(u(t)) ≤ −t . Since u(0) = D,
it suffices to show that for all t > 0, u′(t)φ′

D,N(u(t)) ≤ −1 and as φ′
D,N(u) =

−N(u − D)/(2u(N + u)) it remains to check that for all t > 0,

u′(t)
(
u(t) − D

) ≥ 2

N
u2(t) + 2u(t).(33)

Let us set e(t) = exp(4t/N) − 1 and r = D/N . With this notation we have

u(t) − D = 2
√

Nr(1 + r)t + 0.5(1 + 2r)Ne(t),

u′(t) =
√

Nr(1 + r)/t + 2(1 + 2r)
(
1 + e(t)

)
,

2

N
u2(t) + 2u(t) = 2

N

(
Nr + 2

√
Nr(1 + r)t + 0.5(1 + 2r)Ne(t)

)2

+2
(
Nr + 2

√
Nr(1 + r)t + 0.5(1 + 2r)Ne(t)

)
and (33) becomes

N

2
(1 + 2r)2e2(t) − 8r(1 + r)t + N

2

√
Nr(1 + r)(1 + 2r)

e(t)√
t

≥ 0,(34)

the terms in
√

te(t), e(t),
√

t and the constant vanishing. Since for all t , e(t) ≥
4t/N by setting T = √

t , we obtain that (34) is satisfied if for all T > 0,

P (T ) = 4(1 + 2r)2

N
T 3 − 4r(1 + r)T + (1 + 2r)

√
Nr(1 + r) ≥ 0.
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The function P admits a minimum for T ∗ = √
3−1Nr(1 + r)/(1 + 2r) for which

P (T ∗) =
√

Nr(1 + r)

1 + 2r

(
(1 + 2r)2 − 8r(1 + r)

3
√

3

)
≥ 0,

which concludes the proof of Lemma 1.

REFERENCES

BARAUD, Y. (2000a). Model selection for regression on a fixed design. Probab. Theory Related
Fields 117 467–493.

BARAUD, Y. (2000b). Nonasymptotic minimax rates of testing in signal detection. Technical
Report 00.25, Ecole Normale Supérieure, Paris.

BARAUD, Y., HUET, S. and LAURENT, B. (2001). Nonparametric smoothing and lack-of-fit tests. In
Goodness-of-fit Tests and Model Validity (C. Huber-Carol, N. Balakrishnan, M. S. Nikulin
and M. Mesbah, eds.) 193–204. Birkhäuser, Boston.

BIRGÉ, L. (2001). An alternative point of view on Lepski’s method. In State of the Art in Probability
and Statistics (Leiden, 1999) 113–133. IMS, Beachwood, OH.

BIRGÉ, L. and MASSART, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203–268.
CASTELLAN, G. (2000). Density estimation via exponential model selection. Technical Re-

port 00.25, Univ. Paris XI, Orsay.
CHEN, J.-C. (1994). Testing for no effect in nonparametric regression via spline smoothing

techniques. Ann. Inst. Statist. Math. 46 251–265.
DETTE, H. and MUNK, A. (1998). Validation of linear regression models. Ann. Statist. 26 778–800.
EUBANK, R. L. and HART, J. D. (1992). Testing goodness-of-fit in regression via order selection

criteria. Ann. Statist. 20 1412–1425.
EUBANK, R. L. and LARICCIA, V. N. (1993). Testing for no effect in nonparametric regression.

J. Statist. Plann. Inference 36 1–14.
GASSER, T., SROKA, L. and JENNEN-STEINMETZ,C. (1986). Residual variance and residual pattern

in nonlinear regression. Biometrika 73 625–633.
HÄRDLE, W. and MAMMEN, E. (1993). Comparing nonparametric versus parametric regression fits.

Ann. Statist. 21 1926–1947.
HART, J. D. (1997). Nonparametric Smoothing and Lack-of-fit Tests. Springer, New-York.
HOROWITZ, J. L. and SPOKOINY, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-

regression model against a nonparametric alternative. Econometrica 69 599–631.
INGLOT, T. and LEDWINA, T. (1996). Asymptotic optimality of data-driven Neyman’s tests for

uniformity. Ann. Statist. 24 1982–2019.
INGSTER, YU. I. (1993). Asymptotically minimax testing for nonparametric alternatives I. Math.

Methods Statist. 2 85–114.
INGSTER, YU. I. and SUSLINA, I. A. (1998). Minimax detection of a signal for Besov bodies and

balls. Problems Inform. Transmission 34 48–59.
LAURENT, B. and MASSART, P. (2000). Adaptive estimation of a quadratic functional by model

selection. Ann. Statist. 28 1302–1338.
LEPSKI, O. V. and SPOKOINY, V. G. (1999). Minimax nonparametric hypothesis testing: The case

of inhomogeneous alternative. Bernoulli 5 333–358.
MÜLLER, H.-G. (1992). Goodness-of-fit diagnostics for regression models. Scand. J. Statist. 19

157–172.
NISHII, R. (1988). Maximum likelihood principle and model selection when the true model is

unspecified. J. Multivariate Anal. 27 392–403.



ADAPTIVE TESTS OF LINEAR HYPOTHESES 251

SPOKOINY, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.
STANISWALIS, J. G. and SEVERINI, T. A. (1991). Diagnostics for assessing regression models.

J. Amer. Statist. Assoc. 86 684–692.

Y. BARAUD

ECOLE NORMALE SUPERIEURE, DMA
45, RUE D’ULM

75230 PARIS CEDEX 05
FRANCE

E-MAIL: yannick.baraud@ens.fr

S. HUET

INRA, LABORATOIRE DE BIOMÉTRIE

78352 JOUY-EN-JOSAS CEDEX

FRANCE

B. LAURENT

UNIVERSITÉ PARIS-SUD

BAT. 45
91450 ORSAY CEDEX

FRANCE


