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University of California, Berkeley

John Tukey connected the theory underlying simple random sampling
without replacement, cumulants, expected mean squares and spectrum
analysis. He gave us one degree of freedom for nonadditivity, and he
pioneered finite population models for understanding ANOVA. He wrote
widely on the nature and purpose of ANOVA, and he illustrated his approach.
In this appreciation of Tukey’s work on ANOVA we summarize and comment
on his contributions, and refer to some relevant recent literature.

1. Introduction. Most (9/15) of John Tukey’s contributions to analysis of
variance (hereafter ANOVA) can be found in Volume 7 of The Collected Works of
John W. Tukey [17]. Also in that volume are two items which will be of interest
to readers of this paper. One is a six-page foreword to the nine collected papers
by John Tukey himself. The other is an historical introduction to and remarks
on the roles of analysis of variance, and some brief comments on the individual
papers by the volume editor, David R. Cox. However, Tukey being Tukey, there
is no substitute for reading the papers themselves. Every one of them advances
our knowledge, at times dramatically, while seeming to be no more than a lucid
exposition from first principles of some well-established part of our subject. There
are exceptions to this last statement.

John Tukey’s main published contributions to ANOVA were made in a little
over a decade, from 1949 to 1961. They constitute approximately 20% of his
output over this period, and so about 5% of his total output. In subject matter
these papers range from the foundational to the computational, from the algebraic
to the interpretational, and contain some strikingly original views of the topics he
discusses. How many of us see a clear connection between finite-population simple
random sampling as in books on sampling, Fisher’s k-statistics and cumulants
for calculating moments of sample moments, the moments of mean squares in
ANOVA tables and the arithmetic of spectrum analysis? At the same time as he
was clarifying the analysis of variance qua variance, he highlighted the importance
of scale to the notion of interaction in the analysis of means, and gave us a tool
for identifying and removing removable nonadditivity. He also showed us how
to analyze a complex multifactorial data set; indeed in no fewer than four of the
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papers below we get his views on the nature and purpose of ANOVA. It was much
broader than the usual one which focusses on testing.

In my opinion much of Tukey’s work on ANOVA is underappreciated, and
much of that which was appreciated at the time has been forgotten. He laments
[17, page lii], wrongly as it turns out, “Perhaps regrettably, I am not aware of very
much that extends papers 5, 6, 7, and 9” (of [17]). Some of his work on ANOVA,
for example, his “dyadic ANOVA” and his “components in regression,” was never
followed up. Neither of these titles scores a hit (with Tukey’s meaning) in Current
Index to Statistics. Fashions change, and the foundational worries or solutions of
one generation of statisticians can cease to be of interest to a later generation. It
is for this reason as well as to celebrate Tukey’s genius that it is a real pleasure
to be able to remind readers of his wonderful contributions to ANOVA, including
creating the abbreviation itself.

2. ODOFFNA. How we will miss Tukey’s neologisms. His one degree of
freedom for nonadditivity (ODOFFNA) paper [2] is perhaps his best-known and
most striking contribution to the analysis of variance and needs little introduction
here. Whereas others had paid attention to nonconstancy of the variance or
nonnormality of the “errors” in ANOVA, Tukey was concerned with nonadditivity.
Explaining his ideas in the context of a singly replicated row-by-column table,
he showed how to isolate a single degree of freedom from the “residual,” “error”
or “interaction” sum of squares (“call it what you will” he said), and so test the
null hypothesis of additivity using a statistic which gave power against a restricted
class of multiplicative alternatives. The statistic was motivated by the idea of a
power transformation; it was illustrated graphically through three examples, and
some elegant distribution theory was presented. This is a gem of a paper and amply
deserves its place in the texts [see, e.g., Scheffé (1959) or Seber (1977)]. Tukey’s
later papers [5, 13] on the same topic present no new ideas; rather they illustrate
the earlier ideas in more general contexts, something he pointed out was possible
in [2].

What has happened to ODOFFNA since the 1960s? These days most people
concerned about the possibility that their linear model might better satisfy the
standard assumptions of additivity, homoscedasticity and normality of errors after
a transformation will make use of the Box and Cox (1964) theory. However, their
approach to transformations is not a complete substitute for ODOFFNA, as can
be seen in Tukey’s [14] discussion of additive and multiplicative fits to two-way
tables (see especially [14], Section 10F). It is likely that we will continue to extract
ODOFFNA in new contexts in the future, and for more on this, see Tukey’s own
comments on the follow-up to ODOFFNA in his foreword to [17].

3. Complex analyses of variance: general problems [11]. In [11] Green and
Tukey made a number of general points concerning complex analyses of variance
in the course of analyzing a specific experimental data set. Some of the points are
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familiar, some were new at the time but most are still of interest today. The authors
explain that the purpose of their analysis is “to provide a simple summary of the
variation in the experimental data, and to indicate the stability of means and other
meaningful quantities extracted from the data.” They intended their approach to be
in opposition to the view that the sole purpose of ANOVA is to provide tests of
significance. It was aimed at researchers in psychology and followed a review of
the use of ANOVA in that field a few years earlier.

The experiment is from psychophysics and involves six factors: sex (S, two
levels), sight (I , two levels), persons (P , eight levels), rate (R, four levels), weight
(W , seven levels) and date (D, two levels). All of S, I,R,W and D are crossed,
while P is nested in a balanced way within S × I so we may describe the factor
relationships by the formula ((S × I )/P ) × R × W × D. The response was a
difference limen, a kind of threshold of perception, which could be expressed
as a difference in weights, a squared difference in weights, a ratio of weights,
a logarithm of a ratio of weights or even a response time.

One novel aspect of this paper is that the authors discuss not only what scale to
use for the dependent variable; that is, possible transformations, but also just what
the dependent variable should be in that context: a difference, a squared difference,
a ratio, a log ratio, etc. After an initial analysis with one response variable, they
choose another and obtain a new, and to their minds better, analysis. Another
novelty at that time was the careful discussion of the nesting and crossing between
factors and their implications for the analysis. This was no doubt inspired by the
discussion of these matters Tukey and Cornfield gave in [8], which was published
some four years before [11].

Perhaps the most interesting part of this paper is the extended section “Variance
components and the proper error term” and the section “Variance components in
the illustrative example” which follows it. The first of these discusses an example
simpler than the actual experiment and draws heavily on material concerning the
pigeonhole model in [8]; see Section 4.3. Then they turn to the experiment and
things get interesting when they seek to impose a sampling model on the factors.
The four levels of rate (50, 100, 150 and 200 g/s) and the seven levels of weight
(100,150, . . . ,400 g) are admitted to present a problem for their pigeonhole
model. Are they exhaustive samples from finite populations, that is, fixed; are
they small samples from large populations of levels, that is, random; or are they
something else? Whereas it was easy for them to view sex and sight (blind or not)
as fixed, and person as random, the choice for R and W was far less obvious. After
some discussion of various options, including a mention of using polynomials to fit
responses to rate and weight, they decide to regard R and W as random “although
we recommend against this procedure [for scaled variables] in general.” The ideal
that one ANOVA theory fits all cases seems hard to live up to, even when you are
the creator of the theory.

As soon as all factors are assigned the category fixed or random, it is possible
to write out all 39 expected mean square lines of the ANOVA table, and this they
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do. Next follows an illuminating discussion of “aggregation and pooling” of lines
in the table, which, when implemented with the illustrative data, reduces the 39
lines to 15. They make use of a modified version of a procedure of Paull (1950)
which Tukey highlights in his Introduction to [17] and seems to be of interest
today. There are two useful graphical representations of the relative contributions
of the different sources of variability, one in two dimensions which is especially
appealing, but on the whole there is relatively little plotting of the data, a large
contrast with Tukey’s later work, for example, in [14].

A later analysis of this same data set can be found in Johnson and Tukey [15].
Looking back on this paper after four decades, and bearing in mind all that
Tukey wrote on ANOVA before and after that time, one cannot help but be
struck by how little use he made in this paper of the processes and procedures
he recommended when considering such an analysis. Referring to matters to
be discussed in Section 4, he made no attempt to assign standard errors to his
estimated variance components, under either normality or any other assumptions,
the scientific purpose of the experiment was nowhere mentioned, the situations or
populations to which inference was to be made were nowhere mentioned, even
the means he calculated and plotted were not assigned any measures of their
stability, something that was stated at the beginning of the paper to be one of the
major purposes of ANOVA. Granted this was an expository paper with a limited
objective, and probably already long by the standards of the journal, but I think the
point remains that it is hard to put Tukey’s ANOVA theory into practice, even for
Tukey himself.

4. Some moment calculations. Tukey wanted to derive average values and
variances and later a third moment of consider later. He tells us [17, page liv]
that his first attempt at deriving the variance of the between variance component
in an unbalanced one-way design took five or six full days “using old-fashioned
clumsy methods.” He was “convinced that it ought not to be so hard” and so “went
looking for better tools, and eventually came out with the polykays.” Polykays are
generalizations of Fisher’s k-statistics and we now outline the main points from
the papers in which they were introduced.

4.1. Some sampling simplified; keeping moment-like computations simple
[3, 6]. In 1929 Fisher introduced k-statistics as unbiased estimators of cumulants
and a computational technique which radically simplified much previous research
on moments of moments. It would take us too far astray to describe his technique
in detail [see Speed (1986a)], but we can describe the simplest of his results in
this area as soon as we recall the following well-known facts. If X1, . . . ,Xn are
i.i.d. random variables with common first two cumulants κ1 and κ2 (the mean and
variance, respectively), then

k1 = 1

n

∑
Xi = X̄ and k2 = 1

n − 1

∑
(Xi − X̄)2
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satisfy
Ek1 = κ1 and Ek2 = κ2.

Now the k’s are Fisher’s k-statistics, that is, unbiased estimates of the correspond-
ing cumulants. The key results of Fisher (1929) were the general definition of
k-statistics and a procedure for calculating their joint cumulants whose core was a
rule for calculating the coefficients of lower order k-statistics in an expansion for
the product of two k-statistics. The relationships above are the simplest relevant re-
sults: the expected values or first cumulants of the first two k-statistics. Next would
come the results which come from replacing E by var or covar; that is, replacing
first by second cumulant in the sample-population calculation.

We all know that var(k1) = κ2/n, but what about var(k2)? This result, first
derived by Gauss, is not quite so well known, but turns out to be

var(k2) = 2

n − 1
κ2

2 + 1

n
κ4.

Deriving this last fact is already messy enough to warrant thinking very carefully
about the algebraic formulation one adopts, and any desire to obtain more general
expressions of the same kind focusses the mind greatly on the same issue. Fisher
had his approach, Tukey simplified it as we shall see and it can be simplified yet
again; see Speed (1983) and McCullagh (1987).

Tukey’s main aim in [3] and [6] was to extend these results (and others like
them) to the finite population case. Apparently unknown to Tukey, this task had
been begun by Neyman in 1923 [see Neyman (1925)], though far less elegantly
or generally. To achieve his aim Tukey extended Fisher’s entire machinery.
He named the tool he developed polykays—multiply-indexed generalizations of
k-statistics—later noting that these same functions had been introduced earlier by
Dressel (1940) in a paper that was not noticed at the time. For Tukey polykays of
order or weight r are indexed by partitions of the natural number r . For example,
there are two of order 2, indexed by (1,1) and (2); three of order 3, indexed by
(1,1,1), (1,2) and (3); four of order 4, indexed by (1,1,1,1), (1,1,2), (1,3)

and (4); and so on. Fisher’s k-statistics are the single subscript versions of the
polykays, (1), (2), (3), (4) etc., hence Tukey’s name. In what follows we drop the
commas and parentheses in the partition notation, writing 1,11,2, etc.

How are polykays defined in general? To do this Tukey made use of an
auxiliary class of symmetric functions also labelled by partitions, which he called
symmetric means or, more simply, brackets, denoted by 〈1〉, 〈11〉, 〈2〉, etc. These
functions had the appealing property of rather transparently being “inherited on the
average,” which means that the average of the sample function over simple random
sampling without replacement from a finite population was just the corresponding
population function. Tukey avoided using the term “unbiased” as (so he said)
“there are now so many kinds of unbiasedness!” The sample mean

〈1〉 = 1

n

∑
xi
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is clearly inherited on the average, as is

〈11〉 = 1

n(n − 1)

∑
i �=j

xixj .

The value of brackets lies in the fact that [3, page 111] “every expression which is
(i) a polynomial, (ii) symmetric, (iii) inherited in the average, can be written as a
linear combination of brackets with coefficients which do not depend on the size of
the set of numbers involved.” As one illustration we give the following well-known
and useful representation:

1

n − 1

∑
(xi − x̄)2 = 1

n

∑
x2
i − 1

n(n − 1)

∑
i �=j

xixj ,

where the last two terms are transparently inherited in the average, neatly proving
that the first term is also, a standard fact from sampling theory. Tukey would write
this last relationship (2) = 〈2〉 − 〈11〉, and in general he needed a rule giving the
coefficients of brackets in the expansion of his parentheses (polykays). As he said
([3], page 124) “the single-index brackets have the coefficients for moments in
terms of cumulants (given numerically by Kendall [(1943), Section 3.13] up to the
10th moment). The coefficients of brackets with several indices can be found by
formal multiplication.”

How do we use all this machinery? Elegant though it is, there is still some hard
work: the multiplication tables need to be derived. Tukey derived his own, but by
the time of publication of [3, 6] comprehensive tables had independently appeared
[Wishart (1952a, b)]. A simple instance of a multiplication rule is

(2)2 = (22) + 1

n
(4) + 2

n − 1
(22)(∗)

Let us see how this leads very painlessly to the main result of Neyman (1925).
First, note that the preceding identity has a version connecting population
k-statistics which is of the same form, but with n replaced by N . Next recall that
the polykays (22), (4), etc. are all “inherited on the average.” We now take the
expectation (i.e., average) of (∗) over all samples and subtract from the result the
population version of (∗). This leaves us with

var((2)) =
[

1

n
− 1

N

]
(4) + 2

[
1

n − 1
− 1

N − 1

]
(22),

which is the formula Neyman worked hard to obtain. This was indeed “sampling
simplified.” Note also that if we let N → ∞ (so-called infinite population) and use
the easily proved fact that, in this case, (22) is just (2)2, we obtain Gauss’ result.

Tukey certainly simplified sampling. He demonstrated clearly that indeed finite
populations are simpler to deal with, and more powerful, and he now had the
machinery to carry out certain calculations in ANOVA.
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Later developments cast Tukey’s work in the framework of tensors [cf. Kaplan
(1952) and, most recently within the general theory of symmetric functions, Speed
(1986a)]. The gains from so doing are modest, but I think definitely worthwhile.
One consequence of the tensor formulation is that some of Tukey’s formal
calculations (e.g., his symbolic o-multiplication) cease to be “tricks.” Another
is the greater simplicity which comes from allowing all random variables to be
potentially different. For example, instead of calculating variances of variances, we
calculate covariances of distinct covariances, and obtain variances by appropriately
equating arguments. With this slightly greater generality, (∗) above becomes
[Speed (1986a), page 43]

(12) ⊗ (34) = (12|34) + 1

n
(1234) + 1

n − 1
[(13|24) + (14|23)],

where 1, 2, 3 and 4 all label distinct variables. This simplification removes certain
multiplicity factors and then reveals the coefficients defining polykays to be values
of the Möbius function over a partition lattice, which I think is a real step forward;
see Speed (1983) and McCullagh (1987).

Where are polykays now? There was a little theoretical development of them
after Tukey’s work, but he left no major problems unaddressed. I extended them
to multiply-indexed arrays in Speed (1986a, b) and Speed and Silcock (1988a),
and used the extensions to generalize the calculations of Tukey discussed in the
next section. Apart from my own work the most recent references to polykays are
Tracy (1973) and, an application of them, McCullagh and Pregibon (1987). To my
knowledge there have been no other publications concerning polykays since then.
In short, it seems that after about 25 years of life, polykays have been dead or
sleeping for 25 years. Apparently they have served their purpose, though I have no
doubt that they will be resurrected, awakened or reborn at some time in the future,
when another problem comes along for whose solution they are the natural tool.

4.2. Variances of variance components [7, 9, 10]. Why did Tukey go to all
the trouble of inventing polykays and their calculus, and what did he learn from so
doing? Giving as one purpose of the analysis of variance “to estimate the sizes of
the various components contributed to the overall variance from the corresponding
sources,” he wanted “to obtain formulas for the variances of the natural estimates
of these variance components.” Along with Gauss, Fisher and many others, Tukey
wanted to go beyond normality, but almost uniquely he did so in dispensing with
infinite populations. He regretted ([7], page 157) that he still had to leave “the
customary (and dangerous) independence assumptions” concerning the terms in
his linear population models. This answers the question “Why?” Let us now
see some of what he learned in a simple case: the balanced single (or one-way)
classification. Tukey’s model for this takes the form

xij = µ + ηi + ωij , i = 1, . . . , c, j = 1, . . . , r,
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where the {ηi} are sampled from a population of size n with k-statistics k1, k2, . . . ,
the {ωij } are from a population of size N with k-statistics K1,K2, . . . and the
samplings are independent and order randomized. If we denote by B and W the
usual between-class and within-class mean squares, respectively, with expectations
k2 and K2, then Tukey showed, among other results, that

var(B) =
(

1

c
− 1

n

)
k4 + 2

[
1

c − 1
− 1

n − 1

]
k22

+ 4

r(c − 1)
k2K2 + 2(rc − 1)

r2c(r − 1)(c − 1)
K22,

cov(B,W) = − 2

rc(r − 1)
K22,

var(W) =
[

1

rc
− 1

N

]
K4 + 2

[
1

c(r − 1)
− 1

N − 1

]
K22.

The remainder of [7] consists of more formulae of this kind, derived for
other variance component models: row-by-column classifications, Latin squares,
balanced incomplete blocks and more general balanced models.

Paper [9] considers the special, more complicated case of an unbalanced one-
way classification. One novelty here is that there is no single compelling estimate
of the between-class component of variance, and so Tukey considers a class
of estimates involving weights which need to be specified. He then derives the
variances and covariances as before, generalizing those just given, and presents
numerical examples. Lastly, paper [10] does what its title says: it presents the third
moment about the mean, that is, the third cumulant of the quantity W given above.

What can we learn from or do with such formulae? In the first place, we can
obtain qualitative insights by comparing the general finite population results with
the special case of infinite normal populations. There k4 and K4 vanish, while
k22 and K22 are k2

2 and K2
2 , respectively, and of course N = ∞. In this case the

results are familiar, and the extent to which the normal variances for the estimated
variance components are too small or too large could, in principle, be examined.
Interestingly, Tukey does not present formulae giving unbiased estimates of either
the individual terms in his expressions for the variances of the estimated variance
components, or for the variance expression as a whole. I would be very surprised
if he did not have such formulae, for example, for k4 and K4 and k22 and K22
above, but he makes no mention of them. Without them, his aim of calculating
estimates of the precision of estimated variance components under these more
general assumptions must remain unfulfilled.

What has been done since the 1950s in this area? There has been more work
on the topic of variances of estimated components and variance; see, for example,
Harville (1969), but there, as in all other such cases that I know, the calculations
are carried out under an assumption of normality. In some of my own work [Speed
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(1986a, b), Speed and Silcock (1988a, b)] I have tried to extend Tukey’s work to
ANOVA models which are not built up additively from independent components.

4.3. Average values of mean squares in factorials [8]. This is an interesting
and important paper: broad in coverage, profound in its analysis, beautifully
written and elegant in its dealing with messy algebraic details. It is arguably
Tukey’s most important contribution to ANOVA. By the early to mid-1950s it
was becoming clear that the concise description in Eisenhart (1947) of models
for ANOVA did not provide a foundation for all uses of ANOVA. The now well-
known mixed-model ambiguity concerning the interaction component of variance
when (say) rows are “fixed” and columns “random” had emerged: in some linear
model formulations this component appeared in the expected mean square line for
both rows and columns, while in others it did not. It was apparent to many that
the combining of linear models and ANOVA was not as simple as might have
seemed at first. Neyman and his Polish colleagues found this out the hard way
in 1935, but made no later attempt at a broad synthesis. Kempthorne (1952) in
Ames, building on the work of Neyman and co-workers, Fairfield Smith in Raleigh,
Tukey in Princeton, Cornfield at the National Institutes of Health in Bethesda and
no doubt others elsewhere all sought to devise models of differing breadth and
flexibility which would specialize appropriately under different assumptions, and
lead to the desired analyses and inferences. Throughout all this, Fisher was silent
on the topic, apparently holding to his view that “the analysis of variance is . . . a
convenient method of arranging the arithmetic.”

Anyone who reads the five sections comprising the Initial discussion of [8]
quickly realizes that providing a general framework for ANOVA is no mean task.
The subsequent six sections spelling out Cornfield and Tukey’s approach prior to
their presenting any average values shows that theirs is not an easy resolution. So
it should come as no surprise when I say that the situation today is hardly any
better than it was then in the mid-1950s. Cornfield and Tukey’s paper should be
essential reading for all those who care about these matters. But it is not read, and
neither their approach nor any other has taken root among the legions of users of
ANOVA and linear models. No treatment of the issues that prompted them to write
that paper has yet gained acceptance; see below.

What are the issues? Although in most of his writings on ANOVA Tukey
emphasized estimation of variance components above significance testing, this
paper is very much motivated by testing. Expressions for average values of mean
squares in factorials are the primary basis for testing: they tell us which mean
squares can usefully be compared with which; that is, they dictate the choice of
error term. So attention focuses sharply on the model assumptions leading to these
averages. As Tukey and Cornfield point out in Section 2 of their paper, the choice
among assumptions is important and is not simple. It includes but goes beyond
empirical questions about the behavior of the experimental material. Assumptions
must also depend on the nature of the sampling and randomization involved in
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obtaining the data, and the purpose of the analysis, as expressed by the situations
or populations to which one wishes to make statistical inference.

Cornfield and Tukey’s way ahead is by the use of what they call a pigeonhole
model, in which combinations of experimental factors (rows, columns, etc.) define
pigeonholes containing a finite or infinite population. If, like them, we illustrate
ideas with the replicated row-by-column classification, then their assumption
is that a sample of r rows is drawn from a possible R, and a sample of
c columns is drawn from a possible C. These rc intersections define the pigeon-
holes which are the cells of the actual experiment, and from each of the rc cells
a sample of n elements is drawn. “All the samplings—of rows, of columns, and
within pigeonholes—are at random and independent of one another.” This is their
approach. They discuss at considerable length the way in which an equivalent
linear model can be defined, making it clear just how different their linear model
was from those previously used (and used today). Of particular significance was
their notion of “tied” interaction, their avoidance of what they term the “special
and dangerous” assumption of independence of the variation of interaction terms
of main effects terms.

After their lengthy preliminaries it is almost a relief to get to the algebraic
part of the paper: definitions of components of variance and rules for calculating
what we now term expected mean squares. They discuss two-way and three-
way designs in detail and give rules for designs with factors nested or crossed
in arbitrary ways. There is an interesting discussion of the nature of the various
proofs then extant of the formulae. At that time there were two types: “Proofs using
special machinery or indirect methods (e.g., symmetry arguments and equating
of coefficients for special assumptions),” the approach preferred by Tukey, and
“proofs using relatively straightforward algebra,” which was the preferred way of
Cornfield. Neither of these was particularly effective in full generality.

The mathematical content of [8] has been revisited at least twice since 1956.
The first time was by Haberman (1975), in a dense paper which does not seem to
have been widely read. He makes effective use of the calculus of tensor products
of vector spaces to give very concise proofs of the main results. A quite different
approach was used in Speed (1985) [see also Speed and Bailey (1987)] (also not
widely read), where the discussion was expressed in terms of the eigenvalues of
the associated dispersion matrices. Other, less general formulations can be found in
books on linear models and ANOVA, for example, Searle, Casella and McCulloch
(1992).

As suggested earlier, all attempts at providing a general framework for ANOVA
since 1956 should have come to terms with the material in [8]: they should either
incorporate it or suggest an alternative approach. There have been many such
attempts over the last 45 years, with Nelder (1977) providing the most far-reaching
alternative, building on Nelder (1965a, b). This paper and especially the discussion
of it are well worth reading, especially today. The most recent discussions of
the “mixed models controversy” [see, e.g., Schwarz (1993) and Voss (1999) and
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references therein] refer to neither Cornfield and Tukey, Kempthorne, Nelder nor
any other of the earlier generation of researchers in this area. Plackett (1960) gives
an excellent review of this early work.

Tukey’s contribution to the discussion of Nelder (1977) is particularly inter-
esting, in part because it reveals so clearly his distrust in models. It should be
read in full, but here are some tantalizing excerpts, all the more relevant when
one bears in mind that all recent discussion of this issue is a discussion of mod-
els:

I join with the speaker in hoping for an eventual and agreed-upon description. I hope
the present paper will help us approach this ideal state, but I must say that it has not
brought us there.
Three types of variability arise in almost any question about a set of comparative
measurements, experimental or not: measurement variability, sampling variability and
contextual variability.
A major point, on which I cannot yet hope for universal agreement, is that our focus
must be on questions, not models.
One conclusion I draw from such examples is this: Models can—and will—get us into
deep trouble if we expect them to tell us what the unique proper questions are.

I close this section with some personal comments, but before I do so, I should
confess that I too have attempted to publish a description of ANOVA which I
had hoped might have become “agreed-upon.” It did not even get accepted for
publication. However, I think I represent more than myself when I say that, for
all my admiration of [8] and what it attempted to do, that solution was simply
too far away from the world of linear models most of us inhabit. In my view, and
I suspect that of many others, linear models are most readily specified through a
model for the expected values and a model for the variances and covariances of the
observables. After all, we are simply specifying (apart from the values of certain
unknown parameters) the first two moments of our observables. Had their approach
been in these terms, I believe it might still be discussed. Nelder (1977) had a
related objection when he pointed out that randomization models (involving finite
populations but random effects) could not be seen as a special case of the approach
in [8]. The matter of providing linear unbiased estimates of quantities of interest
figured nowhere in [8], and I believe this reduces many people’s willingness to
see its solution as general and relevant to their use of linear models and ANOVA.
But perhaps the real reason that the description in [8] is not yet agreed upon is
this: the majority of statisticians these days (perhaps even 50 years ago) are not
interested in the issues that concerned Tukey, Cornfield, Kempthorne, Fairfield
Smith and Neyman and co-workers, before them, and Nelder and others, including
me, after them. Perhaps it is just too hard, connecting assumptions and models to
the subject matter, to the data collection process, to the questions one is asking
and the kinds of answers one seeks. “Does it really matter? Does it make any
practical difference?” I get asked. It is so much easier discussing models and
parameterizations.
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5. Other ANOVA papers by Tukey.

5.1. Dyadic ANOVA [1]. This paper was based on a talk Tukey gave in
November 1946, and is more interesting for what it tells us about the development
of his thinking concerning ANOVA than for the material related to its title.
Ostensibly about ANOVA for vectors, that is, what we would now call multivariate
analysis of variance (MANOVA), the paper also contains a wealth of interesting
material only marginally related to that topic. The reason he wrote it, he says,
was that other accounts of MANOVA concentrate too much on tests and too little
on that which is most useful and revealing in ordinary ANOVA. It is impossible to
resist passing on one of his introductory remarks, presumably aimed at the average
reader of Human Biology. He writes:

It is a maxim of arithmetic that it is not proper to add 2 oranges to 1 apple; this is good
arithmetic but may be poor vector algebra. For

(2 oranges,0) + (0,1 apple) = (2 oranges,1 apple)

is a meaningful and useful statement.

Later, he goes on:

If we are to have an analysis of variance, we must have squares, and the solution is

(2 oranges,1 apple)2 =

 4 orange2 2 (orange)(apple)

2 (orange)(apple) 1 apple2


 .

The paper includes a concise discussion of components of variance, initially in
the context of Eisenhart’s (1947) models, but also including the finite population
pigeonhole models which were to play such a big role in his later work. Rather
surprisingly in view of his later disdain for F -tests, and his stated motivation for
writing the paper, he makes a start on tests of significance for dyadic ANOVA, that
is, the distribution of eigenvalues in 2 × 2 MANOVA. He even attempts to give
fiducial intervals for quantities of interest, but concludes that more distribution
theory is required.

A topic not obviously related to dyadic ANOVA is what he calls choice of terms,
that is, choice of the response variable to be analyzed in a given experiment.
He castigates Fisher for not paying more attention to this point, illustrating it
dramatically by carrying out the same analysis on some hydrogen spectrum
data using both wavelength and its reciprocal, wave number, as responses. In
a fascinating analysis foreshadowing the power transformation underpinnings of
ODOFFNA, he uses his newly developed dyadic ANOVA to find that linear
combination of a response variate and the variate squared which minimizes the
ratio of row plus column sums of squares to interaction sum of squares in an
unreplicated row-by-column array. Illustrating the method on one of the data sets
which he uses in his later paper on ODOFFNA, Tukey shows the considerable
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gain in efficiency he achieves with his transformation. The eigenvalue problem he
solves is reminiscent of canonical variate analysis, and he ends that discussion with
some interesting speculations on alternative criteria to optimize in the definition of
discriminant functions.

A further point of interest in this paper can be found in the Appendix, headed
“Two identities and a lemma.” The lemma gives the variance of the average and the
expectation of the sample variance of a set of variates which have different means
and different variances, but a common covariance λ, a simple enough variant on
the result which is well known for i.i.d. variates. He goes on to apply this result to
his pigeonhole models, illustrating once more what was to be a recurrent theme in
his statistical research: a desire to weaken standard assumptions wherever possible.
He finds that, under these more general assumptions, the formulae are essentially
unchanged, with a common variance σ 2 being replaced by the average variance
σ 2· − λ.

5.2. Components in regression [4]. This paper is about simple linear regres-
sion when both variates are subject to “error,” and the use of instrumental variates
in this context. The fields of application discussed include precision of measure-
ment, psychology and econometrics, and, as is so often the case with Tukey, the
paper demonstrates the prodigious breadth of his knowledge. The connection with
ANOVA is slight, really only arising because he discusses an example in which
measurements are taken in replicate. As he says, “We could have avoided mention
of variance components . . . since we only deal with the simplest sorts . . . between-
vs-within or regression-vs-balance. However, we have chosen to bring them in for
two reasons. Mainly to set the analysis in terms which can easily be carried over
to more complicated analyses where the correct procedure might otherwise be a
mystery. Secondarily, to stress the analogy with variance components for a single
variate.” The paper is not easy reading and, since its connection to other material
here is not great, we do not discuss it any further.

5.3. ANOVA and spectral analysis [12]. As might be expected from its
context—the discussion of two papers on the spectral analysis of time series—
[12] is much more about spectral analysis than ANOVA. It was placed in one of
the time series volumes [21], not in [17], yet I want to mention it here, in part for
its influence on me personally. What Tukey makes very clear in this discussion is
that spectrum analysis, with a line for each frequency, is ANOVA. More fully, he
says “the spectrum analysis of a single time series is just a branch of variance
component analysis.” This was one of his inspired connections which proved
illuminating in both directions. It is clear from his remarks that Tukey supposed
that his statistical audience knew something about ANOVA and could read [8] if
they wished, and that this would enlarge their understanding of spectrum analysis,
the topic of the papers. What was probably not apparent at the time was that there
were people, myself included, for whom spectrum analysis was straightforward,
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but variance component analysis a mystery, and that his connection would be
helpful to such people in the other direction. For evidence of the impact of this
paper on me, see Speed (1987); for a valuable introduction to this paper, see the
comments by Brillinger in [21].

5.4. Toward robust ANOVA [16]. This paper offers “a recipe for robust/
resistant analysis of variance of data from factorial experiments in which all factors
have three or more versions.” Its motivation is eloquently explained as follows:

Analysis of variance continues to be one of the most widely used statistical methods.
Not only the form of the analysis of variance table with its lines of mean squares and
degrees-of-freedom associated with each of several sorts of variation, but the entire
analysis, including confidence statements, is classically supposed to be determined by
the design—the hierarchical structure, conduct, and the intent of the experiment—
alone. The behaviour of the data itself is, classically, not supposed to influence how
its description is formatted. Hardly an exploratory attitude. . . . In this account, rather
than using a data-free structure to define our procedure, we provide a further stage
of responding to the data’s behaviour, one where summarization is based on a robust
alternative to the mean.

The recipe is explained by its application to a particular 5 × 3 × 8 array of data
from an experiment concerning the hardness of gold alloy fillings. It begins with a
pre-decomposition, this being a multiway analogue of median polish, and proceeds
through the identification of so-called exotic entries, to a re-decomposition dealing
with these, and a robust analysis of variance with the familiar sums of squares
and degrees-of-freedom calculated from the re-decomposition. Next, a process of
downsweeping is carried out, this being a variant of the pooling of mean squares
which we met in Section 3 above, and the recipe concludes with the calculation of
error mean squares, standard errors and confidence statements.

5.5. Methods, comments, challenges [18–20]. Tukey expounded and dis-
cussed ANOVA in a number of his many overview papers, and I will single out
three of these for brief mention.

In [18] he goes over “some methods that form sort of a general core of the sta-
tistical techniques” that were used at that time. He aimed “to supply background:
statistical, algebraic and perhaps intuitive,” and he succeeded admirably. The ex-
position could hardly be improved upon, indeed is better than most we see today,
in that it contains possibly the first instance of the “analysis of variance diagram”
mentioned in the discussion of paper [11] in Section 3 above. This diagram surely
deserves to be more widely used. Also noteworthy is a remark which may well be
the first appearance in print of the abbreviation ANOVA.

In [19] Tukey offers 37 methodological comments about statistics on topics
ranging from exploration versus confirmation, re-expression and causation, to
spectrum analysis, and naturally he has something so say about ANOVA. Relevant
comments concern regression and analysis of variance, nonorthogonal analysis and
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MANOVA, and can only be described as stimulating and provocative. For example,
in seeking a replacement of conventional MANOVA: “We could calculate principal
components, but they are not likely to be simply interpretable. So let us not”; and:
“Much the same could be said of ‘dust bowl empiricists factor analysis’.”

In Section 21 of the last of these three overview papers [20], Tukey foreshadows
the issues dealt with more fully in [16] discussed above. We see clearly how
keen Tukey was to unify his understanding of and approach to ANOVA with his
robust/resistant and exploratory data analysis paradigms. While [16] is a fine start,
it seems clear that there is much more to be said on this unification.

6. Concluding remarks. John Tukey was an extraordinarily able and creative
statistician. He made a number of lasting contributions to ANOVA: to our
understanding of what it is and what it can do for us; to the algebraic
and computational aspects of the subject; and, perhaps most important and
characteristic to showing us how to go beyond the usual assumptions. The impact
of all this work on the subject today is less than it should be, perhaps in part
because Tukey set his standards rather high. However, his papers are all there for
anyone to read, and if this appreciation of them encourages one person who would
not otherwise, to do so, its purpose will have been achieved.
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