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LOCAL SENSITIVITY DIAGNOSTICS FOR
BAYESIAN INFERENCE

BY PAUL GUSTAFSON1 AND LARRY WASSERMAN 2

University of British Columbia and Carnegie Mellon University

We investigate diagnostics for quantifying the effect of small changes
to the prior distribution over a k-dimensional parameter space. We show
that several previously suggested diagnostics, such as the norm of the
Frechet derivative, diverge at rate nk r2 if the base prior is an interior´
point in the class of priors, under the density ratio topology. Diagnostics
based on f-divergences exhibit similar asymptotic behavior. We show that
better asymptotic behavior can be obtained by suitably restricting the
classes of priors. We also extend the diagnostics to see how various
marginals of the prior affect various marginals of the posterior.

1. Introduction. In Bayesian inference, the sensitivity of the posterior
to the prior is always a concern. Global sensitivity analysis is sometimes used

w Ž .xto assess this sensitivity Berger 1984, 1990 . Here, the prior P is embedded
in a class of priors G and the degree to which the posterior changes as the
prior varies over G is used to assess sensitivity to the prior. This approach is
infeasible for complicated models. When there are many parameters we
might want to ask questions like: ‘‘How sensitive is the posterior marginal
density for one parameter to changes in the prior of another parameter?’’
There are a multitude of such questions and it is usually too time-consuming
to answer them all using global analysis. Instead, we might use local
sensitivity analysis in which we study the effects of small perturbations to the
prior. A small but quickly growing literature on Bayesian local sensitivity

Ž .analysis has developed lately; see Basu, Jammalamadaka and Liu 1996 ,
Ž . Ž . Ž .Berger 1986 , Cuevas and Sanz 1988 , Delampady and Dey 1994 , Dey and

Ž . Ž . Ž .Birmiwal 1994 , Diaconis and Freedman 1986 , Gelfand and Dey 1991 ,
Ž .Gustafson, Srinivasan and Wasserman 1995 , Ruggeri and Wasserman

Ž . Ž . Ž .1993 , Sivaganesan 1993 and Srinivasan and Truszczynska 1990 .
One approach to local sensitivity is to use the norm of the Frechet´

derivative of the posterior with respect to the prior. Diaconis and Freedman
Ž .1986 were apparently the first to suggest this, albeit in a different context.

ˆŽ .Under weak conditions, this norm turns out to be L u rm, where L is the
ˆlikelihood function, u is the maximum likelihood estimator of the k-dimen-
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sional parameter u and m is the marginal density of the data. Typically, the
norm increases with sample size at rate nk r2, leading to the counterintuitive
conclusion that the posterior becomes increasingly sensitive to the prior as we

Ž .accumulate more data; Krasker and Pratt 1986 noted this in their discus-
Ž .sion of Diaconis and Freedman 1986 . The asymptotic behavior of the norm

of the Frechet derivative makes it unsuitable as a diagnostic.´
The norm is equal to the Frechet derivative of the posterior evaluated in´

ˆthe direction of the prior d which is a point mass at u . Obviously, d is anˆ ˆu u

unreasonable prior and one might suspect that, by eliminating such priors
from consideration, the norm will have better asymptotic behavior. We will
show that eliminating point masses is neither necessary nor sufficient for
correcting the behavior of the derivative. It is not necessary because under

Ž .some distance functions our diagnostic is o 1 even when the weak closure of
the class of priors contains point masses. It is not sufficient in the sense that

Žthere are classes of uniformly bounded density functions which therefore do
. k r2not include point masses that give norms of order n . We will show that

w Ž .diagnostics based on f-divergences Gelfand and Dey 1991 , Dey and
Ž . Ž .xBirmiwal 1994 and Delampady and Dey 1994 exhibit similar behavior.

Another problem with using the norm of the Frechet derivative as a´
diagnostic is apparent if we consider multiparameter models. Suppose that

Ž .u s u , u . Then the norm of the Frechet derivative of the marginal poste-´1 2
rior for u turns out to be the same as that for u . Again, this is counterintu-1 2
itive since we expect that inferences for one parameter may be more or less
sensitive than inferences for another. None of this is meant as a criticism of

Ž .Diaconis and Freedman 1986 , whose results were intended for a different
purpose.

We have two main goals in this paper. The first is to explore the behavior
of sensitivity diagnostics. The second is to develop new diagnostics that avoid
these problems. In Section 2 we develop some basic theory. We define a local
sensitivity diagnostic and give a sufficient condition for the divergence of the
diagnostic. This sets up the appropriate background for Section 3, where we
propose modified forms of the diagnostic that have good asymptotic behavior.
In Section 4 we extend the diagnostics to multiparameter models. In that
section, we are particularly interested in assessing the sensitivity of a
posterior marginal to perturbations in various marginals of the prior. In
Section 5 we provide some concluding remarks.

2. Basic theory.

n Ž .2.1. Notation and definitions. Let X s X s X , . . . , X be n indepen-1 1 n
Ž .dent and identically distributed random variables, each with density f ?N u .

Here u g Q ; R k is the unknown parameter. Let BB be a s-algebra on
Ž .the parameter space Q, and let P be a prior probability measure on Q, BB .

x x xŽ .The posterior probability measure P s P is defined by P du sn n
� Ž n.4y1 Ž n. Ž . Ž n. n Ž .m X L u ; x P du , where L u ; x s Ł f x N u is the likelihoodP 1 1 1 is1 i

Ž n. Ž n. Ž .function, and m x s H L u ; x P du is the marginal density of the data.P 1 Q 1
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To quantify changes in priors and posteriors, we require a function d:
w xPP = PP ª 0, ` , where PP is the class of all priors on BB. We want d to

indicate ‘‘distance’’ between elements of PP, but we do not require that d be a
metric. Define the local sensitivity of PP in the direction of Q by

d P x , Q xŽ .«
1 s P , Q ; x s lim .Ž . Ž .

d P , Q« x0 Ž .«

Here we define Q , the perturbation of P in direction Q, in one of two ways.«

Ž .We can take the linear perturbation Q s 1 y « P q « Q or the geometric«

w x« Ž .perturbation dQ A dQrdP dP, as suggested by Gelfand and Dey 1991 .«

The latter may seem less familiar but turns out to be quite natural for some
Ž .choices of d. The local sensitivity 1 is the rate at which the contaminated

posterior Q x tends to the nominal posterior P x, relative to the analogous rate«

Ž .for the prior. A natural measure of the overall sensitivity is s P, G; x s
Ž .sup s P, Q; x , for some class of priors G ; PP.Q g G

Ž .When linear perturbations are used we can relate s P, G; x to Frechet´
derivatives. Let d s d be total variation distance, which is defined byTV

Ž . < Ž . Ž . < 5 5 Ž .d P, Q s sup P A y Q A . Define d s Q y P, d s d P, Q andTV Ag BB TV
Ž . xT P s P . The Gateaux differential of the posterior is defined by

d P x , Q x m xŽ .Ž .TV « Q x x˙2 T d s lim s d P , Q .Ž . Ž . Ž .P TV« m x« x0 Ž .P

Ž . x Ž . x xEquation 2 follows from the fact that Q s 1 y l P q lQ , where l s«
y1 ˙Ž .wŽ . Ž . Ž .x Ž .« m x 1 y « m x q « m x ; T d can be regarded as the derivativeQ P Q P

of P x evaluated at P in the direction of the signed measure d s Q y P. If the
wlikelihood is bounded, then this quantity is also the Frechet derivative see´

˙Ž .xDiaconis and Freedman 1986 , which means that T is a linear map onP
˙Ž . Ž . Ž . Ž5 5. 5 5signed measures such that T P q d s T P q T d q o d as d ª 0,P

uniformly over all signed measures d with mass 0. Now, for a class G, define
˙ ˙5 5 5 5 5 5the restricted norm of the derivative by T s sup T r d . ItP dsQyP ; Q g G P

˙5 5 Ž .follows immediately that T s s P, G; x . Usual practice in functional anal-P
ysis would be to compute the norm over the linear space of all signed

Ž .measures, but we are interested in smaller classes. The quantity s P, Q; x
˙ Ž . Ž .has a more direct interpretation than T d since s P, Q; x has been nor-P

˙Ž . Ž .malized by d P, Q . The relationship between T and s P, Q; x breaks down
Ž .for other distance functions, but s P, Q; x retains a clear meaning.

wBesides total variation distance, we will consider the f-divergence Csiszar
Ž . Ž .x Ž . Ž .1977 and Goel 1983 defined by d P, Q s Hf dPrdQ dQ, where f is af

Ž .smooth, convex function such that f 1 s 0. This contains Kullback]Leibler,
Hellinger, directed divergence and chi-squared distances, among others, as
special cases. Sensitivity diagnostics based on f-divergences are studied by

Ž . Ž .Delampady and Dey 1994 and Dey and Birmiwal 1994 .
Ž n.The effect of sample size on the local sensitivity diagnostic s P, Q, x is of1

Ž n.central interest. In particular, it seems reasonable to expect that s P, G; x1
converges to 0 in probability as n ª `. Surprisingly, subject to weak condi-
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tions, the local sensitivity measure diverges to infinity with probability 1
unless G is appropriately restricted. A simple example illustrates this point.

Ž . Ž .EXAMPLE 1. Let X , . . . , X N u ; N u , 1 and u ; N 0, 1 . If d s d and1 n TV
x is the sample mean, thenn

n 2 2ˆL u ; x n x xŽ .1 n nn ' 's P , PP ; x s s n q 1 exp f n exp ,Ž .1 ž /½ 5 ½ 5m x n q 1 2 2Ž .P

'which diverges at rate n for almost all sample paths. Obviously, similar
behavior will result for any regular parametric family as long as G s PP.

The rest of Section 2 is devoted to answering the following question: is the
behavior in Example 1 typical?

Throughout this section, we assume the following regularity conditions:

Ž . n Ž n.R1 For all x , L u ; x is bounded and continuous and attains its maxi-1 1
ˆmum at some finite value u .

Ž .R2 The prior P has full support and has density p with respect to Lebesgue
measure m. Furthermore, p is bounded and continuous.

Ž .R3 Let u# be the true value of u . Then

nˆ < <'L u ; x I u#Ž .Ž .1 ykr2yk r2n ª 2p almost surely P ,Ž . u#nm x p u#Ž .Ž .P 1

where P is the product measure on the sample space arising fromu

Ž . Ž .f ?N u , and I u is the Fisher information at u .

Ž .Note that R3 holds as long as the usual conditions that imply asymptotic
Ž . Ž .normality hold. Conditions R1 ] R3 are stronger than needed but they lead

Ž n. Ž n.to simpler proofs. We shall say that s P, G; x diverges if s P, G; x ª `1 1
almost surely P as n ª `. Letu#

p u q gŽ . Ž .
L p s q ; ess sup log F «Ž .« ½ 5p g q uŽ . Ž .u , ggQ

w Ž . xbe the density ratio sphere of size « around p DeRobertis 1978 , page 141 .
k Ž .Let G be the set of all k-dimensional normal distributions, and let f ?; m, sN

2 Ž .denote a Normal density with mean m and variance s ; we write f ? for
Ž .f ?; 0, 1 .

2.2. The total variation metric. Let d be the total variation metric. We
break this section into two subsections focussing on linear and geometric
perturbations, respectively.

2.2.1. Linear perturbations. Under linear perturbations we have the fol-
lowing lemma. The first two statements are immediate from results in

Ž . Ž .Diaconis and Freedman 1986 . The last statement follows from R3 .
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Ž . Ž . Ž Ž . Ž ..LEMMA 1. i For every Q g PP, s P , Q; x s m x rm x =Q P
x x n ˆ n nŽ Ž . Ž .. Ž . Ž . Ž . Ž . Ž .d P , Q rd P , Q ; ii s P , PP; x s L u ; x rm x ; and iii1 1 P 1

Ž n. k r2s P, PP; x diverges at rate n .1

We are now interested in exploring what types of restrictions on G will
Ž .induce more reasonable asymptotic behavior on s P, G; x .

Ž . Ž n.THEOREM 1. Suppose that L p ; G for some « ) 0. Then s P, G; x« 1
diverges at rate nk r2.

Ž n.PROOF. Lemma 1 implies that if s P, G; x diverges, it cannot do so1
k r2 « ˆŽ . Ž .faster than n . Choose a g 1, e , and let N u be the size b Euclideanb

ˆ ˆŽ . w Ž Ž ..neighborhood of u , where b ) 0. Define Q by Q B s c aP B l N u qb b b b
ˆ c y1 ˆŽ Ž . .x � Ž Ž .. 4P B l N u , where c s D P N u q 1 and D s a y 1. Q is con-b b b b

Ž . Ž n. Ž n. x � x4y1tained in L P ; G. Now, m x s m x c rc , where c s« Q 1 P 1 b b bb
x ˆ x x x ˆ x ˆ c� Ž Ž .. 4 Ž . w Ž Ž .. Ž Ž . .xD P N u q 1 . Thus, Q B s c aP B l N u q P B l N un b b b n b n b

ˆ ˆ x xŽ . Ž Ž ..Ž Ž Ž ... Ž .so that d P , Q s D c P N u 1 y P N u and d P , Q sb b b b n b
x x ˆ x ˆŽ Ž ..Ž Ž Ž ...Dc P N u 1 y P N u . Applying Lemma 1, we see thatb n b n b

x ˆ x ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /n b n bn ns P , G ; x G s P , Q ; x s .Ž . Ž .1 b 1 ˆ ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /b b

The right-hand side tends to

x ˆ ˆ np u L u ; xŽ . Ž .n 1s nˆ m xŽ .p uŽ . P 1

Ž .as b ª 0, and the result follows from R3 . I

Ž .REMARK 1. The density ratio sphere L p is, in a sense, very small in«

w Ž .xthat it contains densities very similar to p Wasserman 1992 . Hence,
divergence does not require that G be large.

ˆ ˆŽ .REMARK 2. In Theorem 1, it is not necessary to let N u shrink to u .b
xŽ . Ž . Ž .Choose a sequence of sets A such that P A ª c g 0, 1 and P A ª 0,n n n
Ž n.and define Q as Q was defined. Then s P, Q ; x still diverges at raten b n 1

nk r2.

Ž . � Ž .REMARK 3. Lavine 1991 defines a density bounded class G s q; l u F
Ž . Ž . 4 Ž . Ž .q u F u u for almost all u , where l and u are such that H l u m du - 1 -
Ž . Ž . Ž n.H u u m du . By Theorem 1, s P, G; x diverges for any P that is interior to1

G, assuming that l - u.
� 4The sequence Q used in Theorem 1 is not pathological. These priors haveb

bounded densities that are as smooth as p except on a set of measure 0.
Thus, it is not the point masses in PP that cause the problem. In fact, it is

� 4possible to replace the sequence Q in Theorem 1 with a sequence ofb
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probability measures having continuous, differentiable densities and obtain
Ž k n. Žthe same result. The next result shows that s P, G ; x diverges. RecallN 1

k .that G is the set of all k-dimensional normals . This follows by taking Q toN
ˆ nŽ .be normal with mean u and letting its variance tend to 0. Then s P, Q; x1

behaves in the limit as if Q were a point mass. The details of the proof are
omitted.

Ž k n. k r2THEOREM 2. The quantity s P, G ; x diverges at rate n .N 1

2.2.2. Geometric perturbations. Still using total variation distance, it is
possible to replace the linear perturbations with geometric perturbations.

Ž n.Unfortunately, this does not produce a tractable expression for s P, Q, x1
Ž .akin to statement i of Lemma 1. However, we can still show that divergence

occurs.

Ž . Ž n.THEOREM 3. If L p ; G for some « ) 0, then s P, G; x diverges at« 1
least as fast as nk r2.

PROOF. Let Q be as in Theorem 1. Tedious calculation yieldsb

x ˆ x ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /n b n bns P , Q ; x sŽ .b 1 ˆ ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /b b

so the proof of Theorem 1 applies here also. I

2.3. f-Divergences. We now consider diagnostics based on the f-diver-
gence. Again both linear and geometric perturbations are considered; corre-
spondingly, we break this section into two subsections.

2.3.1. Linear perturbations. Under linear perturbations, the form of
Ž . Ž .s P, Q; x is given by Theorem 4.1 in Dey and Birmiwal 1994 , which we

state here as a lemma.

2 Ž . Ž .xLEMMA 2. Suppose that H q rp - `. Then s P, Q; x s V dQrdP rP
Ž . Ž . 2 Ž .2V dQrdP , where V h s H h dR y H h dR .P R

Ž . Ž n.THEOREM 4. If L P ; G for some « ) 0, then s P, G; x diverges at rate« 1
nk r2.

PROOF. Let Q be as in Theorem 1. It turns out thatb

x ˆ x ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /n b n bns P , Q ; x s ,Ž .b 1 ˆ ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /b b
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Ž n.so the proof of Theorem 1 applies again. This establishes that s P, G, x1
k r2 wŽ .diverges at rate n or faster. However, Delampady and Dey 1994 , Theo-

n ˆ n nx Ž . Ž . Ž .rem 3 show that s P, G, x is bounded above by L u ; x rm x , hence1 1 P 1
the result holds. I

Ž n.Now we consider the behavior of s P, G ; x .N 1

Ž 1 n. 1r2THEOREM 5. When k s 1, s P; G ; x diverges at rate n .N 1

x Ž . Ž 2 .PROOF. Let p be the posterior density function and let q u s f u ; m, t .n
Then

V x qrpŽ .Pnns P , Q ; x sŽ .1 V qrpŽ .P

2y1 xs t f u y m rt rp u p u duŽ . Ž . Ž .Ž .Ž .H n

2
y1 xy t f u y m rt rp u p u duŽ . Ž . Ž .Ž .H nž /

y1
2y1= t f u y m rt rp u p u du y 1Ž . Ž . Ž .Ž .Ž .H

x 2 ' 's p u rp u 1rt 2p f 2 u y m rt duŽ . Ž . Ž .Ž . Ž .H n

2
x y1yt p u rp u t f u y m t duŽ . Ž . Ž .Ž .H nž /

y1

' '= 1rp u 1rt 2p f 2 u y m rt du y t ,Ž . Ž .Ž . Ž .H
xŽ . Ž . Ž . Ž n.which converges to p m rp m s L m rm x as t ª 0 since the measuren P 1

' 'Ž Ž . .with density 2 rtf 2 u y m rt converges to a point mass at m. Now take
ˆ Ž .m s u and apply R3 . I

2.3.2. Geometric perturbations. Now we consider geometric perturbations.
Ž .The next lemma corresponds to Theorem 4.2 in Dey and Birmiwal 1994 .

Ž Ž ..2 Ž Ž ..2LEMMA 3. Suppose that H log dQrdP dP - ` and H log dQrdP
Ž .«= dQrdP dP - `, for some « ) 0. Then

V x log dQrdPŽ .Ž .P
s P , Q ; x s .Ž .

V log dQrdPŽ .Ž .P
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REMARK 4. By examining terms in the first and second derivatives of
Ž .Ž .f dQ rdP dQ rdP with respect to « , convergence of the above integrals« «

justifies the interchanges of differentiation and integration required to estab-
lish Lemma 3.

Ž . Ž n.THEOREM 6. If L P ; G for some « ) 0, then s P, G; x diverges at rate« 1
nk r2.

Ž n. k r2PROOF. Again, if s P, G, x diverges, it cannot do so faster than n1
w Ž .xDelampady and Dey 1994 . Define Q as in Theorem 1. Thenb

x ˆ x ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /n b n bns P , Q ; x s ,Ž .1 ˆ ˆP N u 1 y P N uŽ . Ž .Ž . Ž .ž /b b

so the proof of Theorem 1 applies. I

Ž n.REMARK 5. In general, the form of s P, Q, x will depend on the choice of1
distance and on whether linear or geometric perturbations are used. It is

Ž n.remarkable that s P, Q ; x has exactly the same form in Theorems 1, 3, 4b 1
and 6. We have no explanation for this curious phenomenon.

2.4. Summary of Section 2. We considered, to various extents, the four
diagnostics that arise by selecting either d or d , and using either linear orTV f

geometric perturbations. In all four cases, if P is interior to G with respect to
Ž n. k r2the density ratio topology, then s P, G; x diverges at rate n . The combi-1

nation of geometric perturbations and total variation distance is generally
intractable, and therefore not useful. We also considered taking G to be all
normal distributions. For linear perturbations under both total variation
distance and f-divergence, this diagnostic diverges. In the next section we
will consider the normal class under f-divergence and geometric perturba-
tions.

3. Parametric diagnostics.

3.1. Introduction. The results of the previous section suggest that we will
have to consider choosing G to be a parametric family. In this section we

Ž .assume a one-dimensional parameter space k s 1 . We will see that para-
metric perturbations produce diagnostics with good behavior. We discuss
multiparameter versions in Section 4. In Section 3.2 we use the total varia-
tion metric with linear perturbations and we consider a normal prior and
likelihood with normal perturbations having the same variance as the base
prior. In Section 3.3 we show that by taking d to be f-divergence and using
geometric perturbations we can relax the assumptions of Section 3.2. In
particular, we do not assume a normal prior or likelihood. Furthermore, we
use a much larger class of perturbations, namely, the set of all normals.
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Ž 2 .3.2. Total variation metric with normal perturbations. Let u ; N m, t
Ž 2 .and assume that the data are i.i.d. N u , s . A natural class to consider is the

� 4 Ž . Ž < < Ž ..2 2set G s Q ; a g R . It is easy to show that d P, Q s H m y a r 2t ,a, t a, t

Ž . Ž . Ž .where H b s F b y F yb and F is the cumulative distribution function
for a standard normal. Thus,

2 22 '< <H m y a sr 2t nt q sf x ; a, vŽ . Ž .ž /n
23 s P , Q ; x s ,Ž . Ž .a , t 1 2 < <H m y a r2tf x ; m , v Ž .Ž .

2 Ž 2 2 . Ž . Ž . Ž .where v s nt q s rn. Since 2bf b F H b F 2bf 0 , it follows that
2s f x ; a, v f 0Ž . Ž .

ns P , Q ; x F .Ž .1 22 2 < <' f m y a r 2tf x ; m , v Ž .Ž .Ž .nt q s

2 2 2 2 2Ž .Ž .The right-hand side is maximized at a s nt m q ms y 4nt x s y 3nt ,ˆ
thus,

s P , G ; x n s sup s P , Q 2 ; x nŽ . Ž .1 a , t 1
a

22 2s 2n t x y mŽ .
F exp 2 2 2 2½ 52 2' 3nt y s nt q sŽ . Ž .nt q s

1
s O .ž /'n

A lower bound may be obtained in a similar way and we have
2

s x y m 1Ž .
exp 1 q O2 ž /½ 5ž /2 2' n2tnt q s

F s P , G ; x nŽ .1

2
s x y m 1Ž .

F exp 1 q O2 ž /½ 5ž /2 2' n1.5tnt q s

4Ž .

2ˆs.e. u x y mŽ .Ž .
; exp ,2½ 5t 1.5t

ˆ 'Ž .where s.e. u s sr n . The latter formula may be interpreted as a Bayesian
standard error: the usual standard error of the maximum likelihood estimate
times a factor that measures the conflict between the prior and the data. We

nŽ .2have found that s P, Q ; x , which requires no maximizations, is anx, t 1
Ž n. Ž .accurate approximation to s P, G; x . Basu, Jammalamadaka and Liu 19961

considered a different type of parametric derivative.

3.3. f-divergence with geometric contaminations. The diagnostics in the
previous section are useful but require that we restrict the perturbations to
have the same variance as the base prior. In some problems we would like to
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permit a larger class of perturbations. Here we use the f-divergence with
geometric perturbations and we consider the class G1 of all normal priors.N

Ž .THEOREM 7. i We have
1x 2 x x 4 x 2 x 2 xb a y b a q d t q c t y 2c at q b11 12 2 1 2241 n5 s P , G , x s sup ,Ž . Ž .N 1 12 4 2 2b a y b a q dt q c t y 2c at q ba, t 11 12 2 1 224

Ž k l . Ž k Ž .. Ž Ž .. xwhere b s Cov u , u , c s Cov u , log p u , d s Var log p u and b ,k l P k P P k l
c x and d x are the analogous posterior covariances.k

Ž .ii If P is normal, this simplifies to
1x 2 x xb a y b a q b11 12 2241 n6 s P , G , x s sup .Ž . Ž .N 1 12b a y b a q ba 11 12 224

Ž . Ž .iii If P is normal and the model is X , . . . , X N u ; N u , 1 , then1 n

1
1 ns P , G , x s O .Ž .N 1 P ž /n

Ž 2 .PROOF. If Q s N a, t , then, by Lemma 3,
2 2

xV u y a q 2 t log p uŽ . Ž .Pn7 s P , Q, x s .Ž . Ž . 2 2V u y a q 2 t log p uŽ . Ž .P

Ž . Ž . Ž 2 . Ž .Manipulation of 7 yields i . If P s N m, t , then 7 becomes
2 2

xV u y 2g a, t uŽ .Pn ,2 2V u y 2g a, t uŽ .P

Ž 2 . Ž 2 2 .y1 Ž 2 2 .where g a, t s 1rt y 1rt mrt y art . We can safely ignore the
case t 2 s t 2. Since the image of g is the whole real line, it suffices to
maximize over g . This is equivalent to setting t 2 s 0 and maximizing over a,

Ž .giving ii . When the model is also normal, tedious algebraic manipulations
yield

22 2t t q 2 m y gŽ .x x xns P , Q ; x s ,Ž .1 2 22ž / ½ 5t t q 2 m y gŽ .

where m and t 2 are the posterior mean and variance of u , and g is definedx x
as above. Letting d s m y m ,x

22 2t t m y gŽ .x x x1 ns P , G ; x F q 2 supŽ .N 1 2 2 22ž / ž /½ 5t t t q 2 m y gŽ .g

t 2 t 2 2 d2 1x xs q 1 q s O ,P2 2 2½ 5 ž /ž / ž / nt t t

2 2 Ž . Ž .since t rt s O 1rn and d s O 1 . Ix p p
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Ž .REMARK 6. We conjecture that statement iii holds for all regular models
and priors.

Ž .REMARK 7. The two-dimensional maximization in i can be reduced to
one-dimensional numerical maximization, since for a fixed value of t we can
maximize over a analytically.

Ž .EXAMPLE 1 Continued . In the setting of Example 1, the present diagnos-
tic is computed for a variety of n and X. The results are displayed in Table 1.

4. Multiparameter models.

4.1. Introduction. We now turn to multiparameter models. Our goal is to
examine the sensitivity of a marginal of the posterior to different aspects of

Ž . x, iŽ .the prior. Let u s u , . . . , u g Q s Q = ??? = Q , and let P du denote1 k 1 k i
the posterior marginal for u . We are interested in studying the sensitivity ofi

x, i Ž .P to perturbation of the jth marginal P du . We shall not deal with otherj
cases such as perturbations to conditionals.

x, iŽ .To measure the sensitivity of P du to a perturbation in the direction ofi
Q, we define

d P x , i , Q x , iŽ .«
8 s P , Q ; x s lim .Ž . Ž .i d P , Q« x0 Ž .«

Letting G be a set of one-dimensional priors and using u to denoteŽ j.
Ž .u , . . . , u , u , . . . , u , we define1 jy1 jq1 k

G s Q ; Q du , . . . , du s P du N u Q du , Q g TŽ .� 4Ž . Ž .j 1 k Ž j. j j j j

as a class of priors with perturbed u marginal. Finally, we definej

s j P , G ; x s s P , G ; x , i , j s 1, . . . , k .Ž . Ž .i i j

For example, s2 measures the sensitivity of the u posterior marginal to a1 1
� j4perturbation of the u prior marginal. The matrix of values s provides a2 i

convenient summary of the sensitivity of different components of the poste-

TABLE 1
Diagnostic based on normal perturbations with

f-divergence, univariate case

n X s 0 X s 1 X s 2 X s 3 X s 4

5 0.167 0.314 0.999 2.155 3.774
20 0.048 0.104 0.361 0.792 1.397
40 0.024 0.055 0.193 0.425 0.750
60 0.016 0.037 0.132 0.290 0.512
80 0.012 0.028 0.100 0.220 0.389

100 0.010 0.023 0.080 0.177 0.313
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rior to different components of the prior. Analogous to Section 3, we now
consider two cases.

4.2. Linear perturbation and total variation metric. Let Q be a bivari-A, t

� 24ate normal with mean vector A and covariance t . Let G s Q ; A g R ,0 A, t

Ž .and let f u ; c, D denote a bivariate normal density with mean vector c and
covariance matrix D. It can be shown that

1r2X1 x x y1 x xH m y A t m y AŽ . Ž .� 4f x ; A , VŽ . ž /x2n9 s P , Q ; x s ,Ž . Ž .A , t 1 1r2X1 y1f x ; m , VŽ . H m y A t m y A� 4Ž . Ž .ž /2

y1 y1 y1 x y1 y1 xŽ . Ž . Ž .where V s t q 1rn s , t s t q ns , m s t t m q ns x , A sx x
y1 y1Ž .t t A q ns x and x is the sample average vector.x

To perturb only the u margin of the prior, we hold the prior on u given1 2
Ž .u fixed and replace the marginal prior with a N a , t distribution. This1 1 11

Ž . Žimplies that the joint perturbation prior is N A , t , where A s a , m q1 1 1 2
Ž .Ž ..Xt rt a y m . By similar reasoning, a perturbation to the u marginal12 11 1 1 2

Ž . Ž Ž .Žis represented by the prior N A , t , where A s m q t rt a y2 2 1 12 22 2
. .Xm , a . Hence,2 2

x x< <H m i y A i r 2 t i , i'Ž . Ž . Ž .f x ; A , V ž /Ž . ž /j xjj10 s s ,Ž . i 1r2X1 y1f x ; m , VŽ . H m y A t m y AŽ . Ž .� 4j j2ž /
Ž . Ž . Ž .where b i is the ith component of the vector b and B i, j is the i, j th

component of the matrix B. Maximizing over the free parameter in these
expressions can be numerically intensive. An alternative is to fix a direction

Ž .by taking a s x and a s x . Numerical calculations not shown here1 1 2 2
indicate that the diagnostic behaves well. As before, we shall now show that
f-divergences permit a larger class of perturbations.

4.3. Geometric perturbation and f-divergence. As in Section 3, we will
focus on geometric perturbations using f-divergence and the class of all
normal priors. However, first we establish the form of the local sensitivity of a
posterior marginal.

THEOREM 8. Suppose the regularity conditions of Lemma 3 hold. Then

V x E x log dQrdP N uŽ .Ž .P P i
s P , Q, x s .Ž .i V log dQrdPŽ .Ž .P

Ž .The proof, which is similar to arguments in Dey and Birmiwal 1994 , is
omitted.

REMARK 8. The relation between conditional and unconditional variance
Ž . Ž .immediately implies that s P, Q, x - s P, Q, x for each i; that is, for anyi

perturbation, the whole posterior is at least as sensitive as any marginal.
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Theorem 7 extends to the multidimensional case.

THEOREM 9.

Ž . iŽ 1 . Ž .i The quantity s P, G ; x is given by equation 5 , where b si N k l
Ž k l . Ž k Ž .. Ž Ž .. x x xCov u , u , c s Cov u , log p u , d s Var log p u , and b , c and dP i i k P i i P i k l k

Ž . iŽ 1 .are the analogous posterior covariances. If P du is normal, then s P, G ; xi i N
Ž .simplifies to equation 6 .

Ž . jŽ 1 . Ž . Ž k l .ii When i / j, s P, G ; x is given by equation 5 with b s Cov u , u ,i N k l P j j
Ž k Ž .. Ž Ž .. x Ž w k xx xc s Cov u , log p u , d s Var log p u , b s Cov E u N u ,k P j j P j k l P P j i

w l x. x Ž w k x w Ž . x. x
x x x xE u N u , c s Cov E u N u , E log p u N u and d sP j i k P P j i P j i

Ž w Ž . x. Ž . jŽ 1 .x xVar E log p u N u . If P du is normal, then s P, G ; x simplifies toP P j i j i N
Ž .equation 6 .

REMARK 9. Note that all the quantities appearing in the formula of
Theorem 9 can be easily approximated by simulation from the posterior.
Thus, when the likelihood is nonnormal, the diagnostic is still tractable. Also,
a referee has pointed out that the eigenvalues of the sensitivity matrix can be
used to summarize the sensitivity.

Ž .EXAMPLE 2. We compute the diagnostic when the model specifies X , X1 i 2 i
as i.i.d. bivariate normal with mean vector u and covariance matrix S, and
the prior on u is bivariate normal with mean vector m and covariance matrix

Ž .TT. For our numerical calculations we fix m s 0, 0 and

11 2
S s T s .1ž /12

We consider a variety of sample sizes, and two data mean vectors: X s
T T TŽ . Ž . Ž .X , X s 1, 1 and X s 1, y1 . The results are displayed in Table 2.1 2

Note that only the upper row of the sensitivity matrix is given, as with these
prior, model and data specifications, s1 s s2 and s2 s s1.2 1 2 1

TABLE 2
Diagnostic based on normal perturbations with

f-divergence, bivariate case

T T( ) ( )X s 1, 1 X s 1, I1
1 2 1 2n s s s s1 1 1 1

5 0.314 0.077 0.314 0.077
20 0.104 0.026 0.104 0.026
40 0.055 0.014 0.055 0.014
60 0.037 0.009 0.037 0.009
80 0.028 0.007 0.028 0.007

100 0.023 0.006 0.023 0.006
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5. Discussion. When studying sensitivity to prior distributions there is
always a tradeoff: classes of priors that are too large have poor behavior and
classes of priors that are too small may understate sensitivity. This is
especially so for local diagnostics. In Sections 3 and 4 we presented two
diagnostics that attempt to strike a balance between these extremes. Our
conclusion is that the f-divergence with all normal perturbations provides a
useful diagnostic. This diagnostic can be calibrated by comparing the value of
the diagnostic in a given problem with the value in a series of canonical

Ž .problems. For example, let s be the value of the diagnostic defined by 5n
Ž . Ž .when the model is X ; N u , 1rn , the prior is N 0, 1 and X s 0. Thisn n

corresponds to the first column in Table 1. Now for a given value of the
diagnostic s we can find n such that s f s. This calibrates s in terms ofn
sample size in the canonical normal problem. Of course, other calibration
schemes are possible.

The most important application of the diagnostics is to multivariate prob-
lems. In these cases, sensitivity diagnostics help sort out the degree to which
different parts of the prior affect a given marginal of the posterior. We do this

� j4by examining the relative values of the entries in the rows of the matrix s .i
For example, if a parameter of interest is highly sensitive to the prior on a
nuisance parameter, then there is cause for concern since the prior on the
nuisance parameter is usually less dependable than the prior on the parame-
ter of interest.

Another approach to marginal sensitivity analysis, investigated in
Ž .Gustafson 1994 , is to measure the sensitivity of posterior expectations

instead of studying sensitivity of the whole posterior. These diagnostics have
good asymptotic behavior and can be simpler to compute.

An issue we did not address is the problem of defining sensitivity diagnos-
tics for improper priors. The techniques we used do not go through in any
obvious way for improper priors. Indeed, the probems are reminiscent of the
asymptotic problems discussed in this paper. These delicate issues are com-
pounded in situations where one parameter has a proper prior and another
has an improper prior, which happens in some Bayesian testing problems. It
is possible that some modification of our methods might lead to suitable
diagnostics in these cases.

Acknowledgments. The authors thank an Associate Editor and two
referees for helpful comments and suggestions.

REFERENCES

Ž .BASU, S., JAMMALAMADAKA, S. R. and LIU, W. 1996 . Local posterior robustness with parametric
priors: maximum and average sensitivity. In Maximum Entropy and Bayesian Statis-

Ž .tics G. Heidbreder, ed. . Kluwer, Dordrecht. To appear.
Ž . Ž .BERGER, J. 1984 . The robust Bayesian viewpoint with discussion . In Robustness in Bayesian

Ž .Statistics J. Kadane, ed. . North-Holland, Amsterdam.
Ž .BERGER, J. 1986 . Comment on ‘‘On the consistency of Bayes estimates’’ by P. Diaconis and

D. Freedman. Ann. Statist. 14 30]37.



LOCAL SENSITIVITY 2167

Ž .BERGER, J. 1990 . Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inference
25 303]328.
Ž .CSISZAR, I. 1977 . Information measures: a critical survey. In Transactions of 7th Prague

Conference on Information Theory, Statistical Decision Functions and Random Pro-
cesses 1974. Reidel, Dordrecht.

Ž .CUEVAS, A. and SANZ, P. 1988 . On differentiability properties of Bayes operators. In Bayesian
Ž .Statistics 3 J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.

569]577. Oxford Univ. Press.
Ž .DELAMPADY, M. and DEY, D. 1994 . Bayesian robustness for multiparameter problems.

J. Statist. Plann. Inference 40 375]382.
Ž .DEROBERTIS, L. 1978 . The use of partial prior knowledge in Bayesian inference. Ph.D. disserta-

tion, Yale Univ.
Ž .DEY, D. and BIRMIWAL, L. R. 1994 . Robust Bayesian analysis using entropy and divergence

measures. Statist. Probab. Lett. 20 287]294.
Ž . Ž .DIACONIS, P. and FREEDMAN, D. 1986 . On the consistency of Bayes estimates with discussion .

Ann. Statist. 14 1]67.
Ž .GELFAND, A. and DEY, D. 1991 . On Bayesian robustness of contaminated classes of priors.

Statist. Decisions 9 63]80.
Ž .GOEL, P. 1983 . Information measures and Bayesian hierarchical models. J. Amer. Statist.
Assoc. 78 408]410.

Ž .GUSTAFSON, P. 1994 . Local sensitivity of posterior expectations. Ph.D. dissertation, Dept. Statis-
tics, Carnegie Mellon Univ.

Ž .GUSTAFSON, P., SRINIVASAN, C. and WASSERMAN, L. 1995 . Local sensitivity analysis. In Bayesian
Statistics 5. To appear.

Ž .KRASKER, W. S. and PRATT, J. W. 1986 . Discussion of ‘‘On the consistency of Bayes estimates,’’
by P. Diaconis and D. Freedman. Ann. Statist. 14 55]58.
Ž .LAVINE, M. 1991 . An approach to robust Bayesian analysis for multidimensional parameter

spaces. J. Amer. Statist. Assoc. 86 400]403.
Ž .RUGGERI, F. and WASSERMAN, L. 1993 . Infinitesimal sensitivity of posterior distributions.

Canad. J. Statist. 21 195]203.
Ž .SIVAGANESAN, S. 1993 . Robust Bayesian diagnostics. J. Statist. Plann. Inference 35 171]188.

Ž .SRINIVASAN, C. and TRUSZCZYNSKA, H. 1990 . On the ranges of posterior quantities. Technical
Report 294, Dept. Statistics, Univ. Kentucky.

Ž .WASSERMAN, L. 1992 . The conflict between improper priors and robustness. Technical Report
559, Dept. Statistics, Carnegie Mellon Univ.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS

UNIVERSITY OF BRITISH COLUMBIA CARNEGIE MELLON UNIVERSITY

VANCOUVER, BRITISH COLUMBIA PITTSBURGH, PENNSYLVANIA 15213
CANADA V6T 1Z2


