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ASYMPTOTICALLY EFFICIENT ESTIMATION OF THE
INDEX OF REGULAR VARIATION!

By X1aoviNG WEI

Merck Research Laboratories

We propose a conditional MLE of the index of regular variation when
the functional form of a slowly varying function is assumed known in the
tail, and we study its asymptotic properties. We prove asymptotic normal-
ity of PJin, a probability measure whose density is the product of the joint
conditional density of the k, largest order statistics from Fy(x) given
Z,_,, the (n — k)th order statistic, and a density of Z, _, with parameter
0. Based on this result, we show that this conditional MLE is asymptoti-
cally normal and asymptotically efficient in many senses whenever %, is
o(n). We also propose an iterative estimator of 6 given only partial
knowledge of L,(x). This estimator is asymptotically normal, asymptoti-
cally unbiased and asymptotically efficient.

1. Introduction. The problem of estimating the index of regular varia-
tion has attracted much attention recently, and various estimators have been
proposed. For related work, see, for example, Hill (1975), Pickands (1975),
de Haan and Resnick (1980), Hall (1982), Mason (1982), Davis and Resnick
(1984), Haeusler and Teugels (1985), Csorgé and Mason (1985), Csorgd,
Deheuvels and Mason (1985), Welsh (1986), Csorgs, Horvath and Révész
(1987) and Smith (1987). In this paper, we propose asymptotically efficient
estimators of the index of regular variation under both full and partial
knowledge of the slowly varying function L,(x) in the tail, and we explore
their various asymptotic properties. In practice, the functional form of L,(x)
is usually unknown or only partially known. Estimates of 6, however, depend
on L,(x) in one way or another. For example, Hill’s estimator appears not to
depend on L,(x), but the optimal number of order statistics used in estima-
tion and its asymptotic properties do depend on the functional form of L,(x).
It is, therefore, sensible and interesting to investigate the problem of estimat-
ing 6 assuming that L,(x) is completely known in the tail. The result will be
a very useful guide to the investigation of asymptotic properties of other
estimators of # under more realistic assumptions on L,(x).

The paper is organized as follows. In Section 2, a conditional MLE of the
index of regular variation under the assumption that the functional form of a
slowly varying function is fully known in the tail is proposed, and it is proved
that when %, , the number of order statistics used in estimation, is o(n), this
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conditional MLE is asymptotically normally distributed and asymptotically
efficient. It will become clear in Section 2 why we choose a conditional
maximum likelihood estimator instead of a maximum likelihood estimator. In
Section 3, an iterative estimator is proposed and its asymptotic properties
derived when only partial knowledge of L,(x) is assumed. Applying the
results obtained in Section 2, it is easy to see that this iterative estimator is
asymptotically efficient only when %, tends to infinity appropriately with the
sample size n. For simplicity, we shall denote &, by £ from now on.

2. Conditional maximum likelihood estimator of 0 and its asymp-
totic properties.

2.1. Introduction and motivation. Let F,(x) be regularly varying at oo,
that is, 1 — F,(x) = x~°L,(x). In this section we assume that the functional
form of L,(x) is completely known in the tail and that a density function
fo(x) of F,(x) exists. We also assume that Z, <Z, < --- < Z, are the order
statistics corresponding to n i.i.d. random variables from F,(x). Our estima-
tor is based on the (2 + 1) largest order statistics Z,_,,..., Z,, where k is
such that 2 = o(n) -  when n — «, since only tail behavior of f,(x) is
assumed and Z,_, — % in probability as £ = o(n) — %. A natural estimator
in this case seems to be a maximum likelihood estimator with the likelihood
function being a joint density of Z,_,,...,Z,. However, a simple example
shows that the local likelihood ratio does not behave properly; that is, the
local asymptotic normality (LAN) does not hold. Let us consider the simplest
case of L,(x) = 1. A joint density of Z,_,,..., Z, is the following:

n!

mFﬂ ke l(zn k)fﬁ(zn k)l_[f(i(zn k+])

g()(znfk""’zn)

Suppose LAN holds for the probability measure with this joint density. Then
the normalized first derivative of the log-likelihood must weakly converge to
a normal distribution. A simple calculation shows
1 dloggy(Z,_1,..-,2Z,)
VE 90

Zn—k+j
\/— Z( ank )

+mogznk((” “E-DO-F(Z,0)) | 1), 0"

kE(Z,, 1) k| Vk

The first term is the normalized Hill’s estimator, and the third term goes to
zero as k = o(n) - ». In view of the results on Hill’s estimator this will
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converge only when the second term converges. However, the second term is
of the form S, log Z,_,, with S, converging to a normal random variable
[Csorgé and Mason (1985)]. This is a contradiction since log Z, , is un-
bounded in probability. Hence, instead of a maximum likelihood estimator,
we consider a conditional likelihood estimator with the conditional likelihood
function being the conditional density of Z,_, ., 4,...,Z, given Z, _,.

2.2. Local and uniform asymptotic normality. To simplify notation we
will let f,(x,6) denote f,(x)/(1 — F(Z,_,)) from now on. Let P}, , i be
the probability measure on #**! with the following Lebesgue density:
M5 iz, 4i 0+ u/VEDR(2, ), where § € %" is fixed throughout, u € %
and h,(z,_,) is the density function of Z, , with parameter 6. Note that
dP} , IV /dP} is the conditional likelihood ratio. In order to investigate
asymptotic properties of our conditional MLE, we need to obtain the following
local and uniform asymptotic normality results for Pf. We first prove the
local asymptotic normality for P}.

THEOREM 1. Suppose F,(x) is regularly varying at , that is, F(x) =
1-x"Ly(x) as x > », and admits a density function f,(x) = 6x " *L(x)
as x — », where Li(x) =L,(x) — 0 'xL,(x) is a slowly varying function.
Consider the following conditions:

(C1) Ly(x) is normalized, that is, if we define &,(x) = xL,(x)/L,(x), then
log Ly(x) = m, + [{¢,(y)/ydy, where n, is a real constant and sy(x) = 0 as
x — ; in this case, we have Li(x) = Ly(x)1 + g,(x)/0);

(C2) dlog L,(x)/360 = 0 as x — o,

(C3) deg,(x)/360 = 0 as x —

(C4) Li(tx)/Li(x) — 1 = O(g,(x)) as x = «©, where g,(x) > 0 as x > ©
and g,(tx)/g,(x) < Ct", for 7<0, t>1, C<» and x>x,>0; or
Li(tx)/Li(x) — 1 = k(t)g,(x) + o(g,(x)) as x = «©, for each t > 0, where
go(x) is regularly varying with some index p < 0 which satisfies g,(x) — 0 as
x = © and k(t) = c¢f[{u*"* du, with c being a constant.

If L,(x) satisfies (C1)—(C4), then we have

dPek u/‘/]; —2u2
(1) #=exp{Ak,9u— +1/fn,k(0,u)},
0
where for k = o(n) — o,
(2) Pl 4(0,u) > &) >0 Ve>0

and

dlog fi(Z, 1, 0)
a0

1k B
(3) Ak,e:ﬁjgl —p N(0,67%).
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NoraTiON. Here L, denotes the derivative with respect to x, and dL,/ 96
denotes the derivative with respect to 6.

NoTE. Condition (C4) is the same as SR1 and SR2 defined by Goldie and
Smith (1987).

Proor oF THEOREM 1. Applying Theorem 3.14 from Fabian and Hannan
(1987) to our case, we only have to verify the following to prove the theorem:

_ 1 &1ngk(zn—k+j70)
(2) LI_'{}@T 36

,j=L&””%

is a Lindeberg asymptotic martingale difference array;

Py P R )

(b) u &\/fk(zn_k+j,0) )2
dzn—k+j

vk a6

— 0 in P}-probability; and

o10g f(Z, 41j,0) )
00

E

™M=

— 6% in P}-probability.

Y

n

1
() &

j=1

We shall verify conditions (a), (b) and (¢) through a sequence of lemmas,
which will be proved below.
Condition (a) is true by Lemma 3(b) and the fact that

dlo Z _,...,0
E[ gfk(nk+J )}=0, j

=1,2,...,k;
a0

that is, U is actually a martingale difference array with respect to {7, ;},
where 7, o =0(Z,_))and 7, ;= o(Z,_,,...,Z, ;,),j=1,2,..., k. Condi-
tion (b) follows from Lemma 3(c) and the fact that (Z,_,,;, j=1,2,...,k)
can be assumed without loss of generality being conditional i.i.d. given Z, _,.
Condition (c) is true because of Lemma 2. O

We now prove the lemmas mentioned above.
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LemMA 1. Let Z,_, be the (n — k)th order statistic from F,(x) =1 —
x °Ly(x), where 6 € (0,%) and L,(x) is a slowly varying function. Then,
YM>0,P(Z, ,<M)—0ifk=o0(n)— =

ProOOF. The proof is immediate. O

LEMMA 2. Suppose the assumptions in Theorem 1 are satisfied. Denote the
conditional Fisher information based on the conditional density function
fi(x,0) as I(0,Z, _,), where Z, _, is the (n — k)th order statistic from F,(x).
Let 0, =0+ u/Vk.Then,V 0 <L < o,

sup 1(60,,Z,_,) —p 077
lul<L

as k = o(n) - « for all 0 € (0, x).

Proor. Let
dlog f,.(X, 6,)
(0, X, 2, ) = —
k
X dlog L} (X) dlog L, (Z,_;)
= — log + : - . ,
Z, 4 30, a9,

where X ~ f,(x, 6,) given Z,_,. Then
1(6,,2,_,) = Eek[’"2(0k’ X, ank)|Zn7k]-
Let r.(0,,X,Z,_,) = 0, —log(X/Z,_,). We shall first prove that

(4) SupE[r?k(okyXa ank)|ank] -p 072’
lul<L

as k =o0(n) -» =, ¥ 0 € (0,»). We then prove that

sup E[|r2(9k’X’Zn—k) - ri(ek’X’Zn—k)”Zn—k] —p 0.
lul<L

We now prove (4). Since L(x) = L,(x)(1 + &,(x)/6), the conditional expecta-
tion in (4) is

fz ri(ek’X’Zn—k)fk(x’ak)dx

n—k
St Li(x)

- [ 26,2 )
zn_k* Bz Lo(Zasy)

St L (x)

_ / T 20X, 7, )" d
= 1+ 83( n— k) L \ *(gk’ ’ nfk) Z_H}l; L’g(Z k) X
n— AN

n—
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1 ©
-t 589<znk>)f1 (6:* = 26, log y + (log »)°)

Lj;k( yZn—k)

U y.
Lﬂ(;k(znfk)

Applying Proposition 2.5.1 of Goldie and Smith (1987), since v(y)y® = (6;% —
20, log y + (log ¥)*)8,y ?*~1*¢ is integrable for sufficiently small & and

sufficiently large & V 6 € (0, ¢) and condition (C4) is satisfied, the above
integral is equal to

0

1
1+ ootz [(07 — 26 1og 3 + tog 9)) %y

+0(ge(an)))

1
L+ oz, )]

(0 + %)_2 + O,,(ge(an)))-

Hence we have (4), by conditions (C1) and (C4).
Now let us consider

fz |r2(9k’X’Zn—k)_r?k(ak?X’Zn—kak(x’ek)dx'
k

Using the inequality |a? — b2 < (1 + a)la — b* + b%/a, a> 0, a,b €%,
and letting a = r%(0,,X,Z,_,) and b =ri(6,,X,Z, _,) gives

fz |’"2(9k’X’Zn—k)_’”?k(ak,X,Zn—k)Vk(x’ek)dx
k

n—

= (1 + a)'/‘Z |r(0k’X>ank) - r*(ek’X7ank)|2fk(x’ 0k) dx
n—k

1 oo
+_f r?k(ek’X’Zn—k)fk(x’ak)dx
a’lz

n—

1
=(1+ o)l + —1II,
o4

where

= (dlog Li(x) dlogL,(Z, )\’
1=/Z( — - o fo(x,6,) dx;

n—k
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I -, 0as k£ =o0(n) » by Lemma 2 and conditions (C2) and (C3) on L,(x),
since condition (C3) implies that ¢ log L5(x)/36 — 0 as x — . The term II is
asymptotically bounded in probability from the first part of the proof. Hence,
if we let n — o« first and then o — %, we have

supf Ir2(0,,X,Z,_,) —r2(0,,X,Z,_)Ifr(x,0,)dx >p 0. O
lul<L " Zn-#

LEMMA 3. Under the same assumptions as in Theorem 1 we have, for any
L >0,

oV Fu(x,0+u/Vk dyVfr(x,0 ’
(a) supf( Vi = ) _ 0(70 ))dx—>P0,
lul<L
fu(x,0) " (| fi(x,0)
() E[ 7%, 0) I{ T ”M}Z"k or 0 Ve o
and

2

dx —p 0,

u u flé(x’o)
() kf( fk(x>9+ﬁ) — V(x,0) — ok ‘/m
where f;(x,0) = df,(x, 6) /6.

Proor. Let
(= 0)  fi(x,6)
90 2y/fi(x,0)
x dlog L (x) B dlog Ly(Z,_;)

1
=—|6t-1 + Vv
2(9 Oanfk 20 90 ) fk(x’a)

@p(x,0) =

and

x fx= 01
2

1
qo}f(x,@)=—(0‘1—logznk Z7

If we do a variable transformation y = x/Z,_, in ¢,(x, 6) and ¢} (x, 6) and
write the functions after transformation as ,(y, 6) and ¢*(y, 6), respec-
tively, then

d 10g Lj;(yzn—k)
a0
d log LO(Zn—k)

20 ng(y,G)

1
U(y,0) = E(Hl—logy—i-
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and

1 1
p*(y,0) = 5(0’1 —log y)yoy "' = 5(9’1 —log y)vVg*(y,0),

where g,(y, 0) = 0y " 'L¥(yZ, _,)/L,Z, _,) and g*(y,0) = 6y ° 1. Hence
the integral on the left-hand side of (a) can be written as

I (a\/fk(x,wu/ﬁ) V(= 0) )2dx

Zy s a0 00

2

o

(pk(x 0 + %) - qp;;(x,g)) - ((pk(x,O) - ‘P;ek(x’g))

an(%(x, 0+ %) — ¢ (x, (9))2 dx

+/in (en(%,0) — ¢} (x,0)) dx}

Il
N

2

c /j(wk(y,w %) - ¢*(y,0)) d

+/1°°(¢fk(y, 0) — v*(y,0)) dy

= C[I+ I1],
where C > 0. The first term I is

=4

<1 dlog g,(y,0 +u/Vk) Ve (v,0+u/Vk)

— (67 —log y))

96 Ve* (v, 0)
xg*(y,0) dy
|1 log g (Y, 0+ u/VE) Veu(Y,0+u/Vk) . ’
=K Z( P \/g*(TO) — (071 —1log?)
el dlog g, (Y, 0+ u/Vk) \/gk(Y,0+u/\/Z)
= (#) 2 o)

—(67' —logY)
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o 1 alogg (Y, 0+ u/Vk) Ve (Y, 0+ u/vk)
+E I{(@k}z( 70 m

—(67' —logY)

=TI +1I,

where E* is the expectation with respect to the density function g* and
e 1[ologg,(Y,0+u/VEk) \/gk(Y,G—I-u/\/E)
={w:|—
' 1 70 Ve (Y, 0)
< 8}.

Obviously, I' < &. Using a well-known inequality, the term II' is

—(67" —logY)

1
Il < B*|21{ %) 4

dlog g,(Y, 0 + u/\/E) \/gk(Y, 0+ u/\/lz) ’
99 Ve* (Y, 0)

1 2
+Z(0_1 — 10gY)

1
<2KZ,_,<M}|E* 1

dlog g, (Y, 0+ u/Vk) \/gk(Y, 0+u/Vk) ’]
99 Ve*(Y,0)

+E*

1
2(971 - 10gY)2}

where M > 0 is such that if Z,_, > M, then I{%,} = 1.
The term II' -, 0 as k = o(n) — =, since, by Lemma 1, I{Z, , <M} =, 0
and, by Lemma 2,

L1 &loggk(Y,OJru/\/E) \/gk(Y,G—l—u/\//;) ’
1 7 V& (¥, 0)
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+ E* ! 61 —logY)’ o
- _ L7

for all u such that |u| < L, as & = o(n) —» ». Combining the above results we
have I -, 0 as k& = o(n) - «. Similarly it can be shown that II —», 0 as
k =o0(n) —» o,

Condition (b) is in fact the conditional Lindeberg condition. Let

o)
Mk—{x. (%, 0) > \/E}
and
. | |8y, 0)
Sy = {y. —gk(y,ﬂ) >s\/2}.

Using the notation introduced above, (b) is

fezal

= 4[ o, (x,0)" dx
Mk

fi(x,0)
fi(x,0)

fi(x,0)
fk(x’ 0)

Zn—k

>a\//€}

= 4,/;%:((/%(3/’0) - lﬁ*(y, 0) + (/j*(y’e))z dy
SC[fw(wk(y,o) — ¢*(y,9))’ dy+/&/*l/,*(y’9)2 dy}

< C|:/loo(¢k(y’0) - llf*(y, 9))2 dy + ‘/;y*d/*(y’a)z dy:|’

where C > 0. The first term tends to 0 in probability as k& = o(n) — o, which
follows from the proof of condition (a). The second term

1
* 2 _ -1 _ 2, -1
fM:w (y,0) dy = 4[%:(9 log y) 0y dy —p 0,

as k = o(n) —» « follows easily. Part (c¢) follows from (a) and a usual argu-
ment. O

The uniform asymptotic normality for P} can be similarly proved.
PROPOSITION 1. Let the conditions (C1)-(C4) on L,(x) be satisfied uni-

formly over compact sets of © = (0,«). Then P} is uniformly asymptotically
normal in any compact set K C ©; that is, for any sequences 0, € K and
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u, — u such that 0, + u, 0,/ Vk € K, the representation
2

k
dPHk*“ka/\/z “
P} 2
k
is valid; here P} (l¢s, 1(6,,u,)| > &) > 0V &> 0 and 6,4, , —p N(O,1).

= exp uOkAk,,,k -

+ ¢n,k(0k>uk)}

2.3. Asymptotic properties of conditional MLE. In this section we assume
the existence and uniqueness of a conditional MLE and investigate its
asymptotic properties.

THEOREM 2. Let F,(x) =1 —x""L,(x) with L,(x) satisfying conditions
(C1)—(C4). Let Gk be a conditional MLE of 6 based on the (k + 1) largest
order statistics pertaining to i.i.d. random variables from F,(x), and let K be
any compact set in ©® = (a,b), with 0 < a < b < «©. Then, V 6> 0,

(5) sup PF(VE 072(6, — 0) — A, ,/>6) -0
6K

as k = o(n) > =, where A, , is the same as defined in Theorem 1. Hence we
have

VE (8, — 0) -, N(0,0%)

uniformly in 6 € K as k = o(n) — .

NoTE. Result (5) may be called asymptotic sufficiency, which also implies
certain asymptotic efficiency.

Proor or THEOREM 2. Let

Z, (u,Z ﬁ filZuies20+ u/ )
k, » Hn— k )
0 Jj=1 fk(Zn k+]’0)
where, as before, we may assume without loss of generality that Z,_,., ;,
j=1,2,...,k, areiid. from f,(x, 0) given Z __,.
Given Z, , =z,_,, the conditional Fisher information 1(6,z,_,) —» 62
as z,_; — . Hence there exists a 0 < M < « such that if z,_, > M, then

0< inf inflI(6,z, ,)< sup supl(6,z,_,) <.
{(z,_,>M} 0€0© {z,_,>M} 00O

Define &, , ={Z,_, > M} and E, ,(u,Z,-4) = Z; ,(u, Z,_,)I{ 1}. Let 6
be a MLE based on =, ,(u, Z, ;). Then 6, — 6} = 0 and hence V& (6, — 6;) =
0if Z,_, = M, which implies

P(VE (6, - 0f)=0)>P(Z, ,=2M) — 1
as k = o(n) — «. Therefore, we only have to prove that

supPHk(I\/Ef)_Q((9,:,,I< —0) — Ay 41> 8)—0.
fEK
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Applying Theorem III1.1.2 from Ibragimov and Has’minskii (1981), we only
need to verify the following:

(a) Uniform asymptotic normality for =, ,(u,Z, _,).
(b) For any compact set K€ ® and u,v € U, oand lul,lv|<L,0 <L <o

2
s [V, o 2 )~ VEn o0 2 ) || < Hu =)
S

where H is a positive constant which does not depend on 6, v and u and

U, ,=VE072(0O — 9).
(c) For any compact set K € ©® and any N > 0, there exists a %k, such that

sup sup sup IuINE[Ek,g(u,Zn,k)l/ZJ < sup sup |ul" exp{—Cu?},
k>ko 0€EK uel, , 0K uclU, ,

where C is a positive constant.

Condition (a) follows from uniform asymptotic normality of Z, ,(u,Z, )
since

Ek,e(u’Zn—k) = Zk,o(u’Zn—k) - Zk,o(u’Zn—k)I{Mrf,k}'

In fact, for any sequence 6, € K, u, —» u such that 6, + k%0, u, € K,
uniform asymptotic normality of Z, ,(u, Z,_,) implies

Zk76k(uk,Zn7k) d)) eXp{Au - %uz} = Z(u)
for any fixed u, where A is a standard normal variable. Since I{% ,} =, 0,

Zy, o (uy, Z, ) I{, ,} —p 0. Therefore, we have =, , (u;, Z,_;) —p Z(w).
We now verify condition (b). The left-hand side of (b) is

2
SUPE“\/Ek,e(u’ank) - \/Ek,e(v’znfk) | ]

6K

sugE[I{Mn,k}E“\/Zk’G(u,Znk) ~VZ, (v, Z,_
e

e K

= supE| I{.¢, k}f‘\/ﬂfk Zn k) +%)

k
n dzn—k+j
j=1

ka( Zu iy 0 %)
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k
supE I{Mn,k}f I1 dz, .,
0eK Jj=1

X

k
f0+u0/\/}: &an=lfk(zn—k+jat) dt
o+v6/ Ve at

(v —v) k
< sup ———FE| ¥, dz, _, ..
062 VE { "’k}/jl:ll n—k+j
2
< 0+ub/ vk a\/nﬁlfk(zn—kﬂ,t) i
o+v0/ Vi at
6(u —v
= sup QE N, , 0+u0/‘/1Zdt
ek VR oo,k
2
&\/H?=1fk(zn—k+j,t) k
>< .
f( Jdt jl:ll dzn—k+J
vk 6
= sup ——(u - U)E[I{Mn,k}f‘”“"/@l(t,znk) dt}
bk 0+v0/k

1

< —(u—-v)® sup supl(6,z, ,)0°
4 2, p,=M 600

=H(u - U)Z,

where H < o,
We now verify condition (c). We shall show first that, V8 > 0and z,_, > M
for M sufficiently large, there exists an 1 > 0 such that the following is true:

(6) inf inf [ (JA(x. 0+ h) ~ Fi(x.0) ) dxz7>0.

0€K {h: 0+h€0®,|h]>8}72,_,

This is equivalent to showing that

(1) swp s [ iz 0+ h) fi(x,0) de<1- .

0EK {(h: 0+h<®,|h|>8) "Zn-tk
Let
Ly(yz,_1) + &(¥2n_1)
Ly(z,-1) o

n@(y7zn—k) =1-
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and ', (y, 2,) = %y, 2,_1) + MYy 2,-1) — MY, 2, Ny, 2,2 ),
where ¢,(x) was defined in condition (C1). The left-hand side of (7) can be
written as

sup sup [ fF(x 0+ h) Fy(x,0) dx

0€EK {(h: 0+he€®,|h|>8) Zn-1

*° 1/2
=sup  swp [ (1= a3 2 0))A = (s 200)))
0K {h: 0+he®,|h>5) 1

XV0(0+h)y " 17h/24dy

*° 1/2 _o_1—
= sup sup f (L= 0(y,2,-4)) V(o +h)y 2 dy
0K {h: 0+he®,|n>5) 1

= sup sup / 0(60+h)y 0" 1124y
0cK {h: 0+h€0®, |h>5)"1

+0(f1°°(n5",h(y,znk)) G0 Ry y 12 ay).

An easy integration gives that the first term is, for some 7 > 0,

VI+h/0

sup sup —_— <1-
0K (h:0+heo, h>5) 1 T 1/(20)

It is easy to see that, by conditions (C1) and (C4), if z,_, > M for M
sufficiently large, the second term will be less than £, where & can be
arbitrarily small. Hence (6) is true.

Applying Theorem 1.7.6. from Ibragimov and Has’minskii (1981), one has,
ifz, ,>M,

. . —2 [~ 2
gglf;h}rln_)lglflhl '/z,,,k(\/fk(x’0+h) - \/fk(x,O)) dx
B T e L

Combining (6) and (8) we have the following inequality:

(9) inf  inf fx (\/fk(x, 0+h) —fi(x,0) )2 dx > Bl

0K (h: 0+he®) 2, , T 141
if z,_, > M, where B does not depend on z,_,. Hence

s(;upE[ Eno(u,Z, ) ]

= SupE[I{Mn,k}E[VZk,O(u’ Zy-1)
0, u

7]
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0,u

= supk I{Mn,k}(fz fk(x,0+ %) fr(x,0) dx) ]

0,u

= supE I{Mn,k}(l - %f; ( fk(x,0+ %) - \/fk(x,é?)) dx

IA

0,u

k
supE I{Mn,k}exp{ -3

—_
o ——

{ k Blul’/ko~*

S e T T P ke
1 Blu|?
< Sel,lfexp{_a b2 4 |u|2/k}
= sup exp{—Clul’},
uely,,

when £ is sufficiently large, where the supremum is taken over § € K and
ucU,, O

3. Asymptotic efficient estimators of the index of regular variation
under partial knowledge of slowly varying function. In this section
we assume that a distribution function which is regularly varying at « has
the following form:

(10) 1-Fy(x) =Cx (1 +Dyx # +Dyx P + - +D;x" ' —o(x7'F))

as x >x, >0, where >0, C>0, >0, [>1 and the D/’s are known
constants. These special forms of L,(x) have been considered by Hall (1982),
Hall and Welsh (1984, 1985), Haeusler and Teugels (1985) and Csorgd,
Deheuvels and Mason (1985), among others.

We extend the result by Hall and Welsh (1984) that the optimal conver-
gence rate of any estimator of 0 is n #/2f*% when F,(x) has the form (10)
but with [ = 1, and we show that the optimal rate of any estimator when
1> 1is n 'B/@CE+9 We omit the proof here since the proof is very tedious.

We now derive an estimator for # which achieves this best obtainable rate
and is asymptotically efficient. The estimator we propose is obtained by a
Newton—Raphson iterative procedure based on A,(6) but ignoring the term
o(Z,'8), where

To derive the estimator, we need the following calculation. Let L(x) =

1 Zy i+ Zy i+
AN(8) = —— log—— — E|log———
#(0) kal(og Z_, [og zZ_,
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1+D,x P+ - +D,x ' + o(x'#). Then
L(yz) 1+ Dy(yz) "+ +D,(yz) "% + o(27¥)
L(z) 1+ Dz F+ - +D,z7"F + 0o(27'F)

(1 + Dl(yZ)7B + ... +Dl(yz)*lﬂ + O(Zilﬁ))

><(1 —-D,z7F + (Df —D2)z—213 — (fo - 2D,D, + D3)z‘3ﬁ
+ .- +hl(D1,...,DZ)Z*13 + O(Z—lﬁ))

l q
= Z Z pq,m(Dl,-..,DZ)yimBzqu + O(Zilﬂ),
=0m=0
where
h, = (—l)lDll + (—1)1*1(l — 1)D11*2D2 + - +2D,D, , — D,

and the p, ,(D,,...,D;)s are polynomials of D,,...,D, with p,, =1,
P10 = —P;1 =D, and so on.
Integrating by parts, the conditional expectation of log(Z,_,,,/Z,_;) is

an}

_ Le(yank)
L Ly

Zn—k+1

E [log

n—k

=f ot Z y Pgm(Dy,..., D)y "PZf dy + o(Z, 1)

g=0m=0

q
Y Y pewm(Dy,eo s D)0+ mB) 1 Z 9+ 0(Z714).
q=0m=0

Formalizing the arguments above, we have the following theorem.

THEOREM 3. Suppose {Z,_,.;, j=0,1,2,...,k} are the order statistics
corresponding to i.i.d. observations from (10) Let k, = \,n2B/CIE+0) yphere
the \s are positive constants, i = 1,2,...,1, and let 9k1 be Hill’s estzmator of
0 using k, largest order statistics. Let

R . A% (6
by = O, — —k( 1) ,i=1,2,..,0- 1,
s, [6,)/00
where
% 1 k Zn k+j ~1,-98
Ak(0)=_%z logZ Z qum(Dl""’Dl)(e—i_mB) ank ’
j=1 n—*k q=0m=0

where the p, ,(D,,...,D,)s are polynomials of Dy, D,,..., D, as defined
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before. Then

\/K((ekm 6) - ezAkM(e)) -

asn > fori=1,2,...,0 — 1, where A(0) = A, ,/Vk and A, , is the same
as defined in Theorem 1.

PrOOF. The theorem will be proved by induction on i. Hence we need to
verify the theorem for i = 1 first, and then prove it for the case i under the
assumption that the result holds for i — 1. We combine two steps into one
since the proving procedure is similar.

Expanding A}, (6,) at 6, we have

Ve ((0s,, = 0) = 074, (0))

_ A Aﬂ;ew(éki)
=k Oki — W -0 — ngkiﬂ(O)

_ _ aA>kkl+l(0}:kl)/&9 N
= ki+1(1 —&A*;eiﬂ(éki)/ﬂe)(eki 0)

_Vki+1

=1+1I,

where 0} = a6 + (1 — a)@k with0 < @ < 1.

We now prove that I —, 0. Using the fact that (Gk - 0)=0,1/ \/—)
(this is true for i = 1 by the asymptotic normality result of Hill’s estlmator
and it is true for i = 2,3,...,1 — 1 by the assumption that the theorem is
true for i — 1), it is easy to see that

1-— &Ag;awl(o;‘k;)/&e
a8y, ()79

A (0) A (9)
a8y, ()79 0>

72 _
_Zf]=12?n=0pq,m(D1""’Dl)(glji+mB) anlﬁa;
A A -2
6i2 = Th 1Y% oDy m(Dys-os D)6, + mB) 270

Therefore

1 . . . .
I= W/ki+10p(;) - n(l+1)3/[2(1+1)B+0]Op(n—216/(21[3+9)) -, 0,
12

as n — oo,
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We now prove that II —, 0. Since JA% (Ok )/d0 —>p 6072, it suffices to
prove that V& (A,(0) — ";3(9)) —, 0 for any h = k Wlth i=2,...,1. Define

Zl lD I’Ba 2Zn k+J (Zn k+_])
1+ X, D;(1-ipo")Z, K, +0(Z2,25;)

R(O} B:Zn—k+j) =

By an elementary calculation and the fact that E[A,(0)IZ,_,] = 0, we may
write

VE (8,(0) — &4(6))

k
- b (R(O, B,Z, 4i;)— E[R(G,B,ankﬂ‘)'ank] + O(Z;H?e)
j=1

~—

Since VE o(Z;'8) -, 0, for k < k,, it only has to be shown that
k

1

Sk = W ; (R(@, :8’ Zn—k+j) - E[R(@, :B’ Zn—k+j)|Zn—k]) —p 0.
Jj=1

Let 7, o =0(Z,_p)and .7, ;=0(Z,_;,....2Z, 4.}, J=1,2,..., k. Itis easy

to verify that S), is a martingale with respect to {7, ;}. Therefore we only need

to show that the conditional variance of this martingale goes to 0 in probabil-

ity. It is easy to see that

Var(sk|Zn—k) < E[R(a’ B’ Zn—k+1)2|Zn—k]

LiaDiBe*Z, o +o(Z ) |,
) n—k

1+X_,D(1—-iBo")Z, 8, +0(Z,'%

< (CZ; By + - +C 2% + o(Z,18))
—p 0,

where the C;’s may depend on 8, 6 and D,,..., D,. The last inequality is true
since Z,_, ., = Z,_, with probability 1. O

Note. It is easy to see that in each step of the iterative procedure the
modifying term A% (6, )/[JA}, (6, )/d0] only depends on Hill's estimator
constructed using the kl +1 largest order statistics, Z,_, , the previous
estimator Bk , Dy,..., D, and B.

Since k; depends on 6, the estimator proposed in Theorem 3 is not really
an estimator of 6. In the following theorem, we shall propose an estimator of
0 which has the same asymptotic distribution and is a real estimator.

THEOREM 4. Suppose {Z,_;.;, j=0,1,2,...,k} are the other statistics
corresponding to i.i.d. random variables from (10) which are larger than
Z, 1. Let k; = An*P/CB 0 and let E, be a sequence of positive random
variables such that b Jki—p 1, 1=1,2,...,1 Let Ok be Hill’s estimator of 0
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using l%l largest order statistics. Let
Aﬂ;;H 1( 6’91)
ooy, (05)/00
where N%(0) is the same as defined in Theorem 3. Then, fori =1,2,...,1 — 1,
(11) Ve (85, = 0) = N(0,6%)
as n — o,

Proor. We shall prove the theorem by induction on i. For i = 1, we have,
by expanding N;éz(el%) at 0,

. . A%
_ Ny [6)
VB (01, = 0) = Vo | B, - an(0:,) /960 -
_‘/E(l aA’*;;Z(é,;l)/ao)(g ‘) ‘/E(m;z(é,;l)/ae

=1-1I,
where 0—a0+(1—a)6k with 0 < @ < 1.
Using Theorem 4.1 of Hall and Welsh (1985), Hk 0= 0,(1/ k), we can
verify that I =, 0 as n — «. The proof is s1m11ar to that of Theorem 3. The
numerator of the term II is

Vka &,(6)

A kZ Zn k Znik‘z . _
I w tog—— -~ Eflos g | || + VEaol 214
ky 1

| &y ﬁSk )

k7, Z,_
S, =) (logg—k” E[log 7 a2,
j=1 n—k n—k

i)

We now prove that S; / \/1%2 -5 N(0, 67%). By the random central limit
theorem for martingales [Rao (1987), Proposition 1.7.17] and by Theorem 3,
we only have to show that

=0.

lim lim sup E[SZZ] — E[S[2k2(11r s)]]

e>+0 5,50 kz
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Since {Z,_,.1,---,Z,)} can be assumed i.i.d. given Z,_,,
ks y/ . /A . ?
E[S?] = ¥ E||log—"* — E|log——"" |7,
Jj=1 ankz n—ky
2
ank +1 ank +1
=k, E||log i~ — El|log —1\Z,_
? ankz ankz ke

=kyv,.

Similarly E[S} . .l = [kx(1 + &)]v,. Hence

E[sz] _E[S[Zkz(lira)]] _ Va(ky — [Ro(1 £ &)]) -~ iy
ky ky _n

€,

when n is large. Therefore it suffices to show that v, is asymptotically
bounded:

2
ank2+l

Z

anszrl

v, =E|E - E VA Z

n IOg IOg n—ky n—ky

n—ky n—ky

=0 +2D,(0+B) ((0+8) " 07)[ 2,8, dH,

X0

+ o +fxo(z,jiﬁk2) dH,
X0

<0 2+2D,(0+B) ((0+B8) "+ 6 agh+ - +o(1),

where x, > 0 is such that F,(x,) = 0 and H, is the distribution function of
Z,

We now prove that /k, o(Z,i%z) —p 0asn - wor P(\/kZZ;f%Z >M)-0
as n — © and M — «. The above probability is

k
P(Vk; 2,5, > M) =Pk, 2, > M, k—2 ~1l<e
2
.y ]/52
+ Pk, 2,5 > M, 1>
2

< P(VE; Z,'%, > M, ky(1 — &) <k, <ky(1+ &)

S
ks

+ P > g
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SP(‘/E sup Z;ﬁ%,>M)
ko(l—e)<k'<ky(1+¢)
2
+Pl|-— —1|>¢
ks
-8 1%2
=P(VR, 27" o, > M) + P I 1|>e
Since Z,_,/F, '(1 — k/n) —p 1, it suffices to show that
ko(l+ ¢ e
oo )
n
where C < = is a constant. By the definition of F, we have
ky(1+ &) )\ "* Ro(1 + &) P’
\/E(Fb_l(l_ 2( ) ) ~‘/E( 2( ) ,
n n

as n — © [see Haeusler and Teugels (1985)]. Since /k, = n2P/4B+9 e have

1B/6
[k, (M = n2B/EBHO(] 4 o) B/ 1B/ @B+ 0)

n

- C,

as n — o, where C =1+ &)!#/% if [ =2, and C =0, if [ > 2. Since the
denominator of II goes to #~2 in probability, the term II converges to N(0, 62)
in distribution.

Combining the above results, we have (11) for i = 1. The proof for i under
the assumption that the theorem is true for i — 1 is similar and omitted. O

In fact we may let l%lAbe the same as what Hall and Welsh (1985) proposed
and let k; = n?/B/@iB+ 0y ) j=2.3,...,1 It is easy to see that k,/k; —p 1
since

by el
log| —| = : — logn —, 0,
ki] o (2iB+0)(2i8+ 0 )
as n — . This implies that l%j/kj -p L
Now let us assume that F,(x) is regularly varying at « with the following
form:

(12) 1-Fy(x) =Cx (1 +Dyx™" + Dyx 2+ - +D; ;x7' + o(x7'"))

as x = «©, where § > 0, C > 0 and the D/s may be known and differentiable
functions of . We have the following theorem, which is similar to Theorem 3.
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THEOREM 5. Suppose {Z,_,,;, j=0,1,2,...,k} are the order statistics
corresponding to i.i.d. random variables from (1?) which are larger than
Z, 1 Let k; = \,n®/@ D i =1,2,...,1, and let 6, be Hill’s estimator of 0
using the k, largest order statistics. Let

A A N (6,
GkHl:Oki_M, l=1,2,. ,l_l,
on, (6,,)/0
where
. 1 % Zn—k+j l q o ieue
k(0)=_ Z IOg—_ Z qu,m(Dl"“’Dl)(m+1) 0 ank ’
kj:l ank g=0m=0

where p, ,(D,..., D,)s are polynomials of Dy, D,, ..., D,. Then

VEii1 ((ékM - 9) - Akiﬂ(e)) —p 0
as n > for i =1,2,...,(I — 1), where A, (60) is the score function as
defined before.

Proor. Similar to the proof of Theorem 3 with only a few obvious modifi-
cations. O

We conclude the paper by comparing two estimators of § when L,(x) has
the following form: L,(x) = C(1 + Dx ? + o(x#)), where C > 0, 8> 0 and
D is a known constant. Hall (1982) showed that when & = n2f/CF+% Hill’s
estimator is asymptotically biased and asymptotically normal, that is,
VE(0F — 0) =, N(DC~#/%B(6 + B)~1, 62). The one-step iterative estimator
obtained as in Section 3 for k, = k, = n*#/@#*% is however, asymptotically
unbiased, that is, V& (6, — 6) —; N(0, 62). Applying the results about condi-
tional MLE, it is easy to see that this iterative estimator has the same
asymptotic behavior as a conditional MLE when k = n2f/@F+% The same is
true for Hill’s estimator only when % = o(n2f/2E*9) Tt seems that the price
we paid for lack of knowledge about the functional form of L,(x) is a slower
convergence rate.
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