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We derive minimax rates for estimation in anisotropic smoothness
classes. These rates are attained by a coordinatewise thresholded wavelet
estimator based on a tensor product basis with separate scale parameter
for every dimension. It is shown that this basis is superior to its one-scale
multiresolution analog, if different degrees of smoothness in different
directions are present.

As an important application we introduce a new adaptive wavelet
estimator of the time-dependent spectrum of a locally stationary time
series. Using this model which was recently developed by Dahlhaus, we
show that the resulting estimator attains nearly the rate, which is optimal
in Gaussian white noise, simultaneously over a wide range of smoothness
classes. Moreover, by our new approach we overcome the difficulty of how
to choose the right amount of smoothing, that is, how to adapt to the
appropriate resolution, for reconstructing the local structure of the evolu-
tionary spectrum in the time]frequency plane.

1. Introduction. There is a wide range of fields in which an observed
Žtime series shows a nonstationary behavior by transients, amplitude or

.frequency modulation, quasi-oscillating behavior, etc. . These can be found,
Žfor example, in many physical phenomena occurring in geophysics, in trans-

.mission problems like radio propagation or in speech and sound analysis ,
and from economical data analysis, also. A recent approach for modeling
certain kinds of these nonstationarities is by the introduction of the class of

w Ž .xlocally stationary processes Dahlhaus 1997 , which both controls the depar-
ture from stationary and gives a frame for asymptotic theory. As in the
Cramer representation for stationary processes, the spectrum, which now´
becomes time dependent, controls the evolution of the variance]covariance
distribution of the process over frequency and over time.

In the present paper we develop nonlinear wavelet estimators for this kind
of time-varying spectral density: with this we address the problem of finding
the right amount of smoothing of an estimator which should adaptively
reconstruct the underlying structure of the spectrum in the time]frequency
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plane. Motivated by this problem, we study first a question of more general
importance. Inference about the spectrum of a nonstationary time series is a
two-dimensional estimation problem with two particular directions, time and
frequency, on the plane. If, in this situation and, more generally for any
multidimensional curve estimation problem, the underlying curve shows
different degrees of smoothness in the different directions, then the construc-
tion of the estimator should properly take this into account. Hence, to
establish a benchmark for our estimator, we derive first minimax rates for
estimation in anisotropic smoothness classes. Because this question is of
general interest, we do not assume any specific observation model, but we
investigate this problem in Gaussian white noise. For simplicity, we consider
the two-dimensional case and restrict ourselves to anisotropic Sobolev classes.
Generalizations can be thought of for higher dimensions and other smooth-
ness classes like Holder and Besov, also. However, the technically challenging¨
extension to anisotropic Besov classes goes beyond the scope of this paper,
and should possibly be studied elsewhere.

We show that appropriately tuned wavelet estimators are able to attain
the optimal rate of convergence in these classes. These estimators use coordi-
natewise nonlinear thresholding of empirical wavelet coefficients. The rate for
the risk can be easily found by analyzing a certain complexity functional,
which describes the amount of data compression of a basis in a given
smoothness class. We show that we obtain a suitable higher-dimensional
basis by taking respective tensor products of the one-dimensional wavelet
basis. In contrast, the frequently used higher-dimensional multiresolution
basis does not optimally compress the signal in anisotropic smoothness
classes. This implies that any coordinatewise thresholded estimator based on
such a basis is not able to attain the optimal rate of convergence.

The second part of this paper is devoted to the particular problem of
spectral estimation. Throughout the paper we adopt the model of locally

Ž .stationary time series developed in Dahlhaus 1997 . To allow least restric-
tive assumptions on the smoothness of the spectrum and in order to embed it
into the considered Sobolev class, we further relax the assumptions of

Ž .Dahlhaus 1996a to give a definition of the evolutionary spectrum as a
function in the L -space over the time]frequency plane. Again, our main goal2
is to define an estimator that adapts to different degrees of smoothness in

Ž .time and frequency direction, respectively. In contrast to Dahlhaus 1997
Ž .and von Sachs and Schneider 1996 , who used a local periodogram on

Ž . Ž .segments of length N s N T with N ª ` and NrT ª 0 as T ª ` , here we
define a periodogram-like pointwise statistic which can be considered as an
empirical version of the local time-dependent spectrum. By this approach we
avoid a kind of presmoothing in time direction and get rid of the additional
smoothing parameter N, for which a theoretical approach to its optimal
choice is still lacking. This overcomes the shortcoming of fixing with N a
lower bound for the ratio of the resolution in time and in frequency direction.
Instead, to decide which degree of smoothing is appropriate, we project this
time]frequency statistic on a suitable wavelet basis and use thresholding of
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the resulting coefficients. In view of the results in Section 2, in this construc-
tion, we use a tensor product basis. The appropriate tuning of the thresholds
requires knowledge about the distribution of the empirical coefficients. Using
cumulant techniques we prove asymptotic normality in terms of probabilities
of large deviations. This implies the asymptotic risk equivalence of monotonic
estimators to the case of normally distributed empirical coefficients and
suggests the use of thresholding techniques prescribed by existing theory
under Gaussian noise.

Finally, to obtain a fully defined threshold rule, it is natural to use some
initial estimator of the standard deviation of the empirical coefficients. We
show that rather weak assumptions on an initial estimator of the spectral
density guarantee near-optimality of the final estimator.

The paper is organized as follows. In Section 2 we derive minimax rates in
anisotropic Sobolev classes and examine the two mentioned different kinds of
multidimensional wavelet bases w.r.t. their appropriateness in such function
spaces. In Section 3, after introducing the model of local stationarity and an
L -generalization of the definition of the evolutionary spectrum, we develop2
our new estimator and state theorems on rates for its risk. The proofs are
contained in Section 4.

2. Optimal estimation in anisotropic smoothness classes. Before
we develop a definite estimation method for the spectral density in the next
section, we first consider a question of more general importance: we search
for a basis that is appropriate for multidimensional estimation problems in
situations, where we have possibly different degrees of smoothness in differ-
ent directions. To do this, we consider balls in anisotropic Sobolev spaces and
derive minimax rates in a Gaussian white-noise model. For simplicity, we
only consider the two-dimensional case and restrict ourselves to anisotropic
Sobolev spaces, although it is obvious that analogous results can be obtained
in higher dimensions and for other function classes, such as, for example,
anisotropic Holder spaces. A meaningful generalization to anisotropic Besov¨
classes seems to be possible, also, though some more careful lengthy consider-
ations have to be taken into account. We feel that the gain in insight is too
small compared to the amount of technical work, and we do not want to hide
our main principal result by doing so. We show that thresholded wavelet

Žw x w x.estimators based on a tensor product wavelet basis in L 0, 1 = 0, 1 attain2
the optimal rate of convergence, whereas the one-scale multiresolution basis,
which is often used in image analysis problems, does not share this property.

2.1. Anisotropic Sobolev classes and multidimensional wavelet bases. Fol-
Ž . m1, m2lowing Nikol’skii 1975 , an anisotropic Sobolev space W is defined asp , p1 2

m2 i
m , m1 2 5 5W s f f q f - ` .Ý pp , p i m1 2 i½ 5ž / x i pis1 i
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In the following we assume that our object of interest f lies in the set

m2 i
m , m1 2 5 52.1 FF s FF m , m , p , p , C s f f q f F C .Ž . Ž . Ý pp , p 1 2 1 2 i m1 2 i½ 5ž / x i pis1 i

Whereas here this positive constant C is, of course, fixed for the smoothness
class under consideration, in what follows throughout the paper, C is used to
denote a generic positive constant, not necessarily the same in different
contexts. Moreover, in the sequel, we restrict our considerations to m G 1,i
p G 1 and m ) 1rp , which, in particular, implies continuity of f.i i i

Assume we have an orthonormal basis of compactly supported wavelets of
w x � 4L 0, 1 , where the functions f and c satisfy, for m G max m , m , the2 1 2

following assumption.

Ž . mASSUMPTION 1. i f and c are in C ;
Ž . Ž .ii Hf t dt s 1;
Ž . Ž . kiii Hc t t dt s 0 for 0 F k F m y 1.

Ž .Such bases are given by Meyer 1991 and Cohen, Daubechies and Vial
Ž .1993 .

w x � 4Let V be the subspace of L 0, 1 , which is generated by f . It is knownj 2 jk k
that

i`

w x w xL 0, 1 = 0, 1 s V m V ,Ž . D2 j j
jsl

Žw x w x.which shows the possibility of building a basis of L 0, 1 = 0, 1 from2
� 4 � 4tensor products of functions from a one-dimensional basis f j c .lk k jk jG l; k

� 4 Ž2.
U U ULet W s span c . We can write V s V m V asj jk k j j j

V U
Ž2. s V [ W [ ??? [ W U m V [ W [ ??? [ W UŽ . Ž .j l l j y1 l l j y1

jUy1 jUy1

s V m V [ W m V [ V m WŽ . Ž .[ [l l j l l jž / ž /jsl jsl2.2Ž .
jUy1

[ W m WŽ .[ j j1 2ž /j , j sl1 2

as well as in the form

jUy1
Ž2.
U2.3 V s V m V [ V m W [ W m V [ W m W .Ž . Ž . Ž . Ž .[j l l j j j j j j

jsl
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Ž . Žw x w x.According to 2.2 , we obtain a basis BB of L 0, 1 = 0, 1 as2

BB s f x f x j c x f xŽ . Ž . Ž . Ž .� 4 � 4Dlk 1 lk 2 j k 1 lk 2k , k k , k1 2 1 1 2ž /1 2 1 2
j Gl1

j f x c xŽ . Ž .� 4D lk 1 j k 2 k , k1 2 2ž /1 2
j Gl2

2.4Ž .

j c x c x .Ž . Ž .� 4D j k 1 j k 2 k , k1 1 2 2ž /1 2
j , j Gl1 2

We like to compare that with another construction, which corresponds to
Ž .decomposition 2.3 and which is not only widely used in image analysis:

because it actually provides a two-dimensional multiresolution analysis, it is
also of importance in operator theory, where it is called ‘‘nonstandard decom-

w Ž .xposition’’ Beylkin, Coifman and Rokhlin 1993 . It is given by

BB s f x f xŽ . Ž .� 4lk 1 lk 2 k , k1 2 1 2

j f x c x , c x f x , c x c x .Ž . Ž . Ž . Ž . Ž . Ž .� 4D jk 1 jk 2 jk 1 jk 2 jk 1 jk 2 k , k1 2 1 2 1 2 1 2
jGl

2.5Ž .

Note that for both BB and BB we can also use different one-dimensional bases
to build a two-dimensional basis, which is done in Section 3 in view of the
special problem considered there.

It appears that, because of its more appealing structure, basis BB is more
often used for two-dimensional estimation problems; see, for example, Delyon

Ž . Ž . Ž .and Juditsky 1996 , Tribouley 1995 and von Sachs and Schneider 1996 .
Its use seems to be appropriate in most frequently considered smoothness
classes, such as, for example, isotropic Sobolev or Besov classes. However, in
certain practical problems, for the curve we are interested in we could expect
different smoothness properties in different directions. We will show that
under such anisotropic smoothness priors basis BB is no longer appropriate.

For the sake of notational convenience, we slightly abuse the notation and
define c [ f . Further, by m we denote the basis functions in BB usingly1, k lk I

Ž . �Ž . < m1, m24the multiindex I s j , j , k , k . Let Q s u Ý u m g FF . By Parse-1 2 1 2 I I I I p , p1 2

ˆ 2 ˆ ˆ5 5val’s equality we see that the L -loss Ýu m y f of any estimator f s Ýu m2 I I I I
ˆ 2Ž .in the function space is equal to the l -loss Ý u y u in the sequence2 I I I

space, where

u s m x , x f x , x dx dxŽ . Ž .HHI I 1 2 1 2 1 2

are the wavelet coefficients of f.
The reader who is primarily interested in the estimation of time-varying

spectra, rather than in details concerning minimax rates of convergence in
FF m1, m2 , can directly proceed to Section 3 on an important application of usingp , p1 2

the tensor product basis BB.
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2.2. Minimax rates of convergence in anisotropic Sobolev classes. Since
the problem investigated in this section seems to be of general interest in
many statistical estimation problems, we do not want to specify any specific
observation model. Instead, we assume that function-valued observations
Ž .Y x , x from the Gaussian white-noise model1 2

x x2 1
2.6 Y x , x s f z , z dz dz q «W x , xŽ . Ž . Ž . Ž .H H1 2 1 2 1 2 1 2

0 0

w Ž .xare available. Here W is a Brownian sheet cf., e.g., Walsh 1986 and « ) 0
is the noise level.

REMARK 2.1. In the one-dimensional case it is well known that the
difficulty in estimating f in Gaussian white noise

t
2.7 Y t s f s ds q «W ,Ž . Ž . Ž .H t

0

where W is a standard Wiener process, is closely related to the difficulty int
estimating f in non-Gaussian or non-i.i.d. situations, which is actually the
interesting problem. Recently, this connection between nonparametric regres-

Ž .sion and model 2.7 has been established in a decision-theoretic manner by
Ž .Brown and Low 1992 . The equivalence between density estimation and

Ž . Ž .some slightly modified version of 2.7 was shown by Nussbaum 1994 .
For wavelet estimators this close connection often materializes also at the

Ž .practical level. So it was shown in Neumann and Spokoiny 1995 for non-
Ž .Gaussian regression and in Neumann 1994 for spectral density estimation

that the empirical coefficients coming from these models are asymptotically
normally distributed in a sufficiently strong sense. Then, for certain nonlin-
ear wavelet estimators, it was possible to derive the risk equivalence between

Ž .model 2.7 and the abovementioned models. We think that the two-dimen-
Ž .sional continuous Gaussian model 2.6 will be again an appropriate counter-

part for many practically relevant estimation problems.

Ž .We obtain empirical coefficients from the observation model 2.6 as

˜2.8 u s m x , x dY x , x s u q «j ,Ž . Ž . Ž .HHI I 1 2 1 2 I I

Ž .where j ; N 0, 1 are i.i.d.I
Ž .First, we derive a lower bound for the minimax risk in model 2.6 under

the assumption that f g FF m1, m2. Since we are only interested in the optimalp , p1 2

rate, we can use a simple approach developed in Bretagnolle and Huber
Ž .1979 . First, we establish the following lemma, which provides a lower bound
for the complexity of the set Q.

LEMMA 2.1. Suppose that Assumption 1 holds. The set Q contains a
hypercube of sidelength 2« :

< w xQ s u u g y« , « for I g II and u s 0 for I f II ,� 4Ž .« I I « I «
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with

dim Q s a II 7 «y2 Žm1qm 2 .rŽ2 m1m2qm 1qm 2 . .Ž .« «

w xIf we now take independent, uniformly distributed priors on y« , « for
˜I g II , due to the independence of the u ’s we obtain a Bayes risk of order« I

« 2y2Žm1qm 2 .rŽ2 m1m2qm 1qm 2 .. This implies the following theorem.

ˆ m1, m2THEOREM 2.1. Denote by f any estimator of a member f g FF . Thenp , p1 2

ˆ 2 2q Žm1 , m2 .5 5inf sup E f y f G C« ,� 4
m , mˆ 1 2f fgFFp , p1 2

where
2m m1 2

q m , m s .Ž .1 2 2m m q m q m1 2 1 2

4 m rŽ2 mq2.Note that this rate can be written in the form « for 1rm s
1 Ž .1rm q 1rm , which is the well-known optimal rate of convergence for1 22

two-dimensional isotropic smoothness classes of degree m. Hence, this value
of m can be interpreted as an appropriate notion of an ‘‘average smoothness’’
of our anisotropic class FF m1, m2.p , p1 2

To show that this rate is actually attainable, we consider a certain com-
˜plexity functional V to be defined further below, which is similar to the«

modulus of continuity

2.9 V BB, FF m1 , m2 s sup min « 2 , u 2Ž . � 4Ž . Ý« p , p I½ 51 2 m , m1 2fgFF Ip , p1 2

Ž .considered in Donoho and Johnstone 1994a . There it was shown that V«

gives an almost complete information about uniform rates for diagonal esti-
Ž .mators in model 2.6 .

Two commonly used rules to treat the coefficients are:

1. hard thresholding
Žh. ˜ ˜ ˜< <d u , l s u I u G l ;Ž . Ž .I I I

2. soft thresholding
Ž s. ˜ ˜ ˜< <d u , l s u y l sgn u .Ž . Ž . Ž .I I Iq

Ž ? . Ž . Žh. Ž s.In the following, d is used to somewhat sloppily denote either d or d .
Ž .Following the developments in Donoho and Johnstone 1994a , we can

derive an estimator that attains the rate prescribed by the modulus of
Ž m1, m2 . Ž .continuity V BB, FF up to a factor of log 1r« . To prove that the rate« p , p1 2

« 2q Žm1, m2 . is exactly attainable, we have to modify V slightly. First, by«

Ž .Lemma 1 of Donoho and Johnstone 1994a , we can prove that the relation

l l2Ž ? . 2 2 2˜2.10 E d u , l y u F C « q 1 w q min l , uŽ . � 4Ž .ž /I I Iž / ž /ž /« «
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holds uniformly in l G 0 and u g R, where w denotes the standard normalI
density. This motivates us to define the complexity functional

˜ m1 , m2V BB, FFŽ .« p , p1 2

l lI I2 2 2s inf sup « q 1 w q min l , u .� 4Ý I I½ 5ž / ž /ž /m , m « «Ž .l 1 2I fgFF Ip , p1 2

2.11Ž .

The essential reason why the modulus of continuity V does not immedi-«

ately provide an attainable rate for estimators is that it does not take the
possible sparsity of the signal into account. In cases where we have a too
large number of potentially important coefficients, we lose an additional
log-term as we do not know which are the really important ones. To get rid of
the high amount of variability caused by this large set of empirical coeffi-
cients, one chooses the thresholds l by a logarithmic factor larger than theI

˜noise level. Accordingly, the functional V penalizes such cases of extreme«

Ž . Ž .sparsity by the additional terms l r« q 1 w l r« , which arise from upperI I
estimates of tail probabilities of Gaussian random variables.

Ž .The next lemma shows a particular choice of the vector l , whichI
2q Žm1, m2 . Ž .provides the rate « for the right-hand side of 2.11 .

LEMMA 2.2. Suppose that Assumption 1 holds. Let l be such thatI, «

0, if j F jU and j F jU ,1 1 2 2
l sI , « U U½ «K max j y j rm , j y j rm , otherwise,' � 4Ž . Ž .m , m 1 1 2 2 2 11 2

where

2 j1
U

s «y2rŽ2 m1q1 qm1 r m2 . , 2 j2
U

s «y2rŽ2 m2q1 qm2 r m1.

and K ) 2 m q m log 2 is fixed. Then' Ž . Ž .m , m 1 21 2

l lI , « I , «2 2 2 2q Žm , m .1 2sup « q 1 w q min l , u s O « .Ž .� 4Ý I , « I½ 5ž / ž /ž /m , m « «1 2fgFF Ip , p1 2

Let the l ’s be chosen as in Lemma 2.2 and letI, «

ˆ Ž ? . ˜2.12 f s d u , l m .Ž . Ž .Ý« I I , « I

Ž .Using Lemma 2.2 in conjunction with 2.10 , we can immediately derive the
ˆfollowing theorem, which, together with Theorem 2.1, tells us that f is«

minimax in the class FF m1, m2.p , p1 2

THEOREM 2.2. If Assumption 1 is satisfied, then

ˆ 2 2q Žm1 , m2 .5 5sup E f y f s O « .Ž .� 4«
m , m1 2fgFFp , p1 2

Although this theorem provides an interesting theoretical result, it turns
ˆout to be of limited practical use. The proposed estimator f requires an«

appropriate tuning of the thresholds l , which strongly depend on theI, «
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unknown m and m . Even if it would be possible to adapt these parameters1 2
in our idealized Gaussian white-noise model, it is often not obvious how to

Žtransfer such a procedure to other noise structures i.e., with dependencies,
.non-Gaussianity which occur in practically relevant estimation problems.

One could try to find specific procedures for each particular case; however, it
seems to be difficult to find a universal recipe.

An alternative approach that is much less dependent on prior knowledge of
m and m is proposed in a series of papers by Donoho and Johnstone, also1 2

Ž .contained in Donoho, Johnstone, Kerkyacharian and Picard 1995 . First, we
wanalyze the analog of the tail-n-widths see Donoho, Johnstone, Kerkyachar-

Ž .xian and Picard 1995 in our two-dimensional function classes.

˜ ŽLEMMA 2.3. Suppose that Assumption 1 holds. Let V s [ V mJ jj qj sJ 11 2.V . Thenj2

5 5 2 yJg Žm1 , m2 , p1 , p2 .sup f y Proj f s O 2 ,Ž .˜½ 5VJm , m1 2fgFFp , p1 2

where

2m m q m q m y 2m rp y 2m rp˜ ˜1 2 1 2 1 2 2 1
g m , m , p , p s ,Ž .1 2 1 2 m q m1 2

� 4p s min p , 2 .ĩ i

If we now choose J sufficiently large, we are able to obtain«

2.13 u 2 s O « 2q Žm1 , m2 . ,Ž . Ž .Ý I
I : j qj )J1 2 «

that is, the truncation of the wavelet series does not affect the desired rate of
� Ž . < 4the estimator. Define KK s I s j , j , k , k j q j F J . We consider the« 1 2 1 2 1 2 «

estimator
ˆ Ž ? .ˆ ˜2.14 f s d u , l m ,Ž . Ž .Ý« I « I

Ig KK«

where

l s « 2 log aKK .' Ž .« «

Ž .Using Lemmas 2.2 and 2.3 and 2.10 , we obtain the following theorem.

J« Ž yh .THEOREM 2.3. Suppose that Assumption 1 holds and 2 s O « for
any h - `. Then

Ž .q m , m2 1 22ˆ̂5 5sup E f y f s O « log 1r«Ž .Ž .½ 5 ž /«
m , m1 2fgFFp , p1 2

Ž . yJ«g Žm1, m2 , p1, p2 . 2q Žm1, m2 .over all m , m , p , p satisfying 2 F « .1 2 1 2

ˆ̂ Ž .Hence, the estimator f is minimax up to a factor of log 1r« over a wide«

range of function classes.
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In the rest of this section we will briefly examine the basis BB w.r.t. its
capability of data compression in anisotropic Sobolev spaces. The following
lemma states a result on the decay of the modulus of continuity V for this«

basis.

LEMMA 2.4. It holds that

m , m 2q Žm , m .1 2 1 2V BB, FF 7 « ,ž /« p , p1 2

where

m m1 2
q m , m s min , .Ž .1 2 ½ 5m q 1 m q 11 2

Ž . Ž .It can be easily shown that q m , m s q m , m if m s m and1 2 1 2 1 2
Ž . Ž . Ž .q m , m - q m , m if m / m . The rate q m , m is the usual one for1 2 1 2 1 2 1 2

a two-dimensional estimation problem in isotropic smoothness classes with
degree of smoothness m n m . To give a simple explanation as to why the1 2
tensor product basis BB gives a better data compression than the one-scale

Ž .multiresolution basis BB, consider the extreme case of a function f x , x s1 2
Ž .f x , which is constant in the x -direction. Assume we wish to get a certain1 2

accuracy of approximation by certain subsets of BB and BB, respectively. In
BB, we achieve this by the set of basis functions

c x c x ,Ž . Ž .� 4D j k 1 ly1, k 2 k , k1 1 2 1 2
ly1Fj FJ1

where J depends on the desired degree of approximation. This set has a
Ž J .cardinality of O 2 . In contrast, we obtain the same accuracy of approxima-

tion in BB by the set of functions

f x f x j c x f x ,Ž . Ž . Ž . Ž .� 4 � 4Dlk 1 lk 2 jk 1 jk 2k , k k , k1 2 1 21 2 1 2
lFjFJ

2 JŽ .which has a cardinality of order O 2 . In other words, basis BB is not really
able to adapt coordinatewise to the right degree of resolution.

We have already seen that basis BB provides an optimal data compression
˜ m1, m2Ž .in the sense that V BB, FF decays at the same rate as the minimax risk« p , p1 2

in FF m1, m2. To make a comparison between the two bases in statistical terms,p , p1 2

we restrict our consideration to thresholded diagonal estimators in both
˜� 4cases. Let BB s m and let u and u denote the corresponding true andI I I

empirical coefficients, respectively. By simple calculations we can show that

2
Ž ? . 2 2˜2.15 inf E d u , l y u G C min « , u .Ž . � 4ž /I I Iž /½ 5

l

Hence, we will get a lower bound for the risk of thresholded diagonal
estimators simply by observing the rate of decay of V . The following«

Ž .theorem is an immediate consequence of Lemma 2.4 and 2.15 .
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THEOREM 2.4. Suppose that Assumption 1 holds. Then

2
Ž ? . 2q Žm , m .˜ 1 2sup inf E d u , l m y f G C« .Ý ž /I I I½ 5

m , m Ž .l1 2 IfgFFp , p1 2

Hence, we get that diagonal estimators based on basis BB are never better
than those based on BB, and they are worse if m / m . At this point we want1 2
to remark that there exists an attempt to construct higher-dimensional
multiresolution bases for anisotropic smoothness classes. Berkolajko and

Ž .Novikov 1992 obtained such a basis by properly connecting levels j and j1 2
in dependence on the relation between m and m . However, as this ap-1 2
proach depends strongly on the latter relation, it does not provide a universal
basis which is optimal for a greater range of smoothness classes. The adap-
tive choice of an appropriate basis, which, in principle, seems to be possible in

Ž .view of results by Donoho and Johnstone 1994b , would call for another step
Ž .in the estimation process. Another approach was proposed by Donoho 1995 ,

who uses CART methodology to choose the best adapted basis functions
among all anisotropic Haar bases. The method based on the tensor product
basis described here is certainly somewhat easier to apply in that we have a

Ž .one-step procedure which is good enough for our purpose of obtaining nearly
minimax results.

3. Adaptive estimation of evolutionary spectra. In this section we
apply the two-dimensional smoothing method developed in the previous
section to the particular problem of estimating the evolutionary spectrum.
First, we introduce the model of local stationarity and provide an L -gener-2
alization of the definition of the evolutionary spectrum. Then we define a new
version of a localized periodogram and propose the general estimation scheme.
The fine tuning of the estimator, that is, the specification of the parameters
involved in its definition, is given after a deeper study of the stochastic
behavior of the empirical wavelet coefficients.

3.1. The model of local stationarity. To address the problem of adaptively
estimating the time-dependent spectrum of a nonstationary time series, we
start by citing the definition of a locally stationary process, as given in

Ž .Dahlhaus 1993 . Note that this generalizes the Cramer representation of a´
w Ž .xstationary stochastic process see, e.g., Priestley 1981 .

� 4DEFINITION 3.1. A sequence of stochastic processes X is calledt, T ts1, . . . , T

locally stationary with transfer function Ao and trend m if there exists a
representation

pt
o3.1 X s m q A v exp iv t dj v ,Ž . Ž . Ž . Ž .Ht , T t , Tž /T yp
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where:

Ž . Ž . w x Ž . Ž .i j v is a stochastic process on yp , p with j v s j yv , Ej v s 0Ž .
Ž Ž . Ž X.. Ž X.and orthonormal increments, that is, cov dj v , dj v s d v y v dv,

� Ž . Ž .4 Ž k . Ž .cum dj v , . . . , dj v s h Ý v h v , . . . , v dv . . . dv , where1 k js1 j k 1 ky1 1 k

� 4 < Ž . <cum . . . denotes the cumulant of order k, h v , . . . , v F const for allk 1 ky1 k
w Ž . x Ž . ` Ž .k with h s 0, h v s 1 and h v s Ý d v q 2p j is the period 2p1 2 jsy`

extension of the Dirac delta function;
Ž . Ž .ii there exist a positive constant K and a smooth function A u, v on

w x w x Ž .0, 1 = yp , p , which is 2p-periodic in v, with A u, yv s A u , v , suchŽ .
that, for all T,

< o < y13.2 sup A v y A trT , v F KT .Ž . Ž . Ž .t , T
t , v

Ž . Ž .Note that A u, v and m u are assumed to be continuous in u.
In this model the smoothness of A in u restricts the departure from

Žstationarity and ensures the locally stationary behavior of the process as will
.be discussed in the remarks below . The exact smoothness assumptions on

Ž .A u, v will be given in Assumptions 2 and 3 below. This model also allows us
� 4to define a unique underlying time-varying spectrum of X , as follows.t, T

Ž .Consider first, for u g 0, 1 ,
`1

3.3 f u , v s cov X ; X exp yiv s ,� 4Ž . Ž . Ž .ÝT w uTysr2x , T w uTqsr2x , T2p ssy`

Ž . o Ž . Ž .where the X ’s are given by 3.1 , with A v s A 0, v for t - 1 andt, T t, T
o Ž . Ž .A v s A 1, v for t ) T.t, T
This quantity, for fixed T, is similar to the so-called Wigner]Ville spectrum

w Ž .xsee, e.g., Martin and Flandrin 1985 .
Ž . Ž . Ž .Then, by the following 3.4 and 3.5 , f u, v will be related to the smoothT

Ž .amplitude function A u, v , which defines the ‘‘evolutionary spectrum.’’

� 4 Ž .DEFINITION 3.2. As evolutionary spectrum of X given in 3.1 wet, T
Ž .define, for u g 0, 1 ,

< < 23.4 f u , v [ A u , v .Ž . Ž . Ž .
Ž .This f u, v is, in general, in some mean-square sense as shown below, the

Ž .limit of f u, v as T ª `.T
Ž . Ž .By Dahlhaus 1996a , Theorem 2.2, if A u, v is uniformly Lipschitz in u

Ž .and v with index a ) 1r2, then, for all u g 0, 1 , as T ª `,

p
2< <3.5 f u , v y f u , v dv s o 1 .Ž . Ž . Ž . Ž .H T

yp

Ž .Moreover, by Theorem 2.2 in a previous version of Dahlhaus 1993 , if
Ž .A u, v is differentiable in u and v with uniformly bounded derivatives, then

Ž .3.5 holds pointwise in u a.e. in v.
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However, in order to be able to treat less regular evolutionary spectra,
Ž .basically those defined by the smoothness assumptions Assumptions 2 and 3

Ž . Ž .on A u, c below, we will show in Theorem 3.1 that 3.5 continues to hold in
Ž . w x w xsome weaker L du, dv -sense on 0, 1 = yp , p .2

Before that, however, we give some comments on this class of locally
stationary processes. For more details we refer to the discussion in the cited

Ž .papers of Dahlhaus, in von Sachs and Schneider 1996 and Neumann and
Ž .von Sachs 1995 .

REMARK 3.1. The main purpose of this approach of rescaling in time is the
modeling of nonstationary time series in a way which allows asymptotic
inference on its second-order structure from a single realization. To achieve
this, one has to bound the complexity of the spectrum as the object which

Ždefines the underlying model: without any rescaling or related further
.assumptions , it is not possible to make statistical inference on a spectrum

Ž .f t, v which depends on a growing number of time points t s 1, . . . , T, even
with T tending to `. Rescaling, however, parallels nonparametric regression
with an asymptotically denser and denser design: assuming smoothness, as
T ª ` the complexity of the spectrum remains bounded, whereas the amount
of statistical information increases by a growing number of observations.

Ž .Moreover, Definition 3.2, under the smoothness assumptions on A u, v ,
wturns out to be unique cf. the uniqueness of the Wigner]Ville spectrum,

Ž . xpointed out in Martin and Flandrin 1985 , Section 2, B.7 . This is an
inherent advantage of the locally stationary approach when trying to define
what is meant by ‘‘the spectrum of a nonstationary process X , . . . , X at a1 T
fixed time point t .’’0

REMARK 3.2. A simple example for a locally stationary process is X st, T
Ž . Ž . Ž . Ž .m trT q s trT Y , with a stationary process Y and smooth m u and s ut t

w Ž .xsee, also for more examples, Dahlhaus 1997 . More generally, this class
includes ARMA processes with time-varying coefficients, and, of course, if A
and m do not depend on t and T, ordinary stationary processes. More

Ž .specifically, the representation 3.1 is based on a sequence of functions
o Ž . Ž .A v instead of the smooth function A trT, v itself. For some simplet, T

o Ž . Žexamples, like time-dependent moving average processes, A v s A trT,t, T
.v . However, in general, the time-varying second-order structure of the

process is only assumed to be coupled to some ‘‘asymptotically’’ smooth
behavior. In particular, this is necessary to include the class of autoregressive

Ž .processes with time-varying coefficients, as shown in Dahlhaus 1996a ,
Theorem 2.3.

In our work, for reasons of notational convenience, we do not want to adopt
o Ž .the more general definition based on the sequence A v , but rathert, T

Ž .restrict ourselves to the smooth function A trT, v directly. However, in
Ž .view of the fast rate of approximation in 3.2 , all results will continue to hold

for the original class as in Definition 3.1.
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Ž . Ž .Note that, as in Dahlhaus 1997 and von Sachs and Schneider 1996 , for
Ž .simplicity we assume that m u s 0; that is, we do not treat the problem of

Žestimating the mean of the time series. In comparison to Dahlhaus 1996a,
. Ž .1997 , here, our smoothness assumptions on A u, v are relaxed: basically,

we like to impose minimal smoothness as being of bounded variation on
w x w x Ž .U = P [ 0, 1 = yp , p which is made precise in Assumption 2 . For

technical reasons, in order to facilitate the proofs, we impose an additional
Ž .smoothness condition on the decay of the Fourier coefficients of A u, v as a

function of v, which implies continuity of A in v.

Ž w x w x.DEFINITION 3.3 Total variation on U = P [ 0, 1 = yp , p .

TV fŽ .U= P

< <[ sup f u , v y f u , v y f u , v q f u , v ,Ž . Ž . Ž . Ž .ÝÝ i j i jy1 iy1 j iy1 jy1
i j

where the supremum is to be taken over all partitions of U = P.

Now we impose the following assumptions.

Ž . Ž .ASSUMPTION 2. a A u, v has bounded total variation on U = P, that is,
Ž .TV A - `;U= P

Ž . Ž Ž .. Ž Ž ..b sup TV A u, ? - ` and sup TV A ?, v - `;u wyp , p x v w0, 1x
Ž . < Ž . <c sup A u, v - `;u, v

Ž . < Ž . <d inf A u, v G k for some k ) 0.u, v

Ž̂ . Ž . Ž . Ž .ASSUMPTION 3. Let A u, s [ 1r 2p HA u, v exp iv s dv, s g Z, u g
ˆw x < Ž . <0, 1 . Then sup Ý A u, s - `.u s

Note that these are somewhat minimal conditions, part of which might be
fulfilled simply by restricting A to be a member of the specific smoothness

Ž .class under consideration anisotropic Sobolev, Holder, etc. . In our case of¨
Ž . Ž .Sobolev restrictions Assumptions 2 b and c and 3 are implications of the

considered Sobolev smoothness. Now this minimal smoothness of A is suffi-
cient to ensure the locally stationary behavior of the process with a spectrum

Ž .which is uniquely defined in the L du, dv -sense on U = P. It is precisely2
this general definition which is needed to embed our object of interest into the
smoothness class of functions for our kind of estimation problem, as consid-

Ž .ered in Section 2. The following theorem shows that 3.5 continues to hold in
this mean-square sense.

THEOREM 3.1. Under Assumptions 2 and 3,

p1 2< <lim f u , v y f u , v dv du s 0.Ž . Ž .H H T
Tª` 0 yp
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For the particular context of our work, we now restrict our consideration to
the anisotropic Sobolev class as introduced in Section 2; that is, we assume

Ž .that f is a member of this class by assuming that A u, v is:

3.6 A g FF m1 , m2 C with m G 1, p G 1 and m ) 1rp .Ž . Ž .p , p i i i i1 2

Ž . Ž . ŽWe note that with 3.6 f is in any L U = P -space due to the continuity inp
.each argument , that is, in particular, in L .2

3.2. The new adaptive estimator. Now we turn to the problem of estimat-
ing the evolutionary spectrum f. The first step in our inference about f is to

� 4transfer the information X , . . . , X given in the time domain to the1, T T , T
Ž .time]frequency domain. One possibility, as chosen by Dahlhaus 1997 and

Ž .also in von Sachs and Schneider 1996 , is to consider a localized peri-
Ž .odogram, localized by introducing segments of length N s N T , where

N ª ` and NrT ª 0 as T ª `. One problem with this approach is that the
segment length N is an additional parameter, whose optimal choice depends
on the relation between the smoothness in time and frequency direction. Here
we intend to develop a fully adaptive approach: by wavelet thresholding the
procedure should be able to automatically adapt to the right degree of
resolution in both time and frequency direction. Note that these are, of
course, not independent, but stand in a reciprocal relationship due to the

Ž .uncertainty principle: the more accurately we try to estimate f u, v in the
time direction, the less accurately can we estimate it in the frequency

Ž .direction and vice versa; cf. Priestley 1981 , page 835.
Ž .To this end, by a straightforward analogy to 3.3 , we introduce a peri-

odogram-like statistic I , 1 F t F T, which is different from the localizedt, T
Ž .periodogram of von Sachs and Schneider 1996 and which we like to call a

‘‘pre-periodogram:’’

1
3.7 I v s X X exp yiv s .Ž . Ž . Ž .Ýt , T w tysr2x , T w tqsr2x , T2p w x w xs : 1F tysr2 , tqsr2 FT

Note that I can be considered as a preliminary ‘‘estimate’’ which is event, T
more fluctuating than the classical periodogram is. However, its expected

Ž . Ž .value asymptotically equals the evolutionary spectrum f trT, v , and for
each fixed T its expectation coincides with a Wigner]Ville spectrum.

Ž .In von Sachs and Schneider 1996 part of the localization was delivered by
summation over certain time points in segments of chosen length N before
the actual local smoothing was performed by wavelet thresholding. Thus,
inherently a lower bound was fixed for the resolution in time which obviously
had consequences also for the performance in the frequency direction: the
larger N the worse is the time resolution, but the better can low-frequency
components be detected and vice versa. Here, in our new approach, we avoid
a twofold smoothing: projection of these pre-periodograms I on an appro-t, T
priate wavelet basis will do the whole task of adaptive local smoothing!
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To give the link to the previous section on anisotropic smoothness classes,
with this particular task, we are confronted with a two-dimensional estima-
tion problem, where the axes have a special meaning, time and frequency,
respectively. It seems reasonable to design the estimation method in such a
way that it takes different degrees of smoothness in these two directions into
account.

As we have seen in the preceding section, we obtain an appropriate
� Ž .4wavelet basis according to the definition of the basis BB s m u, v . We getI

such a basis as a tensor product of two bases, where in the time direction we
� 4 � 4 wchoose a wavelet basis on the interval f j c e.g., boundary-lk k jk jG l, k

Ž .corrected Meyer wavelets; see Meyer 1991 or those of Cohen, Daubechies
˜ ˜Ž .x � 4 � 4and Vial 1993 . In the frequency direction a periodic basis f j clk k jk jG l, k

w Ž . xis used as proposed in Daubechies 1992 , Chapter 9.3 . As an example, we
wlike to mention the orthogonal periodized Battle]Lemarie spline wavelets as´

Ž .xin von Sachs and Schneider 1996 , though these have ‘‘numerical compact
support,’’ only, but our proofs will only slightly change with these. For

˜ ˜notational convenience we write again c and c for f and f ,ly1, k ly1, k lk lk

respectively. Whenever it is not misleading, we use the multiindex I s
Ž .j , j , k , k . In order to derive our asymptotic results, we have to impose1 2 1 2
the following conditions on the chosen wavelet bases.

˜ ˜Ž . Ž . Ž . Ž . Ž .ASSUMPTION 4. a f u , c u , f v and c v are real functions of
w x w xbounded total variation on 0, 1 and yp , p , respectively.

ˆ ˆ˜ ˜Ž . < Ž . < < Ž . <b Further, Ý f s - ` and Ý c s - `.s s

Ž .In addition to the ‘‘true’’ wavelet coefficients u of f u, v :I

u s f u , v m u , v du dvŽ . Ž .HI I
U=P

3.8Ž .
˜s f u , v c u c v du dv ,Ž . Ž . Ž .H j k j k1 1 2 2

U=P

we define empirical wavelet coefficients as follows:

T ptrT˜ ˜3.9 u s c u du c v I v dv .Ž . Ž . Ž . Ž .Ý H HI j k j k t , T1 1 2 2Ž .ty1 rT ypts1

In the special case of a stationary time series, the advantage of the tensor
product basis over the multiresolution basis becomes apparent. Then all
coefficients u with j / l y 1 are equal to 0, whereas u 7I 1 Ž ly1, j , k , k .2 1 2

yl r2 ˜Ž . Ž .2 u , where u s Hf v c v dv are the wavelet coefficients of thej k j k j k2 2 2 2 2 2

Ž . Ž . Ž .one-dimensional spectral density f v s f u, v . In view of the results from
Ž .Section 2, it is obvious that in estimating f u, v , which is constant in u, we

Ž .can obtain the same rate as in Neumann 1994 in the stationary case.
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Ž .Let II be a set of indices specified in the next section in 3.11 andT

0 <II s I g II j , j / l y 1, l y 1 .� 4Ž . Ž .T T 1 2

We consider the estimator

ˆ ˜f u , v s u m u , vŽ . Ž .Ý I I
Ž . Ž .I : j , j s ly1, ly11 2

Ž ? . ˜q d u , l m u , v ,Ž .Ž .Ý I I , T I
0Ig IIT

3.10Ž .

where the thresholds l are also specified below. As usually done, we do notI, T
Ž . Ž .shrink the coefficients from the coarsest level j , j s l y 1, l y 1 . This1 2
Ž .seems to be reasonable in view of Assumption 2 d , which implies that the

spectrum is bounded away from 0.

3.3. Asymptotic properties of empirical wavelet coefficients. In the follow-
ing we intend to derive asymptotic normality of the empirical coefficients by
the method of cumulants. It turns out that a simple central limit theorem
would not be sufficient for proving risk equivalence between our thresholded
wavelet estimator and the case of Gaussian noise. In view of quite a large
number of coefficients which cannot be a priori neglected in cases of ‘‘inhomo-
geneous smoothness,’’ we have to choose the threshold somewhat higher than
the noise level, that is, of larger order than the standard deviation of the
empirical coefficients. Accordingly, we need some formulation of asymptotic
normality, which puts special emphasis on moderate and large deviations.

In contrast to a central limit theorem, where it would be sufficient to show
˜ ˜Ž . Ž .that cum u r var u s o 1 holds for each particular n G 3, here we' Ž .n I I

need a stronger estimate for the higher-order cumulants. For the reader’s
Ž .convenience we quote a lemma from Neumann 1994 , which holds under the

following assumption and provides appropriate estimates for general quad-
ratic forms.

ASSUMPTION 5.

T
1qgksup cum X , . . . , X F C k!Ž .Ž .Ý t , T t , T1 k½ 5

1Ft FT t , . . . , t s11 2 k

for all k s 2, 3, . . . , where g G 0.

LEMMA 3.1. Let
h s XXM X,T

where
XX s X , . . . , X , M s M , M s M .Ž . Ž .Ž .1, T T , T st st t ss , ts1, . . . , T

Further, let
j s Y XM Y,T
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Ž .X Ž Ž ..where Y s Y , . . . , Y ; N 0, Cov X . Then, under Assumption 5,1 T

cum h s cum j q RŽ . Ž .n T n T n

holds for n G 2, where:

ny2ny2< <i cum j F var j 2 n y 1 ! l M l Cov X ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .n T T max max

1qg ny2ny2 2 n ˜< < 5 5ii R F 2 C 2n ! max M M M ,� 4Ž . Ž .Ž . `n st
s, t

˜ < < 5 5 < <M s max M , M s max M .� 4Ý Ý`st st½ 5
sts t

In the following we are able to show asymptotic normality for all coeffi-
˜ j1qj 2 y1Ž . Ž .cients u with 2 s o T and j s o 1 .I 2

Fix some d ) 0. We define

< j1qj 2 1yd� 43.11 II s I 2 F T .Ž . T

Making use of Lemma 3.1, we obtain the following result for the empirical
coefficients.

LEMMA 3.2. Suppose that Assumptions 1]5 hold. Then:

˜ y1r2i Eu s u q o T ,Ž . Ž .I I

2y1˜ ˜ii var u s 2p T f u , v c u du c vŽ . Ž . Ž . Ž .� 4Ž . HI j k j k1 1 2 2
U=P

y1 yj y12˜ ˜= c v q c yv dv q o T q O 2 T ,Ž . Ž . Ž . Ž .j k j k2 2 2 2

ny22q2g n y1 y1 Ž j qj .r21 2˜iii cum u F n! C T T 2 log TŽ . Ž . Ž .Ž .Ž .n I

for n G 3 and appropriate C ) 0 uniformly in I g II .T

˜Ž .Note that the last term in the remainder of var u includes the termI
composed of fourth-order cumulants of the time series data, and, as usual in
nonparametric spectrum estimation, it is asymptotically negligible if the
spectral window shrinks asymptotically, that is, if j ª `.2

Ž . Ž .By ii and iii of this lemma we can show that the relation

Ž .2q2g ym ny2˜ ˜cum u y u r var u F n! CT' Ž . Ž .Ž . Ž .n I I Iž /
holds for an appropriate choice of C and m ) 0, where the constant C is

� < j2 r4uniform in n G 3, I g II l I 2 G T for any r ) 0.T
Ž .Using Lemma 1 in Rudzkis, Saulis and Statulevicius 1978 , we now obtain

2 ˜the desired version of asymptotic normality. Let s denote the variance of u .I I
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'PROPOSITION 3.1. Suppose that Assumptions 1]5 hold. Let D s C log TT
for any fixed C - `. Then both

˜P u y u rs G x s 1 y F x 1 q o 1Ž . Ž .Ž . Ž .Ž .ž /I I I

and

˜P y u y u rs G x s 1 y F x 1 q o 1Ž . Ž .Ž . Ž .Ž .ž /I I I

� < j2 r4hold uniformly in y` F x F D and I g II l I 2 G T for r ) 0 arbi-T T
Ž . x Ž .trarily small, where F x s H w t dt denotes the standard normal cumula-y`

tive distribution function.

In order to establish the equivalence to the case of Gaussian noise, we
consider the following approximating model for our empirical coefficients:

j̃ s u q s « , I g II ,I I I I T

Ž .where « ; N 0, 1 .I
Essentially by integration by parts, due to Proposition 3.1 we obtain the

following assertion.

PROPOSITION 3.2. Suppose that Assumptions 1]5 hold. Then, for arbitrary
y1r2Ž .'nonrandom thresholds l s O T log T ,Ž .I, T

2 2Ž ? . Ž ? .˜ ˜E d u , l y u s 1 q o 1 E d j , l y uŽ .Ž .Ž . Ž .Ý Ýž / ž /I I , T I I I , T I
Ig II Ig IIT T

q O Tyq Žm1 , m2 . .Ž .

This asymptotic risk equivalence enables us to derive the following theo-
Ž . Ž .rem. Recall that q m , m was defined in Theorem 2.1 and g m , m , p , p1 2 1 2 1 2

in Lemma 2.3, respectively.

Ž . ŽTHEOREM 3.2. Suppose that Assumptions 1]5 hold and 1 y d g m ,1
. Ž . Ž .m , p , p G q m , m with d as in 3.11 . Further, assume that, for some2 1 2 1 2

g ª 1 and appropriate C,T

0 y1r2'g s 2 log a II F l F CT log T' Ž .Ž .T I T I , T

U U 0 Ž 0 U . Ž 1yq Žm1, m2 ..holds for I g II , II : II , where a II R II s O T . ThenT T T T T

Ž .q m , m2 1 2ˆ5 5E f y f s O log T rT .Ž .Ž .L ŽU=P . Ž .2

ˆNote that this rate for the estimator f corresponds to the rate derived in
Theorem 2.3 if we set « 2 s Ty1.

ŽThere are many possibilities for m , m , p and p to fulfill g m ,1 2 1 2 1
. Ž .m , p , p ) q m , m , for example, if m G 2rp . Then we can find some2 1 2 1 2 i i

sufficiently small d ) 0, such that the assumption of Theorem 3.2 is satisfied.
Hence, our estimator is simultaneously nearly optimal over a wide range of
smoothness classes.
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Although Theorem 3.2 is of certain theoretical interest, it is not very
ˆhelpful for practical purposes, because the definition of the estimator f

depends on the unknown quantities s . It is a natural ideal to use someI
initial estimates of them to construct a fully adaptive procedure. Let s beÎ

0ˆany estimate of s . With the thresholds l s s 2 log a II , we define the'ˆ Ž .I I I T
Ž .following estimator, which is a fully adaptive version of 3.10 :

ˆ Ž ? .ˆ ˜ ˜ ˆ3.12 f u , v s u m u , v q d u , l m u , v .Ž . Ž . Ž . Ž .Ý Ý ž /I I I I I
0Ž . Ž .I : j , j s ly1, ly1 Ig II1 2 T

The next proposition provides a sufficient condition, slightly stronger than
'T -consistency, for the estimates s , which ensures the desired rate ofÎ

ˆ̂convergence for f.

Ž . ŽPROPOSITION 3.3. Suppose that Assumptions 1]5 hold. Let 1 y d g m ,1
. Ž . � 4m , p , p G q m , m . Assume that, for any sequence c tending to 0 as2 1 2 1 2 T

T ª `, the relation

< < y1r2 y43.13 P s y s ) c T s O TŽ . Ž .ˆŽ .I I T
U Ž 0 U . Ž 1yq Žm1, m2 ..holds in a uniform manner in I g II , where a II R II s O T .T T T

Then
Ž .q m , m2ˆ 1 2ˆ5 5E f y f s O log T rT .Ž .Ž .L ŽU=P . Ž .2

This proposition is an immediate consequence of Theorem 3.3 formulated
below. In practice, one could, for example, plug some bivariate kernel estima-

˜tor f of f based on I into the asymptotic formula for the variance of thet, T
Ž . Ž .empirical coefficients, which is given in Lemma 3.2 ii . It turns out that 3.13

will be satisfied under weak assumptions on the time series and the estima-
˜ Ž .tor f , as indicated by related calculations in Neumann 1994 , Section 6, for

the case of stationary time series.
Some preliminary numerical experiments seem to indicate the stability of

our approach in practice. Some further work necessary to explore a fully
automatic parameter choice is to be reported elsewhere.

For the sake of greater generality, we formulate the following theorem,
which also allows for thresholding schemes being different to that described
above. Compared to Proposition 3.3, the conditions on the thresholds are
more general, and can be viewed as some kind of necessary conditions which
still ensure the desired rate of convergence.

Ž . ŽTHEOREM 3.3. Suppose that Assumptions 1]5 hold. Let 1 y d g m ,1
. Ž . Ž .m , p , p G q m , m . Assume that the thresholds in 3.12 satisfy, for2 1 2 1 2

any g ª 1 and appropriate C - `,T

2 0 y1r2˜ ˆ 'E u q 1 I l f g s 2 log a II , CT log T' Ž .Ž .Ž .Ý I I T I Tž /
0Ig II3.14Ž . T

s O Tyq Žm1 , m2 . .Ž .
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Then
Ž .q m , m2ˆ 1 2ˆ5 5E f y f s O log T rT .Ž .Ž .L ŽU=P . Ž .2

Ž .REMARK 3.3. i We remark that if the assumptions of Theorem 3.2,
Proposition 3.3 and Theorem 3.3 are to hold uniformly, then all assertions
will hold uniformly in the class FF m1, m2.p , p1 2

Ž .ii An obvious alternative to our nonlinear wavelet estimator would be a
Ž .bivariate kernel estimator based on the pre-periodogram I v . For ‘‘homo-t, T

geneous smoothness classes,’’ that is, p G 2, we can expect the same rates ofi
convergence as for our wavelet estimator. This has been derived, for example,

Ž .by Dahlhaus 1996b for the situation of a segmented periodogram estimator.
The motivation for choosing the slightly more involved wavelet approach was
twofold: first, we are able to treat less homogeneous smoothness classes
appropriately, which mimic, for example, situations with a sudden change in
the covariance structure of a nonstationary time series. Second, our wavelet
threshold approach provides immediately an automatic choice of the right
degree of smoothing in both directions, and spares us the technically more
challenging task of choosing two bandwidths of a kernel estimator in a
data-dependent way.

4. Proofs.

PROOF OF LEMMA 2.1. Let jU and jU be chosen such that1 2

2 j1
U

F C «y2 m2 rŽ2 m1m2qm 1qm 2 . - 2 j1
Uq1 ,0

2 j2
U

F C «y2 m1 rŽ2 m1m2qm 1qm 2 . - 2 j2
Uq1

0

hold for some C chosen at the end of this proof. Define0

< U UII s I s j , j , k , k j , j s j , j .� 4Ž . Ž . Ž .« 1 2 1 2 1 2 1 2

It is obvious that II satisfies«

a II 7 2 j1
Uqj 2

U

7 «y2 Žm1qm 2 .rŽ2 m1m2qm 1qm 2 . .«

It remains to show that, for an appropriate choice of C , the relation Q : Q0 «

Ž .holds. Let f s Ýu m be arbitrary with u g Q . Then we obtainI I I «

5 5 5 5 Ž j1
Uqj 2

U .r2 2 m1m2 rŽ2 m1m2qm 1qm 2 .4.1 f F f F C« 2 F CC «Ž . p ` 0i

and
m mi i  U U Uj m Ž j qj .r2i i 1 24.2 f F f F C« 2 2 F CC .Ž . 0m mi i x  xi ip `i

For C small enough we obtain f g FF m1, m2 , which implies Q : Q. I0 p , p «1 2

PROOF OF LEMMA 2.2. Let II be chosen as in the proof of Lemma 2.1 and«

let
« , if I g II ,U «u sI ½ 0, otherwise.
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Ž U .We have seen in the proof of Lemma 2.1 that u g Q holds, which impliesI

V BB, FF m1 , m2 G « 2a II G C« 2q Žm1 , m2 . .Ž .« p , p «1 2

m1, m2 ˜ m1, m2Ž . Ž .Since V BB, FF F CV BB, FF for some appropriate constant C, we« p , p « p , p1 2 1 2

˜ m1, m2Ž .have a lower bound for V BB, FF .« p , p1 2
m1, m2 Ž .Now let f g FF be arbitrary. Let j G l and x g supp c .p , p 1 Ž j , k . j k1 2 1 1 1 1

Then, by Taylor’s formula, which holds for L -Sobolev functions due top
integration by parts,

c x f x , x dxŽ . Ž .H j k 1 1 2 11 1

m y1 m1 1x x y z Ž .1 1s c x f z , x dz dxŽ . Ž .H Hj k 1 2 1m1 1 1m y 1 !  xŽ .x 1 1Ž j , k .1 1

m1
yj Žm y1.1 1 < <s O 2 c x dx f z , x dzŽ . Ž . Ž .H Hj k 1 1 2m1 1 1 xŽ .supp c 1j k1 1

m1
yj Žm y1r2.1 1s O 2 f z , x dz ,Ž . Ž .H 2m1 xŽ .supp c 1j k1 1

which implies, since every basis function m overlaps only with a finiteI
Ž .number of basis functions from the same scale j , j , that1 2

p
p

u s c x c x f x , x dx dxŽ . Ž . Ž .Ý Ý H HŽ j j k k . j k 2 j k 1 1 2 1 21 2 1 2 2 2 1 1
k , k k , k1 2 1 2

F C 2yj1Žm1y1 r2. p2 j2 pr2Ý
k , k1 2

pm1
= f x , x dx dxŽ .HH 1 2 1 2m1 xŽ .supp m 1Ž j j k k .1 2 1 2

F C 2yj1m1 p2Ž j1qj 2 . pr2Ý
k , k1 24.3Ž .

pm1
= f x , x dx dxŽ .HH 1 2 1 2m1 xŽ .supp m 1Ž j j k k .1 2 1 2

py1
= mes supp mŽ .Ž .ž /Ž j j k k .1 2 1 2

pm1
yj m p Ž j qj .Ž1ypr2.1 1 1 2F C2 2 fm1 x1 p1

s O 2yj1m1 p2Ž j1qj 2 .Ž1ypr2.Ž .
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for all p F p . By analogous calculations we can show that1
p yj m p Ž j qj .Ž1ypr2.2 2 1 24.4 u s O 2 2Ž . Ž .Ý Ž j j k k .1 2 1 2

k , k1 2

holds for j G l, p F p .2 2
Let jU and jU be such that 2 j1

U

s «y2rŽ2 m1q1 qm1 r m2 . and 2 j2
U

s1 2
y2rŽ2 m2q1 qm2 r m1. �Ž . < 4« . We decompose the set JJ s j , j j G l, j G l into the1 2 1 2

following three sets:

< U UJJ s j , j g JJ j F j and j F j ,� 4Ž .1 1 2 1 1 2 2

< UJJ s j , j g JJ j m F j m and j ) j ,� 4Ž .2 1 2 1 1 2 2 2 2

< UJJ s j , j g JJ j m ) j m and j ) j .� 4Ž .3 1 2 1 1 2 2 1 1

Then

l l U UI , « I , «2 2 2 2 j qj1 2« q 1 w q min l , u s O « 2Ž .� 4Ý Ý I , « Iž / ž /« «4.5 Ž . k , kŽ . j , j g JJ 1 21 2 1

2q Žm , m .1 2s O « .Ž .
Further

l lI , « I , «2« q 1 wÝ Ý ž / ž /« «Ž . k , kj , j g JJ 1 21 2 2

K 2 j y jUŽ .m , m 2 21 2Uj qj 21 2s O 2 « j y j exp y'Ý Ý 2 2 ½ 5ž /U 2m1j )j j : j m Fj m2 2 1 1 1 2 2

s « 2 2 j2
U Žm1qm 2 .r m1 O exp log 2 m q m y K 2 r2Ž . Ž .Ý ½ Ž .1 2 m , mž 1 2

Uj )j2 2

4.6Ž .

U U= j y j rm j y jŽ . '52 2 1 2 2 /
s O « 2 2 j2

U Žm1qm 2 .r m1 s O « 2q Žm1 , m2 . .Ž . Ž .
Here the next-to-the-last equality follows due to the convergence of the

Ž .geometric series. Let j , j g JJ be fixed. We choose p s 1 if p s 1 or1 2 2 2
Ž .1 - p - 2, p F p if p ) 1. By 4.4 we obtain2 2

yp yj m p Ž j qj .Ž1ypr2.2 2 1 2< <a k , k u ) l s O l 2 2 ,Ž .� 4 Ž .1 2 Ž j j k k . I , « I , «1 2 1 2

which implies that

min l2 , u 2� 4Ý I , « I
k , k1 2

p2 2yp< <s l a k , k u ) l q u lŽ .� 4 ÝI , « 1 2 Ž j j k k . I , « I I , «1 2 1 2
Ž . < <k , k : u Fl1 2 Ž j j k k . I , «1 2 1 2

s O l2yp2yj 2 m2 p2Ž j1qj 2 .Ž1ypr2.Ž .I , «

1ypr2U2yp yj m p Ž j qj .Ž1ypr2.2 2 1 2s O « j y j 2 2 .Ž .Ž .2 2
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w Ž .Ž .xBy m ) 1rp we obtain that m m q m q m pr2 y 1 ) 0, which2 1 2 1 2
yields

min l2 , u 2� 4Ý Ý I , « I
Ž . k , kj , j g JJ 1 21 2 2

s « 2yp2yj 2
U m2 p

=
1ypr2 UU Ž j yj .m p Ž j qj .Ž1ypr2.2 2 2 1 2O j y j 2 2Ž .Ž .Ý Ý 2 2

Uj )j j : j m Fj m2 2 1 1 1 2 24.7Ž .
s « 2yp2yj 2

U w m2yŽŽ m1qm 2 .r2 m1.x p

=
1ypr2 UU Ž j yj .w m m qŽm qm .Ž pr2y1.xr m2 2 1 2 1 2 1O j y j 2Ž .Ž .Ý 2 2

Uj )j2 2

s O « 2q Žm1 , m2 . .Ž .
Ž . Ž .The sum over JJ can be treated analogously to 4.6 and 4.7 , which com-3

pletes the proof. I

PROOF OF LEMMA 2.3. It is easy to see that

2 2 2 2f y Proj f s u F u q u ,˜ Ý Ý Ý Ý Ý ÝV I I IJ
j qj )Jy2 k , k Ž . k , k Ž . k , kj , j g JJ j , j g JJ1 2 1 2 1 2 1 21 2 1 24 5

where

<JJ s j , j L j G L j and j ) J y 2 L r L q L ,� 4Ž . Ž . Ž .4 1 2 1 1 2 2 1 2 1 2

<JJ s j , j L j - L j and j ) J y 2 L r L q L ,� 4Ž . Ž . Ž .5 1 2 1 1 2 2 2 1 1 2

with

L s m y 1rp q 1rp , L s m y 1rp q 1rp .˜ ˜ ˜ ˜1 1 1 2 2 2 2 1

For the sake of a clear presentation, we introduce the following notation:

4.8 u s c x f x f x , x dx dx .Ž . Ž . Ž . Ž .HHŽc , j , k . , Žf , j , k . j k 1 j k 2 1 2 1 21 1 2 2 1 1 2 2

Ž .Now we get by Parseval’s equality, Jensen’s inequality and 4.3 that

22u s Proj fÝ Ý I ŽW mV .j w j L r L q1x1 1 1 2
j : j Fj L rL k , k2 2 1 1 2 1 2

s u 2Ý Žc , j , k . , Žf , w j L r L q1x , k .1 1 1 2 2 2
k , k1 2

2r p̃1
p̃1F uÝ Žc , j , k . , Žf , w j L r L q1x , k .1 1 1 1 2 2ž /

k , k1 2

y2 j m Ž j qj L r L .Ž2r p̃ y1 .1 1 1 1 1 2 1s O 2 2Ž .
yj w2 m m qm qm y2 m r p̃ y2 m r p̃ xr L1 1 2 1 2 1 2 2 1 2s O 2 .Ž .
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w xSince 2m m q m q m y 2m rp y 2m rp ) 0, we have˜ ˜1 2 1 2 1 2 2 1

2 yJ w2 m m qm qm y2 m r p̃ y2 m r p̃ xr ŽL qL .1 2 1 2 1 2 2 1 1 2u s O 2Ž .Ý Ý I
Ž . k , kj , j g JJ 1 21 2 4

s O 2yJg Žm1 , m2 , p1 , p2 . .Ž .
The sum over JJ can be treated analogously, which proves the assertion. I5

Ž .PROOF OF THEOREM 2.3. Using 2.10 and Lemmas 2.2 and 2.3, we obtain,
2 2 Ž .with d s « log 1r« , that

22 Ž ? . 2ˆ̂ ˜5 5E f y f s E d u , l y u q uŽ .Ý Ýž /I « I I
Ig KK IfKK« «

2 2 2s O aKK « 2 log aKK q 1 w 2 log aKK q min d , u' 'Ž . Ž . � 4Ýž / ž /« « « Iž /
Ig KK«

q O 2yJ«g Žm1 ,m2 , p1 , p2 .Ž .
2 m , m 2q Žm , m .1 2 1 2s O « 2 log aKK q V BB, FF q «' Ž . Ž .ž /ž /« d p , p1 2

Ž .q m , m1 22s O « log 1r« . IŽ .Ž .ž /
PROOF OF LEMMA 2.4. Without loss of generality, let m F m . Let jU be1 2

such that 2 jU

F C «y1rŽm1q1. - 2 jUq1. To get a lower bound for0
m , m1 2Ž .V BB, FF , consider the function« p , p1 2

f x , x s « 2 j*r2c x .Ž . Ž .Ý« , 1 1 2 j* , k 11
k1

We have

5 5 5 5 jU m1 rŽm1q1 .f F f F C« 2 F CC « ,p `« , 1 « , 1 0i

m m1 1  Uj Žm q1.1f F f F C« 2 F CC« , 1 « , 1 0m m1 1 x  x1 1p `i

and

 m2

f ' 0,« , 1m2 x2

which implies that f g FF m1, m2 for an appropriate choice of C . With the« , 1 p , p 01 2

Ž .exception of a negligible number of boundary wavelets, we have, using 4.8 ,

u U U s C« ,Žc , j , k . , Žf , j , k .1 2

which implies that

2 2 2q Žm , m .1 2U U4.9 min « , u G C« .Ž . � 4Ý Žc , j , k . , Žf , j , k .1 2
k , k1 2
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Now let f g FF m1, m2 be arbitrary. Then we havep , p1 2

min « 2 , u U U
2 s O « 2 22 jU

Ž .� 4Ý Ý Žc , j , k . , Žf , j , k .1 2
Uly1FjFj k , k1 24.10Ž .

2q Žm , m .1 2s O « .Ž .
Ž .By 4.3 we get

yp yjwŽm q1. p y2x˜ ˜1 1 1< <a k , k u ) « s O « 2 ,Ž . Ž .� 41 2 Žc , j , k . , Žf , j , k .1 2

Ž .which, by m q 1 p ) 2, implies that˜1 1

min « 2 , u 2� 4Ý Ý Žc , j , k . , Žf , j , k .1 2
Uj)j k , k1 2

2 < <s « a k , k u ) «Ž .� 4Ý 1 2 Žc , j , k . , Žf , j , k .1 2
Uj)j

q u 2Ý Ý Žc , j , k . , Žf , j , k .1 2
Uj)j Ž . < <k , k : u F«1 2 Žc , j , k . , Žf , j , k .1 2

4.11Ž .

2y p̃ yj wŽm q1. p̃ y2 x1 1 1s O « 2Ž .Ý
Uj)j

U2yp yj wŽm q1. p y2x 2q Žm , m .˜ ˜1 1 1 1 2s O « 2 s O « .Ž .Ž .
Ž . Ž .The terms corresponding to the basis functions f x c x as well as tojk 1 jk 21 2

Ž . Ž .c x c x can be treated analogously. Ijk 1 jk 21 2

Ž .PROOF OF THEOREM 3.1. Neglecting the factor 1r 2p , we show that

2`p1
R [ c u , s exp yiv s y f u , v du dvŽ . Ž . Ž .ÝH HT T½ 5

0 yp ssy`

ª 0 as T ª `,

where

c u , s [ cov X ; X� 4Ž .T w uTysr2x , T w uTqsr2x , T

p
w x w xs A uT y sr2 rT , l A uT q sr2 rT , l exp ils dl.Ž .Ž . Ž .H

yp

Ž Ž . . Ž .Using the relation Ý exp i l y v s s d l y v , we obtains

`p1 w xR s A uT y sr2 rT , lŽ .ÝH HT ½
0 yp ssy`

2

w x= A uT q sr2 rT , l y f u , l exp i l y v s dl du dv .Ž . Ž .Ž . Ž . 5
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Ž . ŽProceeding quite similarly as in the proof of Lemma 3.2 i on the rate of the
.bias , we have to estimate two terms of similar form. Hence, we only treat the

first one which is

D̂ u , s s D u , l exp ils dl,Ž . Ž . Ž .Hs s

with

w xD u , l [ A uT y sr2 rT , l y A u , l A u , l ,� 4Ž . Ž . Ž .Ž .s

2

D̂ u , s exp yiv s dv duŽ . Ž .ÝHH s
s

ˆ ˆs du D u , s D u , v exp yiv s y v dvŽ . Ž . Ž .Ž .ÝÝH Hs v
s v

1 2 Ž1. Ž2.ˆ< <s du D u , s s R q R ,Ž .ÝH s T T
0s

with

w y1 xs q1T Ž .ns n1 2TŽ1. ˆ< <R s du D u , sŽ .Ý Ý HT s
Ž .ny1 sT< < ns1s F2T

and

1 2Ž2. ˆ< <R s du D u , s ,Ž .Ý HT s
0< <s )2T

< < Ž . < <where s [ s r 2T , 0 F s F 2T.T
Ž .Similarly to the proof of Lemma 3.2 i , we can show that

ˆ< < < <s sup D u , sŽ .s
wŽ . xug ny1 s , nsT T

< <F C sup A u , l q sup TV A u , ? sup TV A ?, lŽ . Ž . Ž .Ž .Ž .1 wyp , p x I Ž s .n T
uu , l l

< <q C sup A u , l TV TV A ?, ? ,� 4Ž . Ž .Ž .� 42 wyp , p x I Ž s .n T
u , l

where C and C denote some positive constants and where, on the right-hand1 2
Ž . wŽ . Ž . xside, the sup is taken over u g I s [ n y 1 s y 1rT, n q 1 s andu n T T T

w xthe sup over l g yp , p .l

Note that

w y1 xs q1T
y1ˆ< < < <sup D u , s s O s ,Ž . Ž .Ý s

Ž .ugI sns1 n T
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Ž . Ž . w Ž Ž .. Ž Ž ..xdue to Assumption 2 a ] c as Ý TV A ?, l F TV A ?, l . Hence,n I Ž s . w0, 1xn T

w y1 xs q1T
2Ž1. ˆ< < < < < <R F s sup D u , sŽ .Ý ÝT T s

Ž .ugI s< < ns1s F2T n T

2y1w xs q1T
y1 y1ˆ< < < <F 2T s sup D u , s s O T log T .Ž . Ž . Ž .Ž .Ý Ý s½ 5Ž .ugI s< < ns1s F2T n T

Further,

< Ž2. < y2 y1R s O s s O TŽ .ÝT ž /
< <s )2T

2Ž . < < Ž . � Ž . < Ž . < 4as, by Definition 3.2 for s ) 2T, D u, l s A 0, l A 1, l y A u, lŽ .s

ˆ y1< Ž . < Ž < < .independent of s. Hence, sup D u, s s O s . I0 F uF1 s

Ž .PROOF OF LEMMA 3.2. i We show that

˜ Ž j1qj 2 .r2 y1< <R [ Eu y u s O 2 T log T .Ž .Ž .T I I

Ž . Ž . Ž . Ž .By 3.1 and with A l [ A trT, l , neglecting the factor 1r 2p ,t

E I v s cov X ; X exp yiv sŽ . Ž .Ž .Ýt , T w tysr2x , T w tqsr2x , T
< < � 4sr2 Fmin ty1, Tyt

p

s A l A l exp i l y v s dl.Ž . Ž . Ž .Ž .Ý H w tysr2x w tqsr2x
yp< < � 4sr2 Fmin ty1, Tyt

� 4Let t [ min t y 1, T y t . According to the decompositionT

A l A l y A l A lŽ . Ž . Ž . Ž .w tysr2x w tqsr2x t t

s A l y A l A l q A l A l y A l ,Ž . Ž . Ž . Ž . Ž . Ž .w tysr2x t t w tysr2x w tqsr2x t

we have R s RŽ1. q RŽ2. withT T T

` ptrTŽ1. ˜R s du c u dv c vŽ . Ž .Ý ÝH HT j k j k1 1 2 2Ž .ty1 rT ypssy`t

p
2< <= A l y f u , l exp i l y v s dlŽ . Ž . Ž .Ž .� 4H t

yp

trT ˜y du c u dv c vŽ . Ž .Ý ÝH Hj k j k1 1 2 2Ž .ty1 rTt < <sr2 )tT

< < 2=exp yiv s A l exp ils dlŽ . Ž . Ž .H t

s RŽ1, 1. q RŽ1, 2.
T T
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and

trTŽ2. ˜R s du c u dv c v exp yiv sŽ . Ž . Ž .Ý ÝH HT j k j k1 1 2 2Ž .ty1 rTt < <sr2 FtT

= A l A l y A l exp ils dl,Ž . Ž . Ž . Ž .H t w tysr2x t

where, with RŽ2., we only treat the first part of two similar differences, w.l.o.g.T
Ž . Ž .Now, by Assumptions 2 b , 3 and 4 b ,

trTŽ1, 1. ˜< < < < < <R F dv c v du c u TV f ?, vŽ . Ž . Ž .Ž .ÝH HT j k j k wŽ ty1.r T , tr T x2 2 1 1Ž .ty1 rTt

F 2yj 2 r2 2 j1 r2 Ty1 sup TV f ?, vŽ .Ž .w0 , 1x
v

s O 2yj 2 r2 2 j1 r2 Ty1Ž .
and

$
Ž1, 2. y1 ˜ ˆ< < < < < < < <R F sup c u T c s sup f trT , sŽ . Ž . Ž .� 4 Ý ÝT j k j k1 1 2 2

u tt < <sr2 )tT

s O 2 j1 r2 Ty1 O 2 j2 r2 sy2Ž . Ž .Ý Ý
t < <sr2 )tT

s O 2Ž j1qj 2 .r2Ty1 log T .Ž .Ž .
Further, with s being even, w.l.o.g.,

$ trTŽ2. ˜R s y c s du c uŽ . Ž .Ý ÝHT j k j k2 2 1 1Ž .ty1 rTs t

sr2y1

= A l A l y A l exp ils dl,� 4Ž . Ž . Ž . Ž .ÝH t tyn tyny1
ns0

Ž . Ž .such that, by Assumption 2 a ] c , for some positive constant C,
$

y1Ž2. y1˜< < < < < < < < < <R F C c s sup c u T s r2 sŽ . Ž .ÝT j k j k2 2 1 1
us

= < <sup A u , l sup TV A ?, l� 4Ž . Ž .Ž .w0 , 1x
u , l l

< <q sup A u , l TV A� 4Ž . Ž .U= P
u , l

q sup TV A u , ? sup TV A ?, lŽ . Ž .Ž . Ž .wy p , p x w0, 1x
u l

s O 2 j1 r2 2 j2 r2 Ty1 .Ž .
Ž Ž2..The proof of the last estimate for R is delivered by some lengthy, butT

straightforward algebra using elementary generalizations of total variation
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estimates and partial summation. Roughly speaking, we proceed as follows:
Ž y1 .the integral w.r.t. l delivers sr2 terms which are all of order O s , as for

w Ž .each of the differences labeled by n we use estimates like cf. Edwards 1979 ,
xpage 34f.

D l exp ils dl ; D l g l y g l� 4Ž . Ž . Ž . Ž . Ž .ÝH t t k s k s ky1
k

; y D l y D l g l ,� 4Ž . Ž . Ž .Ý t kq1 t k s k
k

Ž . Ž Ž . Ž .. Ž . Ž . Ž .with D l [ A l A l y A l , g l [ exp ils r is and with a suf-Ž .t t t ty1 s
Ž . w x Ž . Ž y1 .ficiently fine partition l of yp , p . Note that g l s O s .k k s

The sum over t can be bounded from above by the bounded total variation
Ž . Ž .of D l as a function of u. Putting both simultaneously together, in order tot

Ž . Ž . Ž .strictly bound all occurring terms, we need Assumption 2 a ] c , as D l is at
product of the two functions of time and frequency.

˜Ž .ii To apply cumulant techniques, we write u as a quadratic form with aI
symmetric matrix N :I

˜ Xu s X N X,I I

tr TŽ . Ž . Ž .where N s M q M r2 and, with w trT [ TH c u du andI I I j k Ž ty1.r T j k1 1 1 1$
y1 p˜ ˜Ž . Ž . Ž . Ž . Ž .w s [ c s s 2p H c v exp iv s dv,˜ j k j k yp j k2 2 2 2 2 2

t q v¡ y1T w w t y v , if t q v even,Ž .˜j k j k1 1 2 2ž /2T~M sŽ .I t v t q v q 1
y1T w w t y v , if t q v odd.Ž .˜j k j k¢ 1 1 2 2ž /2T

ŽŽIn the following, for reasons of notational convenience, we use w s qj k1 1
. . ŽwŽ . x .t r2T to denote w s q t q 1 r2 rT . Note that, by the approximationsj k1 1

used in the course of the proof, this does not lead to any problems.
˜ ˜Since f and c are of bounded variation, we get, by integration by parts,

yj 2 r2 j2 r2 < <y1w t y v s O 2 n 2 t y v ,Ž . Ž .˜ Ž .j k2 2

which implies that

y1y1 j r2 yj r2 j r2¡ 1 2 2 < <O T 2 2 n 2 t y v ,Ž .ž /
t q v~N sŽ . yj yjI 1 1t v if g 2 k y C , 2 k q C ,Ž . Ž .1 12T¢

0, otherwise.

Hence, we obtain the estimates

< < y1 j1 r2 yj2 r2max N s O T 2 2 ,� 4Ž . Ž .I t v
t , v

5 5 5 5 y1 j1 r2 j2 r2N F N s O T 2 2 log TŽ .Ž .`I I
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and

˜ < <N s max N� 4Ž .ÝI I st
ts

s O Ty1 2 j1 r2 2yj 2 r2Ž .Ý
yj y j1 1< <s : srTy2 k FC21

y1 j1 r2 j2 r2 < <y1q O T 2 2 max s y t� 4Ý ž /Ž .t : N /0yj y j I st1 1< <s : srTy2 k )C21

s O 2yj1 r2 2yj 2 r2 q O Ty1 2 j1 r2 2 j2 r2 log TŽ . Ž .Ž .
s O 2yj1 r2 2yj 2 r2 .Ž .

Ž Ž ..Let Y ; N 0, Cov X . Since

˜ y1 yj2< <max N N s O T 2 ,� 4Ž . Ž .I It v
t , v

by Lemma 3.1 we obtain that

˜ X yj2 y14.12 var u s var Y N Y q O 2 T .Ž . Ž . Ž .Ž .I I

Now, with

var Y XN Y s 2 tr N S N SŽ . Ž .I I T I T

1s tr M S M S q tr M S M SŽ . Ž .I T I T I T I T24.13Ž .

q2 tr M S M S ,Ž .I T I T

we have to show that

tr M S M SŽ .I T I T

2y1 y1˜ ˜s 2p T f u , v c u du c v c v dv q o TŽ . Ž . Ž . Ž . Ž .� 4H j k j k j k1 1 2 2 2 2
U=P

and

tr M S M S s tr M S M SŽ . Ž .I T I T I T I T

2y1 ˜ ˜s 2p T f u , v c u du c v c yv dvŽ . Ž . Ž . Ž .� 4H j k j k j k1 1 2 2 2 2
U=P

q o Ty1 .Ž .
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As this runs quite analogously for all terms under consideration, we treat the
first one only:

tr M S M SŽ .I T I T

s M S M SŽ . Ž . Ž .Ž .Ý I T I Tw s st t vv w
s, v , w , t

T T T w q v s q w
y2s T w w w y v c , s y wŽ .˜Ý Ý Ý j k j k Tž / ž /1 1 2 22T 2Tss1 vs1 ws1

T s q t t q v
= w w s y t c , t y v ,Ž .˜Ý j k j k T1 1 2 2ž / ž /2T 2Tts1

where we use the convention given in the beginning of our proof which allows
us to proceed regardless to the parity of the arguments of w , and wherej k1 1

Ž . Ž Ž ..S s Cov X s c ?, ? , withT T

t
c , n s cov X ; X� 4T w tyn r2x , T w tqn r2x , Tž /T

p

s A l A l exp iln dl.Ž . Ž . Ž .H w tyn r2x w tqn r2x
yp

Note that with this,

t q v
� 4c , t y v s cov X ; X .T t , T v , Tž /2T

Ž Ž ..Further, let S s c ?, ? with

pt ty1c , n [ 2p f , l exp iln dl.Ž . Ž .Hž / ž /T Typ

For smooth A,

t t ? n
Xc , n s c , n q c , n OT ž / ž /ž / ž /T T T T

< Ž . < < XŽ . <with both sup Ý c trT, n - ` and sup Ý c trT, n - `.tr T n tr T n
If A is not smooth, but fulfills Assumptions 2 and 3, then we proceed as in

Ž .the proof of part i of this lemma, with the same quality of approximation
Ž .i.e., the same resulting rates .

In the following, for the sake of notational simplicity, we give the proof of
Ž . Ž . Ž .ii only for the functions A u, l and c u , which are smooth in u.j k1 1

To motivate the idea how to derive the leading term of the asymptotic
w Ž .variance, we briefly sketch the stationary situation for details, cf. Gao 1993 ,

page 19, but note the missing symmetrization of the Hermitian matrix M in
that reference, which leads to a slight mistake in the resulting asymptotic
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xexpression for the whole variance :

Ty2 w w y v w s y t c s y w c t y vŽ . Ž . Ž . Ž .˜ ˜Ý jk jk
s, t , w , v

s Ty2 w l w m c s c s q l y m q o Ty1Ž . Ž . Ž . Ž . Ž .˜ ˜Ý Ýjk jk
sl , m

p
y1 2 2 y1˜s 2p T f v c v dv q o TŽ . Ž . Ž .H jk

yp

wsimilarly to
T $ $

y1˜ ˜ ˜c s c s y c v f v dv s c s c s s O T .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý ÝHjk jk jk
ssyT < <s )T

< Ž . <To treat all of the occurring remainders, we use estimates like Ý w n˜n j k2 2
Ž j2 r2 . w Ž .x < Ž . <s O 2 due to Assumption 4 b and Ý c u, n - ` uniformly in u gn

w x Ž .0, 1 due to Assumption 3 .
< < < Ž . < < Ž . < Ž .Note, in particular, that Ý n l n l n - `, where l n is any ofn 1 2 i

Ž . Ž . Ž . Ž . Ž .w n , c ?, n or even of S w w y v c s y w s l s y v , say, with again˜ ˜w
< Ž . <Ý l n - `.n
Our proof proceeds by three different approximations. The first is replacing
Ž . Ž . Ž . Ž .c trT, n by c trT, n with an error of order O nrT see above . TheT

ŽŽ . . Ž . Ž .second one is to replace c s q w r2T, ? by c sr2T, ? q O wrT and
ŽŽ . . Ž . Ž j1 r2 .w w q v r2T by w vr2T q O 2 wrT . With this,j k j k1 1 1 1

tr M SM SŽ .I I

v w
y2 j r21s T w q O 2ÝÝÝ j k ž / ž /1 1 2T Ts v w

s w
=w w y v c , s y w q OŽ .˜ j k ž / ž /2 2 2T T
s t v t

j r21= w q O 2 w s y t c , t y v q O .Ž .˜Ý j k j kž / ž /1 1 2 2ž / ž /2T T 2T Tt

Ž .The leading term of tr M SM S turns out to beI I

v s v s
y2 ˜ ˜T w w dl dl f , l f , lÝÝ HHj k j kž / ž / ž / ž /1 1 1 12T 2T 2T 2Ts v

˜ ˜ ˜ ˜=c l c l exp i s y v l y l .Ž . Ž .Ž . Ž .Ž .j k j k2 2 2 2

w Ž . Ž .xThe occurring remainders of both the first i.e., replacing c ?, ? by c ?, ?T
Žand the second approximations are of the following kind or even of higher

.order :
v s

y2T w w w w y vŽ .˜Ý j k j k j kž / ž /1 1 1 1 2 22T 2Ts, v , w , t

s ? t
X=w s y t c , s y w c , t y v O .Ž .˜ j k ž / ž /2 2 ž /2T 2T T
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In each of these remainders use estimates like

< <t ?
X j r22< <w s y t c , t y s s o 2 ,Ž . Ž .˜ÝÝ j k ž /2 2T 2Ts t

and respectively,

< <v s t ?
Xy2T w w l s y v w s y t c , t y sŽ . Ž .˜ÝÝÝ j k j k j kž / ž / ž /1 1 1 1 1 12T 2T T 2Ts v t

s O 2Ž j1qj 2 .Ty2 s o Ty1 .Ž . Ž .
Finally, the third approximation, which is

v s ? s y v
X˜ ˜ ˜f , l s f , l q f , l Ož / ž / ž / ž /2T 2T T T

and
v s ? s y v

X jr2w s w q w O 2 ,j k j k j kž / ž / ž / ž /1 1 1 1 1 12T 2T T T

delivers a leading term, with n [ s y v,

s
y2 2 ˜ ˜ ˜ ˜T w dl dl c l c lŽ . Ž .Ý Ý HHj k j k j kž /1 1 2 2 2 22Ts < <n FT

=
s s

Ž3.˜ ˜f , l f , l exp in l y l q R n ,Ž .Ž .Ž . Tž / ž /2T 2T
with

< <n 2Ž3. j y12ˆ< < < <R n s FF ?, n s O 2 T ,Ž . Ž . Ž .Ý ÝT Tn n

where

ˆ ˜FF ?, n s c l f ?, l exp inl dlŽ . Ž . Ž . Ž .H j k2 2

is again absolutely summable as a function on n, uniformly in its first
argument, and with

s
y2 2 j y11T w s O 2 T .Ž .Ý j k ž /1 1 2Ts

Ž .We complete the proof by a technique similar to the proof of part i , that
` ˆ 2 y1< Ž . < Ž .is, replacing Ý . . . by Ý . . . , noting that Ý FF ?, n s O T .< n < F T nsy` < n < G cT

Ž .Hence, we end up with the following overall leading term of tr M SM S :I I

s s
y2 2 2 2˜2p T w dl c l f , lŽ .Ý Hj k j kž / ž /1 1 2 22T 2Ts

p1y1 2 2 2 y2 Ž j qj .1 2˜s 2p T du c u dl c l f u , l q O T 2 ,Ž . Ž . Ž . Ž .H Hj k j k1 1 2 2
0 yp
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Ž .due to the bounded total variation of all occurring functions. The proof of ii
ends by applying the same techniques to the remaining two terms of the sum

Ž .in 4.13 .
Ž .iii This can be shown simply by using Lemma 3.1 with, by Assumption 5,

l M l Cov X s O Ty1 2Ž j1qj 2 .r2 log T sup cov X , XŽ . Ž . Ž . Ž .Ž . Ž . Ýmax I max s t½ 5
1FtFT s

s O Ty1 2Ž j1qj 2 .r2 log TŽ .Ž .
� <Ž . <4 5 5and the estimates for max M and M derived in the proof of part`u, v I uv I

Ž .ii . I

Ž .PROOF OF PROPOSITION 3.1. By Lemma 3.2 ii we get, in conjunction with
Ž . Ž . y1r2 r j2Assumption 2 c and d , that s 7 T for T F 2 . Hence, we obtain byI

Ž .Lemma 3.2 iii , for appropriate m ) 0,

ny22q2g y1r2 Ž j qj .r21 2˜cum u rs F n! CT 2 log TŽ . Ž .Ž .Ž .n I I4.14Ž .
Ž .2q2g y ny2mF n! CTŽ . Ž .

for all n G 3, which implies by Lemma 1 in Rudzkis, Saulis and Statulevicius
Ž .1978 that

˜ ˜4.15 P " u y Eu rs G x s 1 y F x 1 q o 1Ž . Ž . Ž .Ž . Ž .ž /ž /I I I

holds uniformly in 0 F x F Tq for some q ) 0.
˜Ž . Ž .With D [ Eu y u rs s o 1 , we getI I I I

˜ < <P " u y u rs G x s 1 y F x 1 q o 1 q O F x y F x q D .Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .ž /I I I I

Fix any c ) 1. For x F c, obviously

4.16 F x y F x q D s o 1 y F x .Ž . Ž . Ž . Ž .Ž .I

Ž 2 . Ž . Ž Ž ..Let D G 0 w.l.o.g. Using the formula 1 y 1rx w x rx F 1 y F x , weI
obtain for x ) c that

< <4.17 F x y F x q D s D w x s o 1 y F x ,Ž . Ž . Ž . Ž . Ž .Ž .I I

Ž . Ž .which, in conjunction with 4.15 and 4.16 , completes the proof. I

� < j2 r4 Ž ? .PROOF OF PROPOSITION 3.2. First, let I g II l I 2 ) T . Since d isT
monotonic in its first argument, there exists some g such thatI

Ž ? . ˜ ˜d u , l G u if u y u ) g ,Ž .I I , T I I I I

Ž ? . ˜ ˜d u , l F u if u y u - g .Ž .I I , T I I I I

Ž ? . ˜ ˜Ž .Without loss of generality, we assume that d u , l G u if u y u s g .I I, T I I I I



ADAPTIVE ESTIMATION OF EVOLUTIONARY SPECTRA 73

y1r2'Let h s CT log T for some appropriate C. ThenŽ .T

2 2Ž ? . Ž ? .˜ ˜ ˜E d u , l y u s E I g F u y u - h d u , l y uŽ . Ž . Ž .ž / ž /I I , T I I I I T I I , T I

2Ž ? .˜ ˜q E I yh - u y u - g d u , l y uŽ . Ž .ž /T I I I I I , T I

2Ž ? .˜ ˜< <q E I u y u G h d u , l y uŽ . Ž .ž /I I T I I , T I

s S q S q S .1 2 3

Applying integration by parts w.r.t. x, we obtain by Proposition 3.1 that

2Ž ? .S s y I g F s x - h d u q s x , l y uŽ . Ž .Ž .H1 I I T I I I , T I

˜=d P u y u rs G xŽ .½ 5ž /I I I

˜s P u y u rs G xŽ .H½ 5ž /I I I

=
2Ž ? .d I g F s x - h d u q s x , l y uŽ . Ž .Ž .I I T I I I , T I

2Ž ? .˜q P u y u rs G g d u q g , l y uŽ .Ž .Ž .ž /I I I I I I I , T I4.18Ž .

F C 1 y F x� 4Ž .HT ½
2Ž ? .=d I g F s x - h d u q s x , l y uŽ . Ž .Ž .I I T I I I , T I

2Ž ? .˜qP j y u rs G g d u q g , l y uŽ .Ž .Ž .ž /I I I I I I I , T I 5
2Ž ? .˜ ˜s C E I g F j y u - h d j , l y uŽ . Ž .ž /T I I I T I I , T I

� < j2 r4holds uniformly in I g II l I 2 ) T for some C ª 1. The term S canT T 2
be estimated analogously.

Using Lemma 3.2, we obtain, for arbitrary even n, that

nn yn r2˜ ˜E u y u s O cum u s O T ,Ž .Ž . Ž .Ý ŁI I i Ijž /i , . . . , i : i q ??? qi sn , i G1rs1 1 r 1 r j

which implies, by the Cauchy]Schwarz inequality, that

4Ž ? .˜ ˜< < 'S F P u y u G h E d u , l y u' Ž . Ž .ž /3 I I T I I , T I4.19Ž .
s O Ty2Ž .

if C is chosen large enough.
Ž ? . ˜ ˜ j2 r< Ž . < < <As d u , l y u F l q u y u , the terms with 2 F T contributeI I, T I I, T I I

Ž ry1 Ž .. Ž yq Žm1, m2 ..to the risk a term of order O T log T , which is O T , if r is
chosen sufficiently small. I
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PROOF OF THEOREM 3.2. Using Parseval’s identity, we infer from Proposi-
Ž ? . ˜ ˜< Ž . < < <tion 3.2 and by d u , l y u F l q u y u thatI I I I

22 Ž ? . 2ˆ ˜5 5E f y f s E d u , l y u q uŽ .Ý Ýž /I I , T I I
Ig II IfIIT T

2Ž ? . yq Žm , m .1 2˜s 1 q o 1 E d j , l y u q O TŽ . Ž .Ž . Ž .Ý ž /I I , T I
UIg IIT4.20Ž .

22 ˜q 2l q 2E u y uŽ .Ý I , T I Iž /
UIg II R IIT T

q O TyŽ1 yd .g Žm1 , m2 , p1 , p2 . .Ž .
Ž . Ž .From 2.10 we see that the first term on the right-hand side of 4.20 can be

estimated by

l lI , T I , T2 2 2 yq Žm , m .1 2C s q 1 w q min l , u q O TŽ .� 4Ý I I , T Iž / ž /ž /U s sI IIg IIT

F C min s 2 log T , u 2 q O Tyq Žm1 , m2 .Ž . Ž .� 4Ý I I
UIg IIT

m , m yq Žm , m .1 2 1 2s O V BB, FF q TŽ .Ž . 4ž /max �s log T p , p'I 1 2

Ž .q m , m1 2s O log T rT .Ž .Ž .Ž .
Ž .The remaining terms on the right-hand side of 4.20 are also of order

ŽŽ Ž . .q Žm1, m2 ..O log T rT , which completes the proof. I

PROOF OF THEOREM 3.3. Since d Ž ? . is monotonic in the second argument,
ˆ ˆwe have for any random threshold l satisfying l F l F l thatI I, 1 I I, 2

Ž ? . Ž ? . Ž ? .˜ ˆ ˜ ˜d u , l y u F max d u , l y u , d u , l y u .Ž . Ž .½ 5ž /I I I I I , 1 I I I , 2 I

For
y1r2 0'CT log T G g s 2 log a II ,'Ž . Ž .T I T

0both the nonrandom thresholds l s g s 2 log a II as well as l s' Ž .I, T T I T I, T
y1r2'CT log T provide the desired rate for the risk. Hence we obtainŽ .

2
Ž ? . ˜ ˆE d u , l y uÝ ž /ž /I I I

0Ig IIT

2
Ž ? . 0˜F E d u , g s 2 log a II y u' Ž .Ý I T I T Iž /ž /

0Ig IIT

2
Ž ? . y1r2˜ 'q E d u , CT log T y uŽ .Ý ž /ž /I I

0Ig IIT
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0 y1r2 2 2ˆ ˜'q E I l f g s 2 log a II , CT log T 2u q 2u' Ž .Ž . Ž .Ý I T I T I Iž /
0Ig IIT

Ž .q m , m1 2s O log T rT .Ž .Ž .Ž .
From the proof of Theorem 3.2, we know that the risk arising from the

0 ŽŽ Ž . .q Žm1, m2 ..estimation of u , I f II , is also of order O log T rT , which com-I T
pletes the proof. I
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