FITTING TIME SERIES MODELS TO NONSTATIONARY PROCESSES

BY R. DAHLHAUS

Universität Heidelberg

A general minimum distance estimation procedure is presented for nonstationary time series models that have an evolutionary spectral representation. The asymptotic properties of the estimate are derived under the assumption of possible model misspecification. For autoregressive processes with time varying coefficients, the estimate is compared to the least squares estimate. Furthermore, the behavior of estimates is explained when a stationary model is fitted to a nonstationary process.

1. Introduction. Stationarity has always played a major role in the theoretical treatment of time series procedures. For example, the spectral density is defined for stationary processes and the important ARMA model is a stationary time series model. Furthermore, the assumption of stationarity is the basis for a general asymptotic theory: it guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense.

On the other hand, many series show a nonstationary behavior (e.g., in economics or sound analysis). Special techniques (such as taking differences or the consideration of the data on small time intervals) have been applied to make an analysis with stationary techniques possible.

If one abandons the assumption of stationarity, the number of possible models for time series data explodes. For example, one may consider ARMA models with time varying coefficients. In that case the time behavior of the coefficients may again be modeled in different ways. Therefore, we try to consider in this paper a general class of nonstationary processes together with a general estimation method which is a generalization of Whittle's method for stationary processes [Whittle (1953)].

Whittle's method [cf. Dzhaparidze (1986), Azencott and Dacunha-Castelle (1986)] is based on minimization of the function

$$L_T(\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log f_\theta(\lambda) + \frac{I_T(\lambda)}{f_\theta(\lambda)} \right\} d\lambda,$$

where $f_\theta(\lambda)$ is the model spectral density and $I_T(\lambda)$ is the periodogram. The Whittle estimate is asymptotically efficient and $L_T(\theta)$ is (up to a constant) an approximation to the Gaussian likelihood function. Since $L_T(\theta)$ may be

Received February 1993; revised April 1996.

1 Research supported by the Deutsche Forschungsgemeinschaft (Da 187/5-1).

Key words and phrases. Nonstationary processes, time series, evolutionary spectra, minimum distance estimates, model selection.
interpreted to within an additive constant as a distance between the parametric spectral density $f_\theta(\lambda)$ and the nonparametric estimate $I_T(\lambda)$, the Whittle estimate is a minimum distance estimate. In the case where the model is misspecified, minimization of $L_T(\theta)$ therefore leads to an estimate of the parameter with the best approximating parametric spectral density. This best approximating parameter also minimizes the asymptotic Kullback–Leibler information divergence. For autoregressive processes, the Whittle estimate is identical to the Yule–Walker estimate. If a data taper is applied in the calculation of the periodogram, then the estimate also has good small sample properties (cf. Dahlhaus (1988)). Asymptotic normality of the Whittle estimate also holds for non-Gaussian processes. However, this requires identifiability of the model which basically only holds for linear processes.

In this paper we generalize the method of Whittle to processes that only show locally a stationary behavior (cf. Definition 2.1). We replace the periodogram $I_T(\lambda)$ in $L_T(\theta)$ by a local version and integrate over time (cf. Section 3.1). The resulting estimate again is efficient.

If the model is misspecified, the estimate again may be regarded as an estimate for the best approximating model ("best" in the sense of distances between spectral densities or in the sense of the Kullback–Leibler information divergence—cf. Section 3). We prove asymptotic normality also in the misspecified case. In particular, we can describe the behavior of the estimate if a stationary model is fitted and the true process is nonstationary (Section 5).

Although we use a spectral density approach, our goal is not the estimation of the spectral density. We are mainly interested in parametric inference for nonstationary time series models that may be defined purely in the time domain, for example, autoregressive processes with time varying coefficients. Such models are studied in detail in Section 4. In particular, we give the estimation equations for such models and study the relation of our estimate to the least squares estimate.

Section 6 contains some practical considerations and a simulation example and Section 7 has concluding remarks.

2. Asymptotic theory and locally stationary processes. One of the difficult problems to solve when dealing with nonstationary processes is how to set up an adequate asymptotic theory. Asymptotic considerations are needed in time series analysis to simplify the situation, since it is usually hopeless to make calculations for a finite sample size.

However, if X_1, \ldots, X_T are observations from an arbitrary nonstationary process, then letting T tend to infinity, that is, extending the process into the future, will not give any information on the behavior of the process at the beginning of the time interval. We therefore need a different asymptotic concept.

Suppose for example that we observe

$$X_t = a(t)X_{t-1} + \epsilon_t \text{ with } \epsilon_t \text{ iid } \mathcal{N}(0, \sigma^2)$$
for \(t = 1, \ldots, T \). Inference in this case means inference for the unknown function \(a(t) \) on the interval \([1, T]\). We have information on \(a(t) \) on the grid \([1, 2, 3, \ldots, T]\). Analogously to nonparametric regression, it seems natural to set down the asymptotic theory in a way that we “observe” \(a(t) \) on a finer grid (but on the same interval); that is, we observe the process

\[
X_{t,T} = a\left(\frac{t}{T}\right)X_{t-1,T} + \varepsilon_t \quad \text{for } t = 1, \ldots, T
\]

(where \(a \) is now rescaled to the interval \([0, 1]\)).

To define a general class of nonstationary processes which includes the above example, we may try to take the time varying spectral representation

\[
X_{t,T} = \mu\left(\frac{t}{T}\right) + \int_{-\pi}^{\pi} \exp(i\lambda t)A\left(\frac{t}{T}, \lambda\right) d\xi(\lambda)
\]

(similar to the analogous representation for stationary processes). However, it turns out that equation (2.1) has not exactly but only approximately a solution of the form (2.2). We therefore only require that (2.2) holds approximately, which leads to the following definition.

Definition 2.1. A sequence of stochastic processes \(X_{t,T} \) (\(t = 1, \ldots, T \)) is called locally stationary with transfer function \(A^0 \) and trend \(\mu \) if there exists a representation

\[
X_{t,T} = \mu\left(\frac{t}{T}\right) + \int_{-\pi}^{\pi} \exp(i\lambda t)A^0_{t,T}(\lambda) d\xi(\lambda),
\]

where the following holds.

(i) \(\xi(\lambda) \) is a stochastic process on \([-\pi, \pi]\) with \(\overline{\xi(\lambda)} = \xi(-\lambda) \) and

\[
\text{cum}\{d\xi(\lambda_1), \ldots, d\xi(\lambda_k)\} = \eta\left(\sum_{j=1}^{k} \lambda_j\right) g_k(\lambda_1, \ldots, \lambda_{k-1}) d\lambda_1 \ldots d\lambda_k,
\]

where \(\text{cum}\{ \cdots \} \) denotes the cumulant of \(k \)-th order, \(g_1 = 0, \ g_2(\lambda) = 1, \ |g_k(\lambda_1, \ldots, \lambda_{k-1})| \leq \text{const} \) for all \(k \) and \(\eta(\lambda) = \sum_{j=1}^{\infty} \delta(\lambda + 2\pi j) \) is the period \(2\pi \) extension of the Dirac delta function.

(ii) There exists a constant \(K \) and a \(2\pi \)-periodic function \(A: [0, 1] \times \mathbb{R} \to \mathbb{C} \) with \(A(u, -\lambda) = \overline{A(u, \lambda)} \) and

\[
\sup_{t, \lambda} \left| A^0_{t,T}(\lambda) - A\left(\frac{t}{T}, \lambda\right) \right| \leq KT^{-1}
\]

for all \(T; A(u, \lambda) \) and \(\mu(u) \) are assumed to be continuous in \(u \).

The smoothness of \(A \) in \(u \) guarantees that the process has locally a stationary behavior. Later we will require additional smoothness properties for \(A \), namely differentiability in both components.

In the following \(s \) and \(t \) always denote time points in the interval \([1, T]\) while \(u \) and \(v \) are time points in the rescaled interval \([0, 1]\), that is, \(u = t/T \).
Examples. (i) Suppose Y_t is a stationary process with spectral representation

$$Y_t = \int_{-\pi}^{\pi} \exp(i\lambda t) A(\lambda) \ d\xi(\lambda)$$

and $\mu, \sigma : [0, 1] \to \mathbb{R}$ are continuous. Then

$$X_{t,T} = \mu\left(\frac{t}{T}\right) + \sigma\left(\frac{t}{T}\right) Y_t$$

is locally stationary with $A_{t,T}^0(\lambda) = A(t/T, \lambda) = \sigma(t/T) A(\lambda)$. If Y_t is an AR(2)-process with (complex) roots close to the unit circle, then Y_t shows a periodic behavior and σ may be regarded as a time varying amplitude function of the process $X_{t,T}$. If T tends to infinity more and more cycles of the process with $u = t/T \in [u_0 - \epsilon, u_0 + \epsilon]$, that is, with amplitude close to $\sigma(u_0)$ are observed.

(ii) Suppose ε_t is an iid sequence and

$$X_{t,T} = \sum_{j=0}^{\infty} a_j\left(\frac{t}{T}\right) \varepsilon_{t-j}. $$

Then $X_{t,T}$ is locally stationary with

$$A_{t,T}^0(\lambda) = A(t/T, \lambda) = \sum_{j=0}^{\infty} a_j(t/T) \exp(-i\lambda j).$$

(iii) Autoregressive processes with time varying coefficients (cf. Section 4) are locally stationary. This was proved in Dahlhaus [1996a, Theorem 2.3]. However, in this case we only have (2.4) instead of $A_{t,T}^0(\lambda) = A(t/T, \lambda)$.

The above definition does not mean that a fixed continuous time process is discretized on a finer grid as T tends to infinity. Instead it is an abstract setting for asymptotic statistical inference which means that with increasing T more and more data of each local structure are available. If μ and A^0 do not depend on t and T, then X does not depend on T as well, and we obtain the spectral representation of an ordinary stationary process. Thus, the classical asymptotic theory for stationary processes is a special case of our approach.

Letting T tend to infinity no longer means looking into the future. Nevertheless, a prediction theory within this framework is still possible. One may, for example, assume that $X_{t,T}$ is observed for $t \leq T/2$ [i.e., on the time interval $(0, 1/2)$] and one tries to predict the next observations. A result on the local prediction error similar to Kolmogorov’s formula for stationary processes has been proved in Dahlhaus [1996a, Theorem 3.2].

Nonstationary processes with a time varying spectral representation were first investigated in detail by Priestley (1965, 1981, 1988). The above definition of local stationarity may be regarded as a framework allowing for rigorous asymptotic considerations for such processes. A deeper justification of this definition and a comparison with the approach of Priestley may be found in Dahlhaus [1996c, Section 3].
By \(f(u, \lambda) := |A(u, \lambda)|^2 \) we denote the time varying spectral density of our process. In Dahlhaus [(1996a), Theorem 2.2] we show under smoothness conditions on \(A \) that

\[
f(u, \lambda) = \lim_{T \to \infty} \frac{1}{2\pi} \sum_{s = -\infty}^{\infty} \text{cov}(X_{uT-\frac{s}{2}}, X_{uT+\frac{s}{2}}) \exp(-i\lambda s),
\]

where \(X_{s,T} \) is defined by (2.3) [with \(A^0_{t,T}(\lambda) = A(0, \lambda) \) for \(t < 1 \) and \(A^1_{t,T}(\lambda) = A(1, \lambda) \) for \(t > T \) — with respect to \(\lambda \) the above convergence is in quadratic mean]. This means that if there exists a spectral representation of the form (2.3) with a smooth \(A(u, \lambda) \) then \(|A(u, \lambda)|^2 \) is uniquely determined from the triangular array (there may exist several other nonsmooth representations).

In this paper we do not discuss estimation of \(f(u, \lambda) \), although parameter estimates also lead to spectral density estimates (cf. Section 6). Neumann and von Sachs (1996) have used the above setting for investigating wavelet estimates. Kernel estimates are discussed in Dahlhaus (1996c). Riedel (1993) considered smoothing of the log-periodogram. He also used a rescaling of the time domain in his asymptotic considerations which implicitly corresponds to a time-rescaling in the spectral representation.

3. Fitting parametric models to locally stationary processes.

In this section we discuss the fitting of a locally stationary model with time varying spectral density \(f_\theta, \theta \in \Theta \subset \mathbb{R}^p \) to observations \(X_{1,T}, \ldots, X_{T,T} \). As motivated in the introduction, we obtain the parameter estimate by minimizing a generalization of the Whittle function where the usual periodogram is replaced by local periodograms over (possibly overlapping) data segments.

Let \(h: \mathbb{R} \to \mathbb{R} \) be a data taper with \(h(x) = 0 \) for \(x \not\in [0, 1) \) and (for \(N \) even),

\[
d_N(u, \lambda) = \sum_{s = 0}^{N-1} h\left(\frac{s}{N}\right) X[uT-\frac{s}{2}, X[uT+\frac{s}{2}] \exp(-i\lambda s),
\]

\[
H_{k,N}(\lambda) = \sum_{s = 0}^{N-1} h\left(\frac{s}{N}\right)^k \exp(-i\lambda s),
\]

\[
I_N(u, \lambda) = \frac{1}{2\pi H_{2,N}(0)} |d_N(u, \lambda)|^2.
\]

Thus, \(I_N(u, \lambda) \) is the periodogram over a segment of length \(N \) with midpoint \([uT] \). The shift from segment to segment is denoted by \(S \); that is, we calculate \(I_N \) over segments with midpoints \(t_j := S(j-1) + N/2 \) (\(j = 1, \ldots, M \)) where \(T = S(M - 1) + N \), or, written in rescaled time, at time points \(u_j := t_j/T \). We now set

\[
\mathcal{L}_T(\theta) = \frac{1}{4\pi} \frac{1}{M} \sum_{j = 1}^{M} \int_{-\pi}^{\pi} \log \frac{I_N(u_j, \lambda)}{\hat{f}_0(u_j, \lambda)} \, d\lambda.
\]
and

$$\hat{\theta}_T = \arg \min_{\theta \in \Theta} \mathcal{L}_T(\theta).$$

The use of a data taper which tends smoothly to zero at the boundaries has two benefits: first, it reduces leakage (as in the stationary case). Second, it reduces the bias due to nonstationarity by downweighting the observations at the boundaries of the segment. It is interesting to see that the taper does not lead to an increase of the asymptotic variance for overlapping segments (Theorem 3.3). Furthermore, some estimates are even approximately independent of the taper (cf. Theorem 4.2 and the discussion after that theorem).

The above motivation of the function $\mathcal{L}_T(\theta)$ is heuristic. We now give a stronger justification for the particular form of $\mathcal{L}_T(\theta)$. Suppose f is the true probability density of the observations X_1, \ldots, X_T and f is the true spectral density. Analogously, let f_θ and f_θ be the corresponding densities of our model. If f and f are Gaussian distributions with mean zero then we have shown in Dahlhaus (1996a, Theorem 3.4) that the asymptotic Kullback-Leibler information divergence is

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E}_f \log(\tilde{f}/f_\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log \frac{f_\theta(u, \lambda)}{f(u, \lambda)} + \frac{\tilde{f}(u, \lambda)}{f_\theta(u, \lambda)} - 1 \right\} d\lambda \, du$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log \frac{f_\theta(u, \lambda)}{f(u, \lambda)} + \frac{\tilde{f}(u, \lambda)}{f_\theta(u, \lambda)} \right\} d\lambda \, du + \text{const},$$

where the constant is independent of the model spectral density. Therefore, we may regard

$$\mathcal{L}(\theta) := \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log \frac{f_\theta(u, \lambda)}{f(u, \lambda)} + \frac{\tilde{f}(u, \lambda)}{f_\theta(u, \lambda)} \right\} d\lambda \, du$$

as a distance between the true process with spectral density $f(u, \lambda)$ and the model with spectral density $f_\theta(u, \lambda)$. The best approximating parameter value from our model class then is

$$\theta_0 := \arg \min_{\theta \in \Theta} \mathcal{L}(\theta).$$

If the model is correct, that is, $f = f_\theta^\star$, then it is easy to show that $\theta_0 = \theta^\star$.

The function $\mathcal{L}_T(\theta)$ is now obtained from $\mathcal{L}(\theta)$ by replacing the unknown true spectral density f by the nonparametric estimate I_N. We conjecture that $\mathcal{L}_T(\theta)$ is an approximation to the exact Gaussian likelihood function [as in the stationary case; cf. Azencott and Dacunha-Castelle, (1986), Chapter XIII]. This means that $\hat{\theta}_T$ is an approximate Gaussian MLE (the benefits of $\hat{\theta}_T$ over the exact MLE are discussed at the end of Section 4).

We now prove convergence of $\hat{\theta}_T$ to θ_0 in the case where the mean is known [i.e., we assume $\mu(u) = 0$]. The situation of an unknown mean is treated in Theorem 3.6 and Remark 3.7. A key step in the proof is the use of
the more general central limit theorem, Theorem A.2 which is of independent interest.

Assumption 3.1. (i) We observe the realization $X_1, \ldots, X_{T,T}$ of a locally stationary process with true transfer function A^0 and mean $\mu(u)$. The true spectral density is $f(u, \lambda) = |A(u, \lambda)|^2$ with A as in Definition 2.1. $A(u, \lambda)$ is differentiable in u and λ with uniformly bounded derivative $(\partial/\partial u)(\partial/\partial \lambda)A$; g_4 is continuous.

(ii) As a model we fit a class of locally stationary processes with spectral density $f(u, \lambda)$ and $g(u, \lambda)$.

(iii) θ_0 exists uniquely and lies in the interior of Θ.

(iv) N, S and T fulfill the relations $T^{1/4} \ll N \ll T^{1/2}/\ln T$ and $S = N$ or $S/N \to 0$.

(v) The data taper $h: \mathbb{R} \to \mathbb{R}$ with $h(x) = 0$ for all $x \notin [0, 1]$ is continuous on \mathbb{R} and twice differentiable at all $x \notin P$ where P is a finite set and $\sup_{x \notin P} |h''(x)| < \infty$.

The assumptions on N, S and h are discussed below Theorem 4.2, in Section 6 and in Remark A.3.

Theorem 3.2. Suppose that Assumption 3.1 holds with $\mu(u) \equiv 0$. Then

$$\hat{\theta}_T \to \theta_0$$

in probability.

Proof. Below we prove that

$$\sup_{\theta} |\mathcal{L}_T(\theta) - \mathcal{L}(\theta)| \to 0$$

in probability. Since $\mathcal{L}(\theta)$ is minimized by θ_0 we have $\mathcal{L}_T(\hat{\theta}_T) \leq \mathcal{L}_T(\theta_0)$ and $\mathcal{L}(\theta_0) \leq \mathcal{L}(\hat{\theta}_T)$ which implies $\mathcal{L}(\hat{\theta}_T) \to \mathcal{L}(\theta_0)$ and therefore also $\hat{\theta}_T \to \theta_0$ in probability. To prove (3.1) we follow the idea of Hannan [1973, Lemma 1] and approximate the function $g(u, \lambda) = f(u, \lambda)^{-1}$ by the Cesaro sum of its Fourier series

$$g^{(L)}(u, \lambda) := \frac{1}{(2\pi)^2} \sum_{\ell, m = -L}^{L} \left(1 - \frac{|\ell|}{L} \right) \left(1 - \frac{|m|}{L} \right) \times \tilde{g}(\ell, m) \exp(-i2\pi u \ell - i\lambda m)$$
with L such that $\sup_{\theta} |g_\theta(u, \lambda) - g_\theta^L(u, \lambda)| \leq \epsilon$. We obtain
\[
\sup_{\theta} |\mathcal{L}_T(\theta) - \mathcal{L}(\theta)| \\
\leq O(M^{-1}) + \frac{\epsilon}{4\pi} \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \{I_N(u_j, \lambda) + f(u_j, \lambda)\} d\lambda \\
+ \frac{1}{16\pi^2} \sum_{\ell, m = -L}^{L} \left(1 - \frac{|\ell|}{L}\right)\left(1 - \frac{|m|}{L}\right) \sup_{\theta} |\hat{g}_\theta(\ell, m)| \\
\times \left|\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \exp(-i2\pi u_j\ell - i\lambda m) \{I_N(u_j, \lambda) - f(u_j, \lambda)\} d\lambda\right|.
\]
By using Lemmas A.8 and A.9 the $|\cdots|$ term converges for all ℓ and m to zero in probability, while $(1/M)\sum I_N(u_j, \lambda) d\lambda$ converges to $\int f(u, \lambda) d\lambda du$. This proves the result. □

Theorem 3.3. Suppose that Assumption 3.1 holds with $\mu(u) \equiv 0$. Then we have
\[
\sqrt{T}(\hat{\theta}_T - \theta_0) \to_{\text{law}} \mathcal{N}(0, c_h \Gamma^{-1}(V + W)
\]
with
\[
\Gamma = \frac{1}{4\pi} \int_{-\pi}^{\pi} (f(u, \lambda) - f_{\theta_0}(u, \lambda)) \nabla^2 f_{\theta_0}(u, \lambda)^{-1} d\lambda du + \frac{1}{4\pi} \int_{-\pi}^{\pi} (\nabla \log f_{\theta_0}(u, \lambda)) (\nabla \log f_{\theta_0}(u, \lambda)) du,
\]
\[
V = \frac{1}{4\pi} \int_{-\pi}^{\pi} f(u, \lambda)^2 \nabla f_{\theta_0}(u, \lambda)^{-1} d\lambda du,
\]
\[
W = \frac{1}{8\pi} \int_{-\pi}^{\pi} f(u, \lambda) f(u, \mu) \nabla f_{\theta_0}^{-1}(u, \lambda) \nabla f_{\theta_0}^{-1}(u, \mu) d\lambda du,
\]
and $c_h = H_4/H_2$ if $S = N$ and $c_h = 1$ if $S/N \to 0$.

Proof. We obtain with the mean value theorem
\[
\nabla \mathcal{L}_T(\hat{\theta}_T) - \nabla \mathcal{L}_T(\theta_0)_i = \left\{\nabla^2 \mathcal{L}_T(\hat{\theta}_T)\right\}_i,
\]
with $|\theta_{ij}^{\hat{\theta}} - \theta_{ij}| \leq |\hat{\theta}_T - \theta_0| (i = 1, \ldots, p)$. If $\hat{\theta}_T$ lies in the interior of Θ, we have $\nabla \mathcal{L}_T(\hat{\theta}_T) = 0$. If $\hat{\theta}_T$ lies on the boundary of Θ, then the assumption that θ_0 is in the interior implies $|\hat{\theta}_T - \theta_0| \geq \delta$ for some $\delta > 0$; that is, we obtain $P(\sqrt{N} |\nabla \mathcal{L}_T(\hat{\theta}_T)| \geq \epsilon) \leq P(|\hat{\theta}_T - \theta_0| \geq \delta) \to 0$ for all $\epsilon > 0$. Thus, the result
follows if we prove:

(i) \(\nabla^2 \mathcal{L}_T(\theta^{(1)}) - \nabla^2 \mathcal{L}_T(\theta_0) \to_p 0; \)

(ii) \(\nabla^2 \mathcal{L}_T(\theta_0) \to_p \Gamma; \)

(iii) \(\sqrt{T} \nabla \mathcal{L}_T(\theta_0) \to_p \mathcal{M}(0, c_h(V + W)). \)

We have

\[
\nabla \mathcal{L}_T(\theta) = \frac{1}{4\pi} \frac{1}{M} \sum_j \int_{-\pi}^\pi \{ I_N(u_j, \lambda) - f_\theta(u_j, \lambda) \} \nabla f_\theta(u_j, \lambda)^{-1} \, d\lambda
\]

and

\[
0 = \nabla \mathcal{L}(\theta_0) = \frac{1}{4\pi} \int_0^\pi \{ f(u, \lambda) - f_{\theta_0}(u, \lambda) \} \nabla f_{\theta_0}(u, \lambda)^{-1} \, d\lambda \, du.
\]

Therefore

\[
\sqrt{T} \nabla \mathcal{L}_T(\theta_0) = \frac{\sqrt{T}}{4\pi} \frac{1}{M} \sum_j \int_{-\pi}^\pi \{ I_N(u_j, \lambda) - f(u_j, \lambda) \} \nabla f_{\theta_0}(u_j, \lambda)^{-1} \, d\lambda
\]

\[
+ O\left(\frac{\sqrt{T}}{M} \right)
\]

which, by Theorem A.2, implies (iii). Furthermore

\[
\nabla^2 \mathcal{L}_T(\theta) = \frac{1}{4\pi} \frac{1}{M} \sum_j \int_{-\pi}^\pi \{ (I_N(u, \lambda) - f_\theta(u, \lambda)) \nabla^2 f_\theta(u, \lambda)^{-1} \nabla f_\theta(u, \lambda)^{-1} \}
\]

\[
- \nabla f_\theta(u, \lambda) \nabla f_{\theta_0}(u, \lambda)^{-1} \} \, d\lambda.
\]

The smoothness conditions and Lemmas A.8 and A.9 imply (i) and (ii). \(\square \)

3.4. **Corollaries and Remarks.** (i) If the model class contains the true model, then we have \(f_{\theta_0} = f. \) In this situation \(\Gamma, V \) and \(W \) simplify. In particular, we have \(V = \Gamma. \)

(ii) If \(g_\lambda(\lambda, \mu) = 0 \) (for example if the process is Gaussian) then \(W = 0. \) If in addition \(f = f_{\theta_0} \) and \(c_h = 1, \) then

\[
\sqrt{T} (\hat{\theta}_T - \theta_0) \to_p \mathcal{M}(0, \Gamma^{-1}).
\]

In Dahlhaus [(1996a), Theorem 3.6] we prove that \(\Gamma \) is the limit of the Fisher information matrix. Thus, \(\hat{\theta}_T \) is (Fisher) efficient in this situation.

(iii) If the model is stationary all \(f_\theta \) do not depend on \(u \) then Theorem 3.3 gives the asymptotic distribution also in the case where the true underlying process is nonstationary (cf. Section 5).

(iv) Alternatively, we get the asymptotic distribution if a nonstationary model is fitted to a stationary process.
(v) If both the model and the true process are stationary, then the above limit-distribution becomes the same as for the classical MLE and the Whittle estimate [cf. Hosoya and Taniguchi, (1982)]. We therefore have proved efficiency also for a new estimate (minimum distance fit to segment spectral estimates) in the classical stationary situation.

3.5 Remark (Model selection). In a practical application, the problem of model selection arises. For example, we might wish to compare an AR(2)-model where the coefficients are polynomials in time with a stationary AR(p) model of higher order. We will not solve this problem satisfactorily in this paper. However, we now give a heuristic derivation of the AIC criterion [Akaike (1974)] in this situation. The criterion is used in the example of Section 6.

As a criterion of the quality of our fit we take $E(\mathcal{L}(\hat{\theta}_T))$, that is, we estimate the expected Kullback–Leibler information divergence between the model and the true process up to a constant. A quadratic expansion of $\mathcal{L}(\theta)$ around θ_0 and $\mathcal{L}_T(\theta)$ around $\hat{\theta}_T$ gives

$$
\mathcal{L}(\hat{\theta}_T) \approx \mathcal{L}(\theta_0) + \frac{1}{2}(\hat{\theta}_T - \theta_0)' \nabla^2 \mathcal{L}(\theta_0)(\hat{\theta}_T - \theta_0)
$$

and

$$
\mathcal{L}_T(\theta_0) \approx \mathcal{L}_T(\hat{\theta}_T) + \frac{1}{2}(\hat{\theta}_T - \theta_0)' \nabla^2 \mathcal{L}_T(\hat{\theta}_T)(\hat{\theta}_T - \theta_0).
$$

Since $E\mathcal{L}_T(\theta_0) \approx \mathcal{L}(\theta_0), \nabla^2 \mathcal{L}(\theta_0) = \Gamma$ and $\nabla^2 \mathcal{L}_T(\hat{\theta}_T) \rightarrow_p \Gamma$ with Γ as in Theorem 3.3, we may now estimate $E\mathcal{L}(\hat{\theta}_T)$ by

$$
\mathcal{L}_T(\hat{\theta}_T) + E(\hat{\theta}_T - \theta_0)\Gamma(\hat{\theta}_T - \theta_0) = \mathcal{L}_T(\hat{\theta}_T) + \frac{1}{T} \text{tr}(\Gamma^{-1}(V + W))
$$

if $S/N \to 0$

with V, W and Γ as in Theorem 3.3. If the model is Gaussian and correctly specified ($f = f_{\theta_0}$), then $W = 0$ and $V = \Gamma$, leading to

$$
= \mathcal{L}_T(\hat{\theta}_T) + \frac{p}{T},
$$

which is the AIC (the AIC usually is $2\mathcal{L}_T(\hat{\theta}_T) + (2p/T) + \text{const.}$)

Apart from the crucial assumption $f = f_{\theta_0}$ there is another problem: inspection of the proof of Lemma A.8 shows that

$$
E\mathcal{L}_T(\theta_0) - \mathcal{L}(\theta_0) = 0\left(\frac{1}{M} + \frac{1}{N^2} + \frac{N}{T}\ln N\right),
$$

which is of a higher order than p/T. To get rid of this problem it may be helpful to look only at the difference of $\mathcal{L}_T(\hat{\theta}_T)$ for different models as in Findley (1985).

If a stationary model is fitted, the above considerations still hold. However, a stationary model usually is fitted with a different empirical likelihood (e.g.,
the “exact” stationary Gaussian likelihood function or with the stationary Whittle function. Those likelihoods will in general not converge to $\mathcal{L}(\theta)$ if the true distribution of the process is nonstationary. However, for Yule–Walker estimates it follows from the proof of Theorem 5.1 that

$$\frac{1}{4\pi} \int \left[\log f_\theta(\lambda) + \frac{I_\tau(\lambda)}{f_\theta(\lambda)} \right] d\lambda$$

converges to $\mathcal{L}(\theta)$ also for nonstationary processes (where $I_\tau(\lambda)$ is the ordinary periodogram). Thus, for AR(k)-processes and Yule–Walker estimates we may take the usual

$$\frac{1}{2} \log \frac{\hat{\theta}_k^2}{2\pi} + \frac{1}{2} + \frac{k + 1}{T}$$

and compare it to the above $\mathcal{L}_T(\hat{\theta}_T) + p/T$ for a nonstationary fit.

Heuristically, the term $\mathcal{L}(\theta_0)$ in (3.2) may be regarded as a bias term (between the true f and the fitted \tilde{f}_{θ_0}) while the second is the variability of the estimate. Thus, minimizing the criterion $\mathcal{L}_T(\hat{\theta}_T) + p/T$ means balancing these two terms (e.g., for a higher model order, the first term usually becomes smaller while the second gets larger).

A careful investigation of the problems arising in model selection goes beyond the scope of this paper. In particular, such an investigation would require different asymptotics where the model order is allowed to increase with the sample size. Another aspect is that nonstationary models usually have a more complicated parameter structure (for example, time varying AR-models are no longer nested; cf. Section 6).

We now discuss the situation where the mean function $\mu(u)$ is unknown and estimated by $\hat{\mu}(t/T)$ at points $u = t/T$. Let

$$I^K(u, \lambda) := \frac{1}{2\pi H_{2,N}(0)} |d_N^{X-\mu}(u, \lambda)|^2,$$

$$\mathcal{L}_T(\theta, \mu) = \frac{1}{4\pi M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left(\log f_\theta(u_j, \lambda) + \frac{I^K(u_j, \lambda)}{f_\theta(u_j, \lambda)} \right) d\lambda,$$

$$\hat{\theta}_T := \arg \min_{\theta \in \Theta} \mathcal{L}_T(\theta, \mu) \quad \text{and} \quad \tilde{\theta}_T := \arg \min_{\theta \in \Theta} \mathcal{L}_T(\theta, \hat{\mu}).$$

The asymptotic properties of $\hat{\theta}_T$ follow from Theorems 3.2 and 3.3.

Theorem 3.6. Suppose that Assumption 3.1 holds and in addition that

$$\hat{\mu}\left(\frac{t}{T}\right) - \mu\left(\frac{t}{T}\right) = o_p\left(\left(\frac{N}{T}\right)^{1/2}\right)$$

\[(3.3)\]
and

\begin{equation}
\left\{ \hat{\mu} \left(\frac{t}{T} \right) - \mu \left(\frac{t}{T} \right) \right\} = o_p \left(\left(NT \right)^{-1/2} \right)
\end{equation}

uniformly in \(t \). Then

\[\sqrt{T} \left(\hat{\theta}_T - \hat{\theta}_T \right) \to_p 0, \]

that is, \(\hat{\theta}_T \) is consistent and has the same asymptotic distribution as \(\hat{\theta}_T \).

The result is proved in the Appendix.

Remark 3.7. If the trend function is parametric with parameter \(\tau \), then conditions (3.3) and (3.4) are fulfilled for \(\hat{\mu}(u) = \mu_\tau(u) \), for example, where \(\hat{\tau} \) is the least squares estimate. For a kernel estimate \(\hat{\mu} \) with bandwidth \(b_T \) we need a bandwidth \(b_T \gg T^{1/2} \). This means that the segment length of the local periodogram is not long enough for the mean estimate.

4. **Fitting autoregressive models with time varying coefficients.** In this section we discuss autoregressive models with time varying coefficients. Such models have been studied before by Subba Rao (1970), Grenier (1983), Hallin (1978), Kitagawa and Gersch (1985) and Mélard and Herteleer-de Schutter (1989), for example. For simplicity we assume throughout this section that the mean of the process is zero. Let \(X_{t,T} \) be a solution of the system of difference equations

\begin{equation}
\sum_{j=0}^{p} a_j \left(\frac{t}{T} \right) X_{t-j,T} = \sigma \left(\frac{t}{T} \right) \varepsilon_t \quad \text{for} \quad t \in \mathbb{Z},
\end{equation}

where \(a_\sigma(u) = 1 \) and the \(\varepsilon_t \) are independent random variables with mean zero and variance 1. We assume that \(\sigma(u) \) and the \(a_j(u) \) are continuous on \(\mathbb{R} \) with \(\sigma(u) = \sigma(0), \quad a_j(u) = a_j(0) \) for \(u < 0; \quad \sigma(u) = \sigma(1); \quad a_j(u) = a_j(1) \) for \(u > 1 \) and differentiable for \(u \in (0, 1) \) with bounded derivatives. The existence of such a process \(X_{t,T} \) has been proved by Künsch (1995); see also Miller (1968). In Dahlhaus [(1996a), Theorem 2.3] we prove that \(X_{t,T} \) is locally stationary with spectral density

\[f(u, \lambda) = \frac{\sigma^2(u)}{2\pi} \left| \sum_{j=0}^{p} a_j(u) \exp(i \lambda j) \right|^{-2}. \]

The estimation equations. Suppose now that \(a_\sigma(u) = (a_\sigma^1(u), \ldots, a_\sigma^p(u)) \) and \(a_\sigma^2(u) \) depend on a finite dimensional parameter (they may be, e.g., polynomials in time). With the above form of the spectrum \(f_\sigma(u, \lambda) \) and Kolmogorov’s formula (cf. Brockwell and Davis (1987), Theorem 5.8.1) we
obtain after some straightforward calculations,
\[
\mathscr{L}_T(\theta) = \frac{1}{2M} \sum_{j=1}^{M} \left\{ \log \sigma_\phi^2(u_j) + \frac{1}{\sigma_\phi^2(u_j)} \right. \\
\times \left[\left(\Sigma_N(u_j) a_\phi(u_j) + C_N(u_j) \right)' \right. \\
\times \Sigma_N(u_j)^{-1} \left(\Sigma_N(u_j) a_\phi(u_j) + C_N(u_j) \right) \\
\left. + c_N(u_j, 0) - C_N(u_j)' \Sigma_N(u_j)^{-1} C_N(u_j) \right] \right\}
\]

with
\[
c_N(u, j) = \int_{-\pi}^{\pi} I_N(u, \lambda) \exp(i \lambda j) \, d\lambda \\
= H_{2, N}(0)^{-1} \sum_{s, t=0}^{N-1} h \left(\frac{s}{N} \right) h \left(\frac{t}{N} \right) X_{[T \eta]}[T \in \pi \to N/2 + s + 1, T] X_{[T \eta]}[T \in \pi \to N/2 + t + 1, T],
\]
\[
C_N(u) = (c_N(u, 1), \ldots, c_N(u, p))' \quad \text{and} \quad \Sigma_N(u) = \{c_N(u, i - j)\}, i, j = 1, \ldots, p.
\]

[The analogous relation holds for \(\mathscr{L}(\theta) \) with \((1/M)\Sigma_j\) replaced by the integral over time and \(I_N(u, \lambda)\) replaced by the true spectrum \(f(u, \lambda)\).]

A nice explanation of the nature of the estimate \(\hat{\theta}_T \) can be obtained from the following heuristics. The Yule–Walker estimate of \(a(u) \) in the segment of length \(N \) with midpoint \(u \) is
\[
\hat{a}_N(u) = -\Sigma_N(u)^{-1} C_N(u)
\]
with asymptotic variance proportional to \(\sigma^4(u) \Sigma(u)^{-1} \), and
\[
\hat{\sigma}_N^2(u) = c_N(u, 0) - C_N(u)' \Sigma_N(u)^{-1} C_N(u)
\]
with asymptotic variance \(2\sigma^4(u) \). If the model is reasonably close to the true process we can expect \(\hat{\sigma}_N^2(u) = \hat{\sigma}_N^2(u) \). Since \(\log x = (x - 1) - \frac{1}{2}(x - 1)^2 + o((x - 1)^2) \), we therefore obtain for \(\mathscr{L}_T(\theta) \) in a neighborhood of the minimum.
\[
\mathscr{L}_T(\theta) \approx \frac{1}{2M} \sum_{j=1}^{M} \left\{ \left(\hat{\sigma}_N^2(u_j) \right)^{-1} \right. \\
\times \left(\sigma_\phi^2(u_j) - \hat{\sigma}_N^2(u_j) \right)^2 \\
\left. + \frac{1}{2M} \sum_{j=1}^{M} (a_\phi(u_j) - \hat{a}_N(u_j))' \hat{\sigma}_N^2(u_j)^{-1} \\
\times \Sigma_N(u_j)' (a_\phi(u_j) - \hat{a}_N(u_j)) \\
\right. \\
\left. + \frac{1}{2} \right\}
\]

(4.2)

Therefore, \(\hat{\theta}_T \) is (approximately) obtained by a weighted least squares fit of \(a_\phi(u) \) and \(\sigma_\phi^2(u) \) to the Yule–Walker estimates on the segments [note that
the Yule–Walker estimate with data taper has good small sample properties—cf. Dahlhaus (1988)]. If the parameters separate, that is, \(\theta = (\tau, \nu) \) with \(a_\theta(u) = a_\tau(u) \) and \(\sigma^2_\theta(u) = \sigma^2_\tau(u) \), we can estimate \(\tau \) and \(\nu \) separately.

The above representation justifies the use of graphical tools for model selection and diagnostics on a plot of the Yule–Walker estimate over time. A weighted least squares fit to a nonparametric estimate of the AR-coefficients weighted by the asymptotic inverse of the variance has been suggested for time varying AR(1) processes by Young (1994). He used the estimate as a tool for fitting nonlinear time series models.

We now give an explicit formula for \(\theta_T \) if the \(a_\theta(u) \) are linear in \(\theta \) and \(\sigma^2(u) \) is constant over time. Suppose that some functions \(f_i(u), \ldots, f_K(u) \) are given [e.g., the polynomials \(f_k(u) = u^{k-1} \)] and we fit the model \(a_j(u) = \sum_{k=1}^K b_{jk} f_k(u) \) with \(\sigma^2 \) constant. Let \(b = (b_{11}, \ldots, b_{1K}, \ldots, b_{p1}, \ldots, b_{pK}) \), that is, \(\theta = (b', \sigma^2) \). Let further \(F(u) \) be the matrix \(F(u) = (f_i(u)f_j(u))_{i,j=1,\ldots,K} \) and \(f(u) = (f_1(u), \ldots, f_K(u))' \). If \(A \otimes B \) denotes the left direct product of the matrices \(A \) and \(B \) then direct calculations show that the parameters that minimize \(\mathcal{L}_T(\theta) \) are given by

\[
\hat{b}_T = -\left(\frac{1}{M} \sum_{j=1}^{M} F(u_j) \otimes \Sigma_N(u_j) \right)^{-1} \left(\frac{1}{M} \sum_{j=1}^{M} f(u_j) \otimes C_N(u_j) \right)
\]

and

\[
\hat{\sigma}^2_T = \frac{1}{M} \sum_{j=1}^{M} c_N(u_j, 0) + \hat{b}_T' \frac{1}{M} \sum_{j=1}^{M} f(u_j) \otimes C_N(u_j),
\]

that is, we obtain a linear equation system similar to the Yule–Walker equations. In case the model is incorrect, we obtain the same equations for the parameter \(\theta_0 = (b_0', \sigma^0) \), where \((1/M)\Sigma_j \) is replaced by the integral over time and \(\Sigma_N \) and \(C_N \) are replaced by the corresponding theoretical values. In particular, the minimizing values \(\theta_0 \) and \(\hat{\theta}_N \) exist and are unique. If \(\sigma^2 \) is not modelled to be constant then the estimation equations are not linear.

If different submodels (e.g., polynomials of different orders) are fitted to the \(a_i(u) \) for different \(j \), the estimate is obtained as in (4.3) and (4.4) after deleting the corresponding columns and rows in

\[
\frac{1}{M} \sum_{j=1}^{M} F(u_j) \otimes \Sigma_N(u_j)
\]

and

\[
\frac{1}{M} \sum_{j=1}^{M} f(u_j) \otimes C_N(u_j).
\]

Least squares estimates. We now prove that a weighted least squares estimate is an equivalent estimate for autoregressive models. Let \(f_\theta(u, \lambda) = \)

...
\((a_u^2(u)/2\pi)k_u(u, \lambda)\) where
\[
k_u(u, \lambda) = \left| \sum_{j=0}^{p} a_j^u(u) \exp(i\lambda j) \right|^{-2}
\]
where \(a_u^0(u) = 1,\)
\[
\hat{\mathcal{L}}_T(\theta) = \frac{1}{2} \sum_{t=p+1}^{T} \log \frac{\sigma^2(t/T)}{2\pi} + \frac{1}{\sigma^2(t/T)} \left| \sum_{j=0}^{p} a_j^t \left(\frac{t}{T} \right) X_{t-j,T} \right|^2
\]
and
\[
\hat{\theta}_T = \arg \min_{\theta \in \Theta} \hat{\mathcal{L}}_T(\theta).
\]
To derive the asymptotic properties of \(\hat{\theta}_T\) we need the following lemma.

Lemma 4.1. Suppose \(X_{i,T}\) is a locally stationary process with mean \(\mu(u) = 0\) and uniformly bounded spectral density and \(\phi: [0, 1] \to \mathbb{R}\) is differentiable with bounded derivative. Suppose \(S/N \to 0\). Then we have for all fixed \(i, k, t_0\) and \(t_1 \in \mathbb{N}_0,\)
\[
\frac{1}{M} \sum_{j=1}^{M} \phi(u_j)c_N(u_j, k) = \frac{1}{T} \sum_{t=t_0}^{T-t_1} \phi \left(\frac{t}{T} \right) X_{t-i,T}X_{t+k-i,T} = O_p \left(\frac{N}{T} \right) + O_p \left(\frac{S^2}{N^2} \right).
\]
If \(\phi = \phi_u\) and \(\phi_u\) and \((\partial/\partial u)\phi_u\) are uniformly bounded in \(\theta\), then the supremum over \(\theta\) of the above difference is also of order \(O_p(N/T) + O_p(S^2/N^2)\).

Proof. We have with \(Y_j := X_{j,T}X_{j+|k|,T}\) and \(\overline{h}_s = h(s/N)h(s + |k|/N),\)
\[
\frac{1}{M} \sum_{j=1}^{M} \phi(u_j)c_N(u_j, k) = \frac{1}{M} \sum_{j=1}^{M} \phi(u_j) \frac{1}{H_{2,N}(0)} \sum_{s=0}^{N-1-|k|} \overline{h}_s Y_{S(j-1)+s+1}
\]
\[
= \frac{1}{M} \sum_{j=1}^{M} \frac{1}{H_{2,N}(0)} \sum_{s=0}^{N-1-|k|} \phi \left(\frac{S(j-1) + s + 1}{T} \right)
\]
\[
\times \overline{h}_s Y_{S(j-1)+s+1} + O_p \left(\frac{N}{T} \right)
\]
\[
= \frac{1}{MS} \sum_{t=1}^{T-|k|} \phi \left(\frac{t}{T} \right) Y_t c_t + O_p \left(\frac{N}{T} \right),
\]
where
\[
c_t = \frac{S}{H_{2,N}(0)} \sum_{s \in S_t} \overline{h}_s
\]
with
\(S_t = \{t - S(j-1) - 1|j = 1, \ldots, M\} \cap \{0, \ldots, N-1-|k|\}.\)
The smoothness properties of \(h \) together with \(h(0) = h(1) = 0 \) imply
\[
c_t = 1 + O\left(\frac{S^2}{N^2}\right)
\]
uniformly in \(t \).

Therefore, the above expression is equal to
\[
\frac{1}{T} \sum_{t=1}^{T-|k|} \phi\left(\frac{t}{T}\right) Y_t + O_p\left(\frac{N}{T}\right) + O_p\left(\frac{S^2}{N^2}\right)
\]
\[
= \frac{1}{T} \sum_{t=t_0}^{T-|t|} \phi\left(\frac{t}{T}\right) X_{t-i,T} X_{t+k-i,T} + O_p\left(\frac{N}{T}\right) + O_p\left(\frac{S^2}{N^2}\right). \quad \square
\]

Theorem 4.2. Suppose that Assumption 3.1 holds with \(\mu(u) \equiv 0 \) and \(S \) fulfills \(TS^4/N^4 \to 0 \). Then
\[
\sqrt{T} (\tilde{\theta}_T - \hat{\theta}_T) \to_p 0
\]
(also in the misspecified case), that is, \(\tilde{\theta}_T \) has the same asymptotic distribution as \(\hat{\theta}_T \).

Proof. We only give a sketch. We have in the AR case
\[
\mathcal{L}_T(\theta) = \frac{1}{2} \sum_{j=1}^{M} \sum_{\ell=0}^{P} a_\ell^2(u_j) \frac{a_\ell^2(u_j) c_{N}(u_j, \ell - m)}{\log \left(\frac{\alpha_0^2(u_j)}{2\pi}\right)}
\]
\[
= \frac{1}{\alpha_0^2(u_j)} \sum_{\ell, m=0}^{P} a_\ell^2(u_j) a_m^2(u_j) c_{N}(u_j, \ell - m).
\]
Lemma 4.1 therefore gives
\[
\sup_{\theta} \left| \mathcal{L}_T(\theta) - \tilde{\mathcal{L}}_T(\theta) \right| = o_p(1),
\]
which implies as in Theorem 3.2 that
\[
\tilde{\theta}_T \to_p \theta_0.
\]
In the same way we get
\[
\sqrt{T} \left(\nabla \mathcal{L}_T(\theta) - \nabla \tilde{\mathcal{L}}_T(\theta) \right) = o_p(1)
\]
and
\[
\sup_{\theta} \left| \nabla^2 \mathcal{L}_T(\theta) - \nabla^2 \tilde{\mathcal{L}}_T(\theta) \right| = o_p(1).
\]
By using the same Taylor expansion for \(\tilde{\theta}_T \) and \(\tilde{\mathcal{L}}_T \) as in the proof of Theorem 3.3 we now obtain the result. \(\square \)

It is remarkable that Theorem 4.2 holds regardless of the choice of the data taper and for most of the \(S \) and \(N \). The effect of the choice of these parameters can probably be seen only in higher order asymptotics. This
shows the low sensitivity of $\tilde{\theta}_T$ with respect to the choice of S, N and h. Nevertheless, an adaptive selection procedure (particularly for N) would be worthwhile (see also Section 6).

In the general case it is difficult to calculate $\tilde{\theta}_T$. However, in the homoscedastic case $\sigma_\theta^2(t/T) = \sigma^2$, that is, $\theta = (\sigma^2, \tau)$, we obtain

(4.5) $\tilde{\tau}_T = \arg \min_T \frac{1}{T} \sum_{t=p+1}^{T} \left| \sum_{j=0}^{p} a_j^T \left(\frac{t}{T} \right) X_{t-j,T} \right|^2$

and

$\hat{\sigma}_T^2 = \frac{1}{T} \sum_{t=p+1}^{T} \left| \sum_{j=0}^{p} a_j^T \left(\frac{t}{T} \right) X_{t-j,T} \right|^2$.

If the a_j^T are linear in τ (as in the polynomial case) we therefore have a linear least squares problem.

We now compare the minimum distance estimate $\tilde{\theta}_T$ to the least squares approach in the heteroscedastic case. Suppose that the parameters separate, that is, $\theta = (\tau, \kappa)$ where $a_0^\theta(u) = a_0^\kappa(u)$ and $\sigma_\theta^2(u) = \sigma_\kappa^2(u)$. Thus, we have

$f_\theta(u, \lambda) = \frac{\sigma_\kappa^2(u)}{2\pi} k_\tau(u, \lambda)$.

Kolmogorov’s formula gives

$\int_{-\pi}^{\pi} \log f_\theta(u, \lambda) \, d\lambda = 2\pi \log \frac{\sigma_\kappa^2(u)}{2\pi}$.

Therefore,

$\int_{-\pi}^{\pi} f_\theta(u, \lambda) \nabla_\lambda f_\theta(u, \lambda)^{-1} \, d\lambda = 0$

and

$\int_{-\pi}^{\pi} f_\theta(u, \lambda) \nabla_\lambda^2 f_\theta(u, \lambda)^{-1} \, d\lambda = \int_{-\pi}^{\pi} (\nabla_\lambda \log f_\theta(u, \lambda))(\nabla_\lambda \log f_\theta(u, \lambda))' \, d\lambda$.

Similarly,

$\int_{-\pi}^{\pi} (\nabla_\lambda \log f_\theta(u, \lambda))(\nabla_\kappa \log f_\kappa(u, \lambda))' \, d\lambda = 0$.

If the model is correctly specified [$f = f_\theta_0$ where $\theta_0 = (\tau_0, \kappa_0)$] we therefore obtain for the minimum distance estimate $\tilde{\theta}_T = (\tilde{\tau}_T, \tilde{\kappa}_T)$ from Theorem 3.3 that

$\sqrt{T}(\tilde{\tau}_T - \tau_0) \to_{\mathcal{D}} N(0, V_{\tau_0}^{-1})$,

where

$V_{\tau_0} = \int_0^{1/T} \nabla(u) \, du$

and

$\nabla(u) = \frac{1}{4\pi} \int_{-\pi}^{\pi} (\nabla_\lambda \log f_{\theta_0}(\lambda, u))(\nabla_\lambda \log f_{\theta_0}(\lambda, u))' \, d\lambda$.
We now study the behavior of the least squares estimate $\hat{\tau}_T$ as defined in (4.5) (κ may be estimated afterwards, for example, by some fit of $\sigma^2_s(t/T)$ to the estimated residuals at time point t/T). The following theorem implies that the LSE is less efficient in the heteroscedastic case. For simplicity we restrict ourselves to the case where the model is correct.

Theorem 4.3. Suppose Assumption 3.1(i)--(iii) holds with $\mu(u) \equiv 0$ and $f = f_{\theta_0}$. Then we have

$$\sqrt{T} (\hat{\tau}_T - \tau_0) \rightarrow_{p} \mathcal{N}(0, U),$$

where

$$U = \left(\int_0^1 \sigma^2_{\theta_0}(u) \nabla(u) \, du \right)^{-1} \left(\int_0^1 \sigma^4_{\theta_0}(u) \nabla(u) \, du \right) \left(\int_0^1 \sigma^2_{\theta_0}(u) \nabla(u) \, du \right)^{-1}.$$

We have $U \geq V_{\tau_0}^{-1}$ with $U = V_{\tau_0}^{-1}$ if and only if $\sigma^2_{\theta_0}(u)$ is constant.

Proof. We only give a sketch. As in Theorem 4.2 we can show by using Lemma 4.1 that $\sqrt{T} (\hat{\tau}_T - \tilde{\tau}_T) \rightarrow_{p} 0$ where $\tilde{\tau}_T$ minimizes

$$\tilde{\mathcal{L}}(\tau) := \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} I_N(u, \lambda) \, d\lambda$$

where $S = 1$ and N and h fulfill Assumption 3.1(iv) and (v). It is easy to show that τ_0 minimizes

$$\mathcal{L}(\tau) := \int_{-\pi}^{\pi} \int_0^1 \frac{f_{\theta_0}(u, \lambda)}{k_z(u, \lambda)} \, d\lambda \, du.$$

It now follows in exactly the same way as in the proofs of Theorem 3.2 and 3.3 that

$$\tilde{\tau}_T \rightarrow_{p} \tau_0$$

and

$$\sqrt{T} (\hat{\tau}_T - \tau_0) \rightarrow_{p} \mathcal{N}(0, \tilde{\Gamma}^{-1} \tilde{V} \tilde{\Gamma}^{-1}),$$

where

$$\tilde{\Gamma} = \frac{1}{4\pi} \int_{-\pi}^{\pi} \int_0^1 f_{\theta_0}(u, \lambda) \nabla^2 k_z(u, \lambda) \, d\lambda \, du = \frac{1}{2\pi} \int_0^1 \sigma^2_{\theta_0}(u) \nabla(u) \, du$$

and

$$\tilde{V} = \frac{1}{4\pi} \int_{-\pi}^{\pi} \int_0^1 f_{\theta_0}(u, \lambda)^2 (\nabla z(u, \lambda))^2 \, d\lambda \, du = \frac{1}{4\pi} \int_0^1 \sigma^4_{\theta_0}(u) \nabla(u) \, du.$$
which proves the first part. The matrix

\[
\begin{pmatrix}
\int_0^1 \sigma_{\kappa_0}^4(u) \nabla(u) \, du & \int_0^1 \sigma_{\kappa_0}^2(u) \nabla(u) \, du \\
\int_0^1 \sigma_{\kappa_0}^2(u) \nabla(u) \, du & \int_0^1 \nabla(u) \, du
\end{pmatrix}
\]

is nonnegative definite which leads with Theorem 12.2.21(5) of Graybill (1983) to \(U \geq V_{\tau_0}^{-1} \). If \(\sigma_{\kappa_0}^2(u) \) is constant we have \(U = V_{\tau_0}^{-1} \). Conversely let \(U = V_{\tau_0}^{-1} \). Theorem 8.2.1(1) of Graybill implies that the matrix is singular, that is, there exists a vector \((x', y') \neq 0\) with

\[
\int_0^1 (\sigma_{\kappa_0}^2(u) x + y) \nabla(u) (\sigma_{\kappa_0}^2(u) x + y) \, du = 0.
\]

Since \(\nabla(u) \) is positive definite we have \(\sigma_{\kappa_0}^2(u) = -y_i/x_i \) which implies the result. □

Thus, the least squares estimate is less efficient than the minimum distance estimate \(\hat{\theta}_T \) in the heteroscedastic case. It is heuristically clear that a weighted least squares estimate will be fully efficient. However, such an estimate has no computational advantages since the weights depend on the unknown parameters and the estimation equations therefore are nonlinear.

A third candidate for estimation is the exact (Gaussian) maximum likelihood estimate which is also efficient [cf. Dahlhaus (1996b)]. Since a time varying AR-model can be written in state space form the MLE can be calculated by using the prediction error decomposition together with a numerical optimization procedure. However, the system matrices in the state space form are time varying, which leads to an extremely large computation time. Therefore, the MLE is not a suitable candidate—in particular if different models are fitted to the data in a model selection process.

The following procedure seems to be reasonable for autoregressive models in a practical situation: for homoscedastic models one uses the linear equation system (4.3) and (4.4) together with the AIC as in Remark 3.5 for model selection and a graphical investigation of the nonparametric estimate \(\hat{a}(u) \) for diagnostic checking. An example is given in Section 6. For heteroscedastic errors one may minimize the modified likelihood (4.2) which also leads to linear estimation equations (for models linear in the parameters). The final estimate may be improved by a one-step MLE. Of course a detailed simulation study is necessary to verify these suggestions.

We finally remark that the minimum distance estimate \(\hat{\theta}_T \) can be computed for arbitrary locally stationary models while for the LSE and the state space representation of the MLE a special form of the model is necessary.

5. Fitting stationary models to nonstationary processes. We now discuss the situation where the fitted model is stationary, that is, \(f_n^*(\lambda) = \)}
\(f_0(u, \lambda) \) does not depend on \(u \). In this situation we obtain
\[
\mathcal{Z}(\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log f_0(\lambda) + \frac{f_1^1 f(u, \lambda) \, du}{f_0^1(\lambda)} \right\} \, d\lambda
\]
and therefore, for \(\theta_0 = \arg \min_\theta \mathcal{Z}(\theta) \) the equations
\[
\int_{-\pi}^{\pi} \left(\int_0^1 f(u, \lambda) \, du \right) \nabla f_0^{-1}(\lambda) \, d\lambda = \int_{-\pi}^{\pi} f_0(\lambda) \nabla f_0^{-1}(\lambda) \, d\lambda.
\]
Thus \(\theta_0 \) is that parameter for which \(f_0(\lambda) \) approximates the time-integrated true spectrum \(f_0^1(u, \lambda) \, du \) best.

In the case of a stationary AR\((p) \)-model, the above equations are the (theoretical) Yule–Walker equations, that is, we obtain for \(\theta_0 = (a'_0, \sigma_0^2)^T \) with \(a_0 = (a_01, \ldots, a_{0p})^T \)
\[
a_o = -\Sigma^{-1} C \quad \text{and} \quad \sigma_0^2 = c(0) + a'_0 C
\]
with
\[
c(k) = \int_{-\pi}^{\pi} \left(\int_0^1 f(u, \lambda) \, du \right) \exp(i\lambda k) \, d\lambda,
\]
\[
C = (c(1), \ldots, c(p))^T \quad \text{and} \quad \Sigma = \{ c(i-j) \}_{i,j=1,\ldots,p}.
\]
For \(\hat{\theta}_T = (\hat{a}_T^T, \hat{\sigma}_T^2)^T \) we obtain the corresponding equations
\[
\hat{a}_T = -\hat{\Sigma}_T^{-1} \hat{C}_T \quad \text{and} \quad \hat{\sigma}_T^2 = c_T(0) + \hat{a}_T \hat{C}_T
\]
with
\[
\hat{c}_T(k) = \int_{-\pi}^{\pi} \left(\frac{1}{M} \sum_{j=1}^{M} I_N(u_j, \lambda) \right) \exp(i\lambda k) \, d\lambda = \frac{1}{M} \sum_{j=1}^{M} c_N(u_j, k),
\]
\[
\hat{C}_T = (\hat{c}_T(1), \ldots, \hat{c}_T(p))^T \quad \text{and} \quad \hat{\Sigma}_T = \{ \hat{c}_T(i-j) \}_{i,j=1,\ldots,p}.
\]
The asymptotic distribution of \(\sqrt{T}(\hat{\theta}_T - \theta_0) \) is given in Theorem 3.3. Straight-forward calculations give in this case
\[
\Gamma = \begin{pmatrix}
\frac{1}{\sigma^2} c_0(i-j)_{i,j=1,\ldots,p} & 0 \\
0 & \frac{1}{2\sigma_0^4}
\end{pmatrix}
\]
The simplification of the matrices \(V \) and \(W \) is only minor. [Note that if the true process is also stationary with \(f(\lambda) = f_0(\lambda) \) and \(g(\lambda, -\lambda, \mu) \) is constant, then \(W \) disappears—however, this does not hold in the nonstationary case.]

However, \(\theta_T \) is not the estimate one would usually use for stationary models. For example, for AR-processes one would use (tapered) Yule–Walker estimates, the Burg algorithm or (Gaussian) maximum likelihood estimates. In the following theorem we prove that Yule–Walker estimates have the same asymptotic behavior as \(\theta_T \) if the true process is (possibly) nonstationary.
Theorem 5.1. Suppose the true process is of the form (2.3) with \(\mu(u) = 0 \). Let \(\hat{\theta}_T = (\hat{\alpha}_T, \hat{\sigma}^2) \) be the Yule–Walker estimate for a stationary AR(p)-model, that is,

\[
\hat{\alpha}_T = -\tilde{\Sigma}_T^{-1}\tilde{C}_T, \quad \hat{\sigma}^2 = \tilde{\Sigma}_T(0) + \tilde{\alpha}_T\tilde{C}_T
\]

with \(\tilde{\Sigma}_T(k) = (1/T)\sum_{j=1}^{T-k}X_jX_{j+k} \), \(\tilde{C}_T = (\tilde{\epsilon}_T(1), \ldots, \tilde{\epsilon}_T(p))' \) and \(\tilde{\Sigma}_T = (\tilde{\epsilon}_T(i - j), i, j = 1, \ldots, p \). If \(\hat{\theta}_T \) is as in Section 3 with \(S = 1 \) and \(N \) and a taper as in Assumption 3.1, then \(\sqrt{T}(\hat{\theta}_T - \theta_0) \) converges to zero in probability and

\[
\sqrt{T}(\hat{\theta}_T - \theta_0) \rightarrow \mathcal{N}(0, \Gamma^{-1}(V + W)\Gamma^{-1})
\]

with \(\Gamma \) as above and \(V, W \) as in Theorem 3.3.

Proof. With \(\theta_0 \) as above we have

\[
-\left(\tilde{\Sigma}_T a_0 + \tilde{C}_T\right) = \tilde{\Sigma}_T(\hat{\alpha}_T - a_0)
\]

and

\[
-\left(\tilde{\Sigma}_T a_0 + \tilde{C}_T\right) = \tilde{\Sigma}_T(\hat{\alpha}_T - a_0).
\]

Thus, it is sufficient to prove that \(\sqrt{T}(\tilde{\epsilon}_T(k) - \hat{\epsilon}_T(k)) \) tends to zero in probability. Since \(\tilde{\epsilon}_T(k) = (1/M)\sum_{j=1}^{M}c_N(u_j, k) \), this follows from Lemma 4.1. Therefore, the first assertion is proved if we choose \(T^{1/4} \ll N \ll T^{1/2} \). The asymptotic normality then follows from Theorem 3.3. \(\square \)

For tapered Yule–Walker estimates, that is, the corresponding estimate with

\[
\tilde{\epsilon}_T(k) = \frac{1}{H_{2,q}(0)}\sum_{j=1}^{T-k}h_0\left(\frac{j}{T}\right)h_0\left(\frac{j+|k|}{T}\right)X_jX_{j+|k|}
\]

(with a taper \(h_0 \) that may be different from the taper \(h \) used in \(\hat{\theta}_T \)), we expect the following result: \(\theta_T \) will no longer converge to \(\theta_0 \) but to

\[
\theta' = \arg\min_{\lambda} \frac{1}{4\pi} \int_{-\pi}^{\pi} \left\{ \log f_\lambda + \frac{\int_0^1 h_\lambda(u)f(u,\lambda)du}{f_\lambda} \right\} d\lambda
\]

with \(h_\lambda(u) = (\int_0^1 h_\lambda^2(v)dv)^{-1}h_\lambda^2(u) \). We conjecture that \(\sqrt{T}(\tilde{\epsilon}_T(k) - \hat{\epsilon}_T(k)) \) is asymptotically normal with \(\Gamma, V, W \) as in Theorem 3.3 where \(\int_0^1 \cdots du \) is always replaced by \(\int_0^1 h_\lambda(u) \cdots du \).

A few remarks on the use of data tapers seem to be necessary. For stationary time series, tapered estimates are less efficient than nontapered estimates or equally efficient if the taper disappears asymptotically [cf. Dahlhaus (1988)]. On the other hand, their small sample behavior is very often much better, in particular the resolution problems of the nontapered estimate are cured. In this paper, Theorem 5.1 says that the asymptotic behavior of the nontapered Yule–Walker estimate is the same as of the (tapered) estimate \(\hat{\theta}_T \). However, for small samples, we conjecture that \(\hat{\theta}_T \) will be much better.
6. A simulation example. We now briefly present a simulation example for the estimate $\hat{\theta}_T$ in a misspecified situation. If we have a locally stationary process with smoothly varying characteristics, then it is likely that $\hat{\theta}_T$ leads to reasonable results for a large sample size, since then the data within each segment are close to a realization of a stationary process. The interesting question now is how the estimate behaves for moderate or small sample sizes, that is, whether the asymptotics together with the model of local stationarity yields to a reasonable description also for small data sets.

We have generated $T = 128$ observations of a time varying AR(2)-process (4.1) with parameters as described below. Several models were fitted by using equations (4.3) and (4.4).

The choice of the data taper is different from stationary time series. Theorem 3.3 says that there is no efficiency loss for overlapping segments. Theorem 4.2 even means that all estimates are stochastically equivalent to the least squares estimates, regardless of the taper. We have used the 100% Tukey–Hanning taper $h(x) = \frac{1}{2}[1 - \cos(2\pi x)]$. This taper has, in addition to good bias properties with respect to leakage, also the advantage that the observations at the edge of each segment are weighted down which makes the estimate heuristically less sensitive against the instationarity within the segments.

The shift should in general be as small as possible—the theoretical results hold even for $S = 1$. However, this choice is very computer intensive. In the simulation, we chose $S = 2$. For the segment length, we chose $N = 16$ (i.e., $M = 57$). We also tried other parameters. The results turned out to be not very sensitive to the choice of N, S and h which is in accordance with Theorem 4.2. Nevertheless, an adaptive choice of N could be beneficial (see the remarks at the end of this section).

As the parameters of the true AR(2)-process we chose $\sigma(u) = 1$,

$$a_1(u) = -1.8 \cos(1.5 - 4\pi u),$$
$$a_2(u) = +0.81,$$

together with Gaussian innovations ϵ_t, that is, for u fixed, the roots of the characteristics polynomial are

$$\frac{1}{0.9} \exp[\pm i(1.5 - 4\pi u)].$$

Figure 1 shows the observations. As could be expected from the above parameters they show a periodic behavior with time varying period-length. The left picture of Figure 2 shows the true time varying spectrum of the process. We have fitted a time varying AR-model of order p to the data where the coefficients were modeled as polynomials with different orders. Thus, we have fitted the model

$$a_j(u) = \sum_{k=0}^{K_j} b_{jk} u^k, \quad j = 1, \ldots, p$$

$$\sigma^2 = c$$
to the data. The model orders \(p, K_1, \ldots, K_p \) were chosen by minimizing the AIC criterion

\[
\text{AIC}(p, K_1, \ldots, K_p) = \log \hat{\sigma}^2(p, K_1, \ldots, K_p) + 2 \left(p + 1 + \sum_{j=1}^{p} K_j \right) / T.
\]

Table 1 shows these values for \(p = 2 \) and different \(K_1 \) and \(K_2 \). The values for other \(p \) turned out to be larger. Thus, a model with \(p = 2, K_1 = 6, K_2 = 0 \) was fitted.

The corresponding spectrum is the right picture of Figure 2. The difference to the true spectrum is plotted in Figure 3. The function \(a_2(u) \) and its estimate are plotted in Figure 4. For \(\hat{a}_2(u) \) we obtained 0.71 (a constant was fitted because of \(K_2 = 0 \)) while the true \(a_2(u) \) was 0.81. Furthermore, \(\hat{\sigma}_2^2 = 1.71 \) while \(\sigma^2 = 1.0 \).

The quality of the fit is remarkable. However, two negative effects can be observed. The fit of \(a_2(u) \) becomes rather bad outside \(u_1 = 0.063 \) and \(u_M = 0.938 \). This is not surprising, due to the behavior of a polynomial and the fact that the use of \(L_T(\theta) \) as a distance only punishes bad fits inside the interval

![Figure 1](image1.png)

Fig. 1. \(T = 128 \) realizations of a time varying AR-model.

![Figure 2](image2.png)

Fig. 2. True and estimated spectrum of a time varying AR-process.
Table 1

Values of AIC for $p = 2$ and different polynomial orders

<table>
<thead>
<tr>
<th>K_1</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.929</td>
<td>0.888</td>
<td>0.669</td>
<td>0.685</td>
<td>0.673</td>
<td>0.689</td>
</tr>
<tr>
<td>1</td>
<td>0.929</td>
<td>0.901</td>
<td>0.678</td>
<td>0.694</td>
<td>0.682</td>
<td>0.698</td>
</tr>
<tr>
<td>2</td>
<td>0.916</td>
<td>0.888</td>
<td>0.694</td>
<td>0.709</td>
<td>0.697</td>
<td>0.712</td>
</tr>
</tbody>
</table>

Fig. 3. Difference of estimated and true spectrum.

Fig. 4. True and estimated time varying coefficient $a_1(u)$.
$[u_1, u_M]$. This end effect vanishes if one chooses $K_1 = 8$ instead of $K_1 = 6$. A better way seems to be to modify $Z_T(\theta)$ and to include periodograms of shorter lengths at the end points [e.g., $I_{N/2}(N/(4T), \lambda)$]. The second effect is that in the frequency representation the peak is underestimated. This bias is due to the non-stationarity of the process on the intervals $(u_j - N/(2T), u_j + N/(2T)]$, where $I_N(u_j, \lambda)$ and $c_N(u_j, k)$ are calculated. It is obvious that a smaller N could decrease this bias while the variance of the estimate would be increased. This demonstrates the benefits of an adaptive choice of N, which we have not considered.

We finally remark that this example is typical. The same properties can be observed for other realizations. Even for $T = 64$ the results turned out to be quite good.

7. Concluding remarks. We have presented an asymptotic theory for processes that have an evolutionary spectral representation. We have derived the asymptotic behavior of minimum distance estimates in the spectral domain and of least squares estimates for time varying autoregressive processes. The results also hold when the model is incorrect, that is, when it does not contain the true process.

The theory leads to a new estimate for various nonstationary models. Simulations show that this estimate works quite well in practice. It is attractive that the classical stationary ARMA model can be included as a special case (as for AR-models in the simulation example). Furthermore, the AIC criterion seems to work reasonably well in this situation (although a strict theoretical justification is still missing). In particular, the AIC can be used to decide between stationary and nonstationary models (as in the example where the stationary model corresponds to $K_1 = K_2 = 0$).

The parameter estimates are minimum distance estimates in the spectral domain. Since our distance function is an approximate Gaussian likelihood, the results can in principle only apply to models whose parameters can be identified from this distance function, that is, to time varying linear models. Here are the limitations of the approach—although it may be possible to derive similar results with other distance functions for nonlinear models.

As with any asymptotic theory, our approach simplifies the situation (for example, time varying AR-processes have locally the spectral density of a stationary AR-process). The benefit of this simplification is a framework for such processes, which makes theoretical results for parameter estimates possible. It is obvious that it is possible to study the behavior of other estimates within this framework. Furthermore, one may look for modifications of the suggested procedures, for example, with better bias properties (cf. Remark A.3) and better edge properties. For stationary models, our asymptotic theory is the same as the classical asymptotic theory.

On the other hand, one could argue that with the simplification important features of a nonstationary process are lost, for example, the special form of $A_{i,T}$ for a time varying AR-process [cf. Mélard and Herteller-de Schutter (1989)]. However, one may use this theory also to study some of these effects.
For example, one could study the asymptotic properties of the modified estimator for AR-models with $|A_{i,j}(\lambda)|^2$ instead of $|A(u, \lambda)|^2$ in $\mathcal{Z}(\theta)$ and $\mathcal{Z}_T(\theta)$.

APPENDIX

A central limit theorem. This appendix contains the technical details of the proof of Theorems 3.2 and 3.3. It basically consists of the proof of Theorem A.2. This theorem is of independent interest; it has applications that go beyond the scope of this paper.

Suppose S, M, N, t_j, u_j and $I_n(u, \lambda)$ are defined as in Section 3. For $\phi: [0, 1] \times [-\pi, \pi] \to \mathbb{C}$ we set

$$J_T(\phi) := \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \phi(u_j, \lambda) I_N(u_j, \lambda) \, d\lambda$$

and

$$J(\phi) := \int_{0}^{1} \int_{-\pi}^{\pi} \phi(u, \lambda) f(u, \lambda) \, d\lambda \, du.$$

To prove asymptotic normality for $\sqrt{T}(J_T(\phi) - J(\phi))$ we need the following assumptions.

Assumption A.1. (i) Let $X_{t,T}$ be a locally stationary process with mean $\mu(u) = 0$ as in Definition 2.1. Suppose that the functions $A(u, \lambda)$ (from Definition 2.1) and $\phi_j(u, \lambda)$ ($j = 1, \ldots, k$) are 2π-periodic in λ and the periodic extensions are differentiable in u and λ with uniformly bounded derivative $(\partial/\partial u) \Lambda_A (\phi_j$, respectively). g_4 is continuous.

(ii) The parameters N, S and T fulfill the relations $T^{1/4} \ll N \ll T^{1/2}/\ln T$ and $S = N$ or $S/N \to 0$.

(iii) The data taper $h: \mathbb{R} \to \mathbb{R}$ with $h(x) = 0$ for all $x \notin [0, 1]$ is continuous on \mathbb{R} and twice differentiable at all $x \notin P$ where P is a finite set and $\sup_{x \in P}|h''(x)| < \infty$.

Theorem A.2. Suppose $X_{1,T}, \ldots, X_{T,T}$ are realizations of a locally stationary process and Assumption A.1 is fulfilled. Then

$$\sqrt{T}(J_T(\phi_j) - J(\phi_j))_{j=1,\ldots,k} \to_{\mathcal{D}} (\xi_j)_{j=1,\ldots,k},$$

where ξ is a Gaussian random vector with mean zero and

$$\text{cov}(\xi_i, \xi_j) = 2\pi c_h \left[\int_{-\pi}^{\pi} \phi_i(u, \lambda) \left(\overline{\phi_j(u, \lambda)} + \overline{\phi_j(u, -\lambda)} \right) f(u, \lambda)^2 \, d\lambda
\quad + \int_{-\pi}^{\pi} \phi_i(u, \lambda) \phi_j(u, \mu) f(u, \lambda) f(u, \mu) g_4(\lambda, -\lambda, \mu) \, d\lambda \, d\mu \right] du$$

with $c_h = (\int_{0}^{1} h(u)^4 \, du)/(\int_{0}^{1} h(u)^2 \, du)^2$ if $S = N$ and $c_h = 1$ if $S/N \to 0$.
A.3. REMARKS. The conditions on \(N \) seem to be restrictive while the assumption \(S \leq N \) is reasonable (since it makes no sense to omit data). However, we regard it as remarkable that \(\sqrt{T} \) consistency holds at all. Most of the restrictions on \(N \) result from the \(\sqrt{T} \)-unbiasedness (Lemma A.8). This can be made clear by some heuristics: with the periodogram over the first segment we estimate \(f \) at time \(N/2T \). To conclude from this to \(f \) at zero \(\sqrt{T} \) consistently, we need \(N/\sqrt{T} \to 0 \). On the other hand the bias of the periodogram (with a data taper) is \(O(N^{-2}) \) which leads to the condition \(\sqrt{T}/N^2 \to 0 \). We conjecture that the rate \(O(N^{-2}) \) cannot be improved with a periodogram type estimator. A periodogram without taper would lead to a bias of \(O(N^{-1}) \) and therefore to \(\sqrt{T}/N \to 0 \) which contradicts \(N/\sqrt{T} \to 0 \). Thus, without taper it is not possible to achieve \(\sqrt{T} \)-consistency at all. It is noteworthy that the use of a data taper does not lead to an increase of the variance if \(S/N \to 0 \). However, this is heuristically clear since in this case all observations are used “equally often” (as \(T \to \infty \)). Note the similarity of the covariance structure to an analogous result in the stationary case [cf. Brillinger (1981), Theorem 7.6.1].

Theorem A.2 is proved by proving the convergence of the cumulants of all orders (Lemmas A.8, A.9 and A.10). A key role in the proofs is played by the following function. Let \(L_T \colon \mathbb{R} \to \mathbb{R}, T \in \mathbb{R}^+ \) be the periodic extension (with period \(2\pi \)) of

\[
L_T(\alpha) := \begin{cases} T, & |\alpha| \leq 1/T, \\ 1/|\alpha|, & 1/T \leq |\alpha| \leq \pi. \end{cases}
\]

Lemma A.4. Let \(k, \ell, S, M, S, T \in \mathbb{N}, \alpha, \beta, \nu, \mu \in \mathbb{R} \) and \(\Pi := (-\pi, \pi] \). We obtain the following with a constant \(K \) independent of \(T \).

(a) \(L_T(\alpha) \) is monotone increasing in \(T \) and decreasing in \(\alpha \in [0, \pi] \).
(b) \(\int_{\Pi} L_T(\alpha) \) \(d\alpha \leq KT^{k-1} \) for all \(k \geq 1 \).
(c) \(\int_{\Pi} L_T(\alpha) \) \(d\alpha \leq K \ln T \) for \(T > 1 \).
(d) \(|\alpha| L_T(\alpha) \leq K \).
(e) \(\int_{\Pi} L_T(\beta - \alpha) L_T(\alpha + \gamma) \) \(d\alpha \leq KL_T(\beta + \gamma) \ln T \).
(f) \(L_T(\nu)^k L_T(\mu)^\gamma \leq L_T((\nu - \mu)/2)^k L_T(\mu)^\gamma + L_T(\nu)^k L_T((\nu - \mu)/2)^\gamma \).
(g) \(L_T(\alpha) \leq K_G L_T(\alpha) \) for \(|\alpha| \leq \pi \).
(h) \(\int_{\Pi} L_N(\alpha)^k L_M(S(\alpha - \beta))^k \) \(d\alpha \leq K(N/M)^{k-1} \ln M \) \(k=1 \) \(\ln S(\ell=1) \).
(i) \(\int_{\Pi} L_N(\alpha - x) L_M(S(\alpha - x))^k \) \(dx \leq K(N/S) \ln M \) \(\ln S L_N(\alpha - \beta) \).
(j) \(\int_{\Pi} L_N(\alpha - x) L_M(S(\alpha - x))^k \) \(dx \leq K(N/S) \ln M \) \(\ln S L_N(\alpha - \beta) \).

Proof. The proofs are technical but straightforward. Some of them may be found in Dahlhaus (1983, 1985). Part (f) is proved by considering the cases \(|\nu| \geq |\nu - \mu|/2 \) and \(|\mu| \geq |\nu - \mu|/2 \). Part (e) is a consequence of (f) and (g).
Part (h) is proved by splitting the integral into \(\int_{|a| \leq 1/S} \cdots \) and \(\int_{|a| > 1/S} \cdots = \sum_j \int_{(j/S,j+1/S)} \cdots \). Parts (i) and (j) then follow from (f) and (h). \(\square \)

For a complex-valued function \(f \) we define

\[
H_N(f(\cdot), \lambda) := \sum_{s=0}^{N-1} f(s) \exp(-i\lambda s)
\]

and, for the data taper \(h(x) \),

\[
H_{k,N}(\lambda) := H_N\left(h^k\left(\frac{x}{N}\right), \lambda\right),
\]

and

\[
H_N(\lambda) = H_{1,N}(\lambda).
\]

Direct calculation gives

\[
\int_{-\pi}^{\pi} H_{k,N}(\beta - \alpha) H_{\ell,N}(\alpha - \gamma) \, d\alpha = 2\pi H_{k+\ell,N}(\beta - \gamma).
\]

Lemma A.5. Let \(N, T \in \mathbb{N} \). Suppose \(h \) fulfills Assumption A.1(iii) and \(\psi: [0, 1] \to \mathbb{R} \) is differentiable with bounded derivative. Then we have for \(0 \leq t \leq N \),

\[
H_N\left(\psi\left(\frac{\cdot}{T}\right)h\left(\frac{\cdot}{N}\right), \lambda\right) = \psi\left(\frac{t}{T}\right) H_N(\lambda) + \mathcal{O}\left(\sup_u |\psi'(u)| \frac{N}{T} L_N(\lambda)\right)
\]

\[
= \mathcal{O}\left(\sup_{u \leq N/T} |\psi(u)| L_N(\lambda) + \sup_u |\psi'(u)| L_N(\lambda)\right).
\]

The same holds, if \(\psi(\cdot/T) \) is replaced on the left side by numbers \(\psi_{s,T} \) with \(\sup_{s,T} |\psi_{s,T} - \psi(s/T)| = O(T^{-1}) \).

Proof. Summation by parts gives

\[
H_N\left(\psi\left(\frac{\cdot}{T}\right)h\left(\frac{\cdot}{N}\right), \lambda\right) - \psi\left(\frac{t}{T}\right) H_N(\lambda)
\]

\[
= \sum_{s=0}^{N-1} \left(\psi\left(\frac{s}{T}\right) - \psi\left(\frac{t}{T}\right)\right) h\left(\frac{s}{N}\right) \exp(-i\lambda s)
\]

\[
= \sum_{s=0}^{N-1} \left(\psi\left(\frac{s}{T}\right) - \psi\left(\frac{s-1}{T}\right)\right) H_s\left(h\left(\frac{\cdot}{N}\right), \lambda\right)
\]

\[
+ \left(\psi\left(\frac{N-1}{T}\right) - \psi\left(\frac{t}{T}\right)\right) H_N\left(h\left(\frac{\cdot}{N}\right), \lambda\right).
\]

We now have (again with summation by parts [cf. Dahlhaus (1988), Lemma 5.4])

\[
\left| H_s\left(h\left(\frac{\cdot}{N}\right), \lambda\right) \right| \leq KL_s(\lambda) \leq KL_N(\lambda)
\]
uniformly in \(s \leq N \) which gives the result with the mean value theorem. □

We remark that Lemma A.5 also holds under weaker assumptions on the data taper (e.g., if \(h \) is of bounded variation).

Lemma A.6. Let \(\psi \) be differentiable with bounded derivative and \(t_j = S(j - 1) + N/2, u_j = t_j/T \) with \(N, M, S \) and \(T \) as in Assumption A.1(ii). Then

\[
\left| \sum_{j=1}^{M} \psi(u_j) \exp(i\lambda S_j) \right| \leq K \left(\sup_u |\psi(u)| + \sup_u |\psi'(u)| \right) L_M(S\lambda).
\]

The proof is similar to the above proof.

Lemma A.7. Suppose \(h \) fulfills Assumption A.1(iii). Then

\[
|H_N(\lambda)| \leq KN^{-1}L_N(\lambda)^2.
\]

The result is proved by using repeated summation by parts [cf. Dahlhaus (1988), Lemma 5.4].

Lemma A.8. Suppose Assumption A.1 holds. Then

\[
\mathbb{E} J_T(\phi) = J(\phi) + o(T^{-1/2}).
\]

Proof. We have

\[
\mathbb{E} J_T(\phi) = \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \phi(u_j, \lambda) \frac{1}{2\pi H_{2,N}(0)} \text{cum}(d_N(u_j, \lambda), d_N(u_j, -\lambda)) d\lambda.
\]

Since

\[
\text{cum}(X_{s,T}, X_{t,T}) = \int_{-\pi}^{\pi} \exp(i\gamma(s-t)) A_{s,T}^0(\gamma) \overline{A_{t,T}^0(\gamma)} d\gamma
\]

the above expression is equal to

\[
\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \phi(u_j, \lambda) \frac{1}{2\pi H_{2,N}(0)} H_N\left(A_{j-N/2+1,T}^0(\gamma) \overline{h\left(\frac{\cdot}{N}\right)}, \lambda - \gamma\right)
\]

\[
\times H_N\left(A_{j-N/2+1,T}^0(\gamma) \overline{h\left(\frac{\cdot}{N}\right)}, \gamma - \lambda\right) d\gamma d\lambda.
\]

Application of Lemma A.5 and A.6 shows that this is equal to

\[
\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \phi(u_j, \lambda) \frac{|H_N(\lambda - \gamma)|^2}{2\pi H_{2,N}(0)} d\gamma d\lambda + O\left(\frac{1}{T} \int_{-\pi}^{\pi} L_N(\lambda)^2 d\lambda\right).
\]
Let \(g(u, \lambda) = \int_{-\pi}^{\pi} \phi(u, \lambda + \gamma)f(u, \gamma) \, d\gamma \). Since \(\phi \) and \(f \) are both differentiable, \(g \) is twice differentiable in \(\lambda \) with bounded second derivative (partial integration). Thus the above expression is, with Lemmas A.4(b) and A.7, equal to

\[
\begin{align*}
\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} g(u_j, \lambda) \frac{|H_N(\lambda)|^2}{2\pi H_{2,N}(0)} \, d\lambda + O\left(\frac{N}{T} \ln N \right) \\
\end{align*}
\]

(A.1)

\[
= \frac{1}{M} \sum_{j=1}^{M} g(u_j, 0) + O\left(\int_{-\pi}^{\pi} |\lambda|^2 \frac{|L_N(\lambda)|^4}{N^3} \, d\lambda \right) + O\left(\frac{N}{T} \ln N \right) \\
= J(\phi) + O(M^{-1}) + O(N^{-2}) + O\left(\frac{N}{T} \ln N \right).
\]

\[\blacksquare\]

Lemma A.9. Suppose Assumption A.1 holds. Then

\[
T \text{cov}(J_T(\phi_1), J_T(\phi_2)) = \text{cov}(\xi_i, \xi_j) + o(1)
\]

with \(\xi_i \) as in Theorem A.2.

Proof. We set \(i = 1 \) and \(j = 2 \).

\[
T \text{cov}(J_T(\phi_1), J_T(\phi_2)) = \frac{T}{(2\pi MH_{2,N}(0))^2} \sum_{j,k=1}^{M} \int_{-\pi}^{\pi} \phi_1(u_j, \lambda) \phi_2(u_k, \mu) \\
\]

\[
\times \left[\text{cum}(d_N(u_j, \lambda), d_N(u_k, -\mu)) \\
\times \text{cum}(d_N(u_j, -\lambda), d_N(u_k, \mu)) \\
+ \text{cum}(d_N(u_j, \lambda), d_N(u_k, \mu)) \\
\times \text{cum}(d_N(u_j, -\lambda), d_N(u_k, -\mu)) \\
+ \text{cum}(d_N(u_j, \lambda), d_N(u_j, -\lambda), d_N(u_k, \mu), d_N(u_k, -\mu)) \right] \, d\lambda \, d\mu.
\]

(A.2)

We study the behavior of the three terms separately. The first term is with similar arguments as in the proof of Lemma A.8:

\[
\int_{-\pi}^{\pi} \frac{H_N\left(A_{i_1-N/2+1,+.}h\left(\frac{\cdot}{N} \right), \lambda - \gamma_1 \right)}{\lambda - \gamma_1} \\
\times H_N\left(A_{i_2-N/2+1,+.}h\left(\frac{\cdot}{N} \right), -\mu + \gamma_1 \right) \\
\times H_N\left(A_{i_1-N/2+1,+.}h\left(\frac{\cdot}{N} \right), -\lambda + \gamma_2 \right) \\
\times H_N\left(A_{i_2-N/2+1,+.}h\left(\frac{\cdot}{N} \right), \mu + \gamma_2 \right) \\
\times \exp\left(i(\gamma_1 + \gamma_2)(t_j - t_k) \right) \, d\gamma_2 \, d\gamma_1,
\]

which, by using Lemma A.5, is equal to
\[
\int_{-\pi}^{\pi} A(u_j, \gamma_1) A(u_k, -\gamma_1) A(u_j, \gamma_2) A(u_k, -\gamma_2)
\times H_N(\lambda - \gamma_1) H_N(\gamma_1 - \mu) H_N(\mu + \gamma_2) H_N(-\gamma_2 - \lambda)
\times \exp\{i(\gamma_1 + \gamma_2)(t_j - t_k)\} \, d\gamma_2 \, d\gamma_1
\]
(A.3)

plus a remainder term \(R_{j,k} \) with
\[
\left| \sum_{j,k=1}^{M} \phi_1(u_j, \lambda) \phi_2(u_k, \mu) R_{j,k} \right|
\leq KM \frac{N}{T} \int_{-\pi}^{\pi} L_N(\lambda - \gamma_1) L_N(\gamma_1 - \mu) L_N(\mu + \gamma_2)
\times L_N(-\gamma_2 - \lambda) L_M(S(\gamma_1 + \gamma_2)) \, d\gamma_2 \, d\gamma_1
\]
(A.4)
since, by Lemma A.6,
\[
\sum_{j=1}^{M} \phi_1(u_j, \lambda) A(u_j, \gamma_1) A(u_j, \gamma_2) \exp\{iS(\gamma_1 + \gamma_2)j\} = O(L_M(S(\gamma_1 + \gamma_2)).
\]

From Lemma A.4(j) follows that (A.4) is bounded by
\[
KM \frac{N}{T} \frac{N}{S} (\ln M) \ln S \ln NL_N(\lambda - \mu)^2.
\]
Integration over \(\lambda \) and \(\mu \) gives with the constants the upper bound
\(K(N/T)(\ln M)(\ln S)(\ln N) \) which tends to zero. We now replace \(\phi_1(u_j, \lambda) \) by \(\phi_2(u_j, \gamma_1) \) and then \(\phi_2(u_k, \mu) \) by \(\phi_2(u_k, \gamma_1) \). Lemma A.6 gives
\[
\left| \sum_{j=1}^{M} \left(\phi_1(u_j, \lambda) - \phi_1(u_j, \gamma_1) \right) A(u_j, \gamma_1) A(u_j, \gamma_2) \exp\{i(\gamma_1 + \gamma_2)t_j\} \right|
\leq K|\lambda - \gamma_1| L_M(S(\gamma_1 + \gamma_2))
\]
and therefore we obtain for the corresponding difference term the upper bound
\[
K \frac{T}{MN^2} \int_{-\pi}^{\pi} L_N(\gamma_1 - \mu) L_N(\mu + \gamma_2) L_N(-\gamma_2 - \lambda)
\times L_M(S(\gamma_1 + \gamma_2))^2 \, d\gamma_2 \, d\gamma_1 \, d\lambda \, d\mu
\leq K \frac{T}{MN^2} \ln^2 N \frac{NM}{S} \ln S \leq K \frac{\ln^2 N}{N} \ln S \to 0,
\]
where the integration is done in the order λ, γ_2, μ. Thus, the first term of (A.2) is equal to
\[
\frac{T}{\{MH_{2,N}(0)\}^2} \sum_{j,k=1}^{M} \int_{-\pi}^{\pi} \phi_1(u_j, \gamma_1)\phi_2(u_k, \gamma_1)A(u_j, \gamma_1)A(u_k, -\gamma_1)
\times \lambda_{\gamma_2}(u_k, -\gamma_2) A(u_k, -\gamma_2) |H_{2,N}(\gamma_1 + \gamma_2)|^2
\times \exp\{i(\gamma_1 + \gamma_2)(t_j - t_k)\} d\gamma_1 d\gamma_2 + o(1).
\]
Similarly, we now replace $A(u_j, \gamma_2)$ by $A(u_j, -\gamma_1)$ and $A(u_k, -\gamma_2)$ by $A(u_k, \gamma_1)$. Afterwards we substitute $h_i(u, \gamma) = \phi_i(u, \gamma)f(u, \gamma)$ for the above expression,
\[
\frac{T}{\{MH_{2,N}(0)\}^2} \int_{-\pi}^{\pi} \sum_{r,s=0, j,k=1}^{N-1} h^2\left(\frac{r}{N}\right) h^2\left(\frac{s}{N}\right) h_i(u_j, \gamma)h_i(u_k, \gamma)
\times \int_{-\pi}^{\pi} \exp\{i\alpha(r - s) + i\alpha S(j - k)\} d\alpha d\gamma + o(1).
\]
If $S = N$, this is equal to
\[
\frac{2\pi T H_{4,N}(0)}{\{MH_{2,N}(0)\}^2} \int_{-\pi}^{\pi} \sum_{j=1}^{M} h_i(u_j, \gamma)h_i(u_j, \gamma) d\gamma + o(1)
= \frac{2\pi H_4}{H_2^2} \int_{-\pi}^{\pi} \phi_1(u, \gamma)\phi_2(u, \gamma)f(u, \gamma)^2 d\gamma du + o(M^{-1}),
\]
where $H_k = \int_{-\pi}^{\pi} h(u)^k du$. If $S \leq N$, the above expression is equal to
\[
\frac{2\pi T}{\{MH_{2,N}(0)\}^2} \int_{-\pi}^{\pi} \sum_{j,k=1}^{M} h_i(u_j, \gamma)h_i(u_k, \gamma)
\times \sum_{r,s=0, j,k=1}^{N-1} h^2\left(\frac{r}{N}\right) h^2\left(\frac{s}{N}\right) d\gamma + o(1).
\]
Straightforward calculations show that this is equal to
\[
2\pi \int_{-\pi}^{\pi} \phi_1(u, \gamma)\phi_2(u, \gamma)f(u, \gamma)^2 d\gamma du + o(1).
\]
With the substitution $\mu \to -\mu$, we see that the second term of (A.2) converges to the same expression with $\phi_2(u, -\gamma)$ instead of $\phi_2(u, \gamma)$. An analogous derivative for the third term of (A.2) leads to the result. □

Lemma A.10. Suppose Assumption A.1 holds. Then
\[
T^{\ell/2} \text{ cum}(J_T(\phi_1), \ldots, J_T(\phi_\ell)) = o(1).
\]
PROOF. Let $\Pi = (-\pi, \pi]$, $\lambda = (\lambda_1, \ldots, \lambda_r)$,

$$T^{\ell/2} \sum \left(J_T(\phi_1), \ldots, J_T(\phi_r) \right)$$

$$= T^{\ell/2}\left[2\pi M H_{2,N}(0)\right]^{-r}$$

$$\times \sum_{j_1,\ldots,j_r=1}^{M} \int_{\Pi^{r}} \left\{ \prod_{v=1}^{r} \phi_v(u_{j_v} \lambda_v) \right\} \sum_{r=1}^{M} \prod_{v=1}^{r} \phi_v(u_{j_v} \lambda_v) \sum_{r=1}^{M} \prod_{v=1}^{r} \phi_v(u_{j_v} \lambda_v)$$

$$d_N(u_{j_v} \lambda_v) d_N(u_{j_v} \lambda_v)$$

Using the product theorem for cumulants [cf. Brillinger (1981), Theorem 2.3.2] we have to sum over all indecomposable partitions $\{P_1,\ldots,P_m\}$ with $|P_i| \geq 2$ of the scheme

$$a_1 b_1$$

$$\vdots \vdots \vdots$$

$$a_r b_r$$

where a_i and b_i stand for the position of $d_N(u_{j_v} \lambda_v)$ and $d_N(u_{j_v} \lambda_v)$, respectively. This sum will be denoted by $\sum_{j \in P}$. The elements of a set P_i from such a partition are assumed to be in a fixed order, so that the following definitions are reasonable. If $P_i = \{c_1, \ldots, c_k\}$ we set $P_i := \{c_1, \ldots, c_{k-1}\}$, $\beta_{i_v} := (\beta_{c_i}, \ldots, \beta_{c_{k-1}})$ and $\beta_{c_i} = -\sum_{j=1}^{k-1} \beta_{c_j}$. Furthermore, let m be the size of the corresponding partition and $\beta := (\beta_{i_1}, \ldots, \beta_{i_m})$. Using this notation, we obtain as in the proof of Lemma A.8(i) for the above expression

$$= T^{\ell/2}\left[2\pi M H_{2,N}(0)\right]^{-r} \sum_{j_1,\ldots,j_r=1}^{M} \int_{\Pi^{r}} \left\{ \prod_{v=1}^{r} \phi_v(u_{j_v} \lambda_v) \right\}$$

$$\times H_N\left(A^{\beta}_{i_1-N/2+1+\ldots,T}(\beta_{a_1}) h\left(\frac{\cdot}{N} \right), \lambda_v - \beta_{a_1} \right)$$

$$\times H_N\left(A^{\beta}_{i_1-N/2+1+\ldots,T}(\beta_{b_1}) h\left(\frac{\cdot}{N} \right), -\lambda_v - \beta_{b_1} \right)$$

$$\times \left\{ \prod_{v=1}^{m} g_{P_i}(\beta_{i_v}) \right\} \exp\left(i \sum_{v=1}^{r} t_{i_v}(\beta_{a_v} + \beta_{b_v}) \right) \lambda^{2r-m}(d\beta) \lambda'(d\lambda).$$

As in Lemma A.9, we now replace successively all $H_N\left(A^{\beta}_{i_1-N/2+1+\ldots,T}(\beta h(\cdot/\lambda), \lambda - \beta \right)$ by the corresponding $A(u_{j_v} \beta) H_N(\lambda - \beta)$ terms. We get, for example, as an upper bound for the error with Lemma A.5,

$$K \frac{T^{\ell/2}}{M N} \sum_{i_1} \int_{\Pi^{r-1}} \int_{\Pi^{r-1}} \sum_{r=1}^{M} \prod_{v=1}^{r} L_N(\lambda_v - \beta_{a_1}) L_N(-\lambda_v - \beta_{b_1}) \lambda^{2r-m}(d\beta) \lambda'(d\lambda).$$
The special structure of a partition is expressed in the structure of the corresponding \(\beta \). Every \(\beta_c, c \in \bigcup_{k=1}^{m} \overline{P}_k \) is contained in
\[
\prod_{r=1}^{\ell} L_N(\lambda_r - \beta_\alpha)L_N(\lambda_r - \beta_\beta)
\]
exactly twice as an argument, once with positive and once with negative sign. We therefore have \(\sum_{r=1}^{\ell} (-\beta_\alpha - \beta_\beta) = 0 \) while every partial sum is different from 0 by the indecomposability of the partition.

Integration over all \(\lambda_r \) and afterwards over all \(\beta_c \) (starting with \(\beta_\alpha \)) gives as an upper bound,
\[
K \frac{T^{\ell/2}}{M^\ell N^\ell} M N T (\ln N)^{\ell} S^{\ell-1} (\ln M)^{\ell-1} (\ln S)^{\ell-1}
\]
\[
\leq K \frac{T^{\ell/2}}{T^{\ell-1}} M (\ln M \ln S N)^\ell \to 0.
\]

Similarly, the resulting main term is bounded by
\[
K \frac{T^{\ell/2}}{M^\ell N^\ell} T \int_{\Omega^2} \int_{\Omega^2 - \Omega} \left\{ \prod_{r=1}^{\ell} L_N(\lambda_r - \beta_\alpha)L_N(\lambda_r - \beta_\beta) S(\beta_\alpha + \beta_\beta) \right\}
\]
\[
\times \lambda^{2\ell - m}(d\beta) \lambda'(d\lambda)
\]
\[
\leq K \frac{T^{\ell/2}}{M^\ell N^\ell} S^{\ell-1} M (\ln M \ln S N)^\ell \leq K \frac{T^{\ell/2}}{T^{\ell-1}} (\ln M \ln S N)^\ell \to 0,
\]
which proves the result. \(\square \)

Proof of Theorem 3.6. Consistency of \(\hat{\theta}_T \) follows with the proof of Theorem 3.2 if we show that
\[
\sup_{\theta} |J^\ast_T(\theta, \hat{\mu}) - J^\ast_T(\theta, \mu)| \to_p 0
\]
that is, if we show
\[
\sup_{\theta} \left\{ \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left\{ I^\ast_T(u_j, \lambda) - I^\ast_T(u_j, \lambda) \right\} \phi_0(u_j, \lambda) d\lambda \right\} \to_p 0,
\]
where \(\phi_0(u_j, \lambda) = f_0(u_j, \lambda)^{-1} \). This will be proved below. A Taylor expansion then gives
\[
\sqrt{T} \left\{ \nabla J^\ast_T(\hat{\theta}_T, \hat{\mu}) - \nabla J^\ast_T(\hat{\theta}_0, \hat{\mu}) \right\} = \nabla^2 J^\ast_T(\hat{\theta}, \hat{\mu}) \sqrt{T} (\hat{\theta}_T - \hat{\theta}_0)
\]
with \(|\hat{\theta} - \theta_0| \leq |\hat{\theta}_T - \hat{\theta}_0| \). As in the proof of Theorem 3.3, we obtain
\[
\sqrt{T} \nabla J^\ast_T(\hat{\theta}_T, \hat{\mu}) \to_p 0.
\]
In the proof of Theorem 3.3 we showed that
\[
\sqrt{T} \nabla J^\ast_T(\theta, \mu) + \Gamma \sqrt{T} (\hat{\theta}_T - \hat{\theta}_0) \to_p 0,
\]
that is, the result follows if we prove that
\[\sqrt{T} \nabla \mathcal{L}_T(\theta_0, \hat{\mu}) - \sqrt{T} \nabla \mathcal{L}_T(\theta_0, \mu) \to_p 0 \]
and
\[\nabla^2 \mathcal{L}_T(\hat{\theta}, \hat{\mu}) \to_p \Gamma. \]
Together with the proof of Theorem 3.3 the result therefore follows if we show that
\[(A.5) \quad \sqrt{T} \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left\{ I_N^\mu(u_j, \lambda) - I_N^\mu(u_j, \lambda) \right\} \phi_0(u_j, \lambda) \, d\lambda \to_p 0 \]
for \(\phi_0(u, \lambda) = \nabla f_0(u, \lambda)^{-1} \) and
\[(A.6) \quad \sup_{\theta} \left| \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left\{ I_N^\mu(u_j, \lambda) - I_N^\mu(u_j, \lambda) \right\} \phi_0(u_j, \lambda) \, d\lambda \right| \to_p 0 \]
for \(\phi_0(u, \lambda) = f_0(u, \lambda)^{-1} \) and \(\phi_0(u, \lambda) = \nabla^2 f_0(u, \lambda)^{-1} \). The last expression is equal to
\[(A.7) \quad \left| \sum_{\theta} \left(\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left\{ \phi_0(u_j, \lambda) \right\} \left(2\pi H_{2,N}(0) \right)^{-1} \right) \right| d\lambda \]
which by means of the Cauchy–Schwarz inequality is with
\[\delta_T := \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \left(2\pi H_{2,N}(0) \right)^{-1} \left| \phi_0(u_j, \lambda) \right|^2 \, d\lambda \]
bounded by
\[\sup_{\theta, u, \lambda} \left| \phi_0(u, \lambda) \right| \left(\frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} I_N^\mu(u_j, \lambda) \, d\lambda \right)^{1/2} \delta_T^{1/2} + \delta_T \]
Since \((1/M) \sum_{j=1}^{M} I_N^\mu(u_j, \lambda) \) is bounded in probability (Theorem A.2) and
\[\delta_T = \frac{1}{M} \sum_{j=1}^{M} H_{2,N}(0)^{-1} \sum_{s=1}^{N} \left\{ \mu \left(\frac{t_j - N/2 + s}{T} \right) - \hat{\mu} \left(\frac{t_j - N/2 + s}{T} \right) \right\}^2 \]
\[= o_p \left(\frac{N}{T} \right) \]
(A.6) is proved. To prove (A.5) we note that \(\sqrt{T} \delta_T \to 0 \). Since \(\sqrt{T} \delta_T^{1/2} \to 0 \) we need a better estimate for the first and second term of (A.7). Summation...
by parts gives with \(c_T := \sqrt{T} (2\pi M H_{2,N}(0))^{-1} \), \(\Pi_{t,N}(\lambda) := \sum_{s=0}^{t-1} h(s/N) \times \exp(-i\lambda s) \) and \(\tilde{t}_j = t_j - N/2 \),

\[
\sqrt{T} \frac{1}{M} \sum_{j=1}^{M} \int_{-\pi}^{\pi} \phi_{0j}(u_j, \lambda) (2\pi H_{2,N}(0))^{-1} d_N^{X-\mu}(u_j, \lambda) d_{N\tilde{t}}^{X-\mu}(u_j, -\lambda) \, d\lambda
\]

\[
= c_T \sum_{j=1}^{M} \sum_{t=0}^{N-1} \left(\mu \left(\frac{\tilde{t}_j + t + 1}{T} \right) - \tilde{\mu} \left(\frac{\tilde{t}_j + t + 1}{T} \right) \right)
\times \int_{-\pi}^{\pi} \phi_{0j}(u_j, \lambda) d_N^{X-\mu}(u_j, \lambda) \left(\Pi_{t+1,N}(-\lambda) - \Pi_{t,N}(-\lambda) \right) \, d\lambda
\]

\[
= -c_T \sum_{j=1}^{M} \sum_{t=0}^{N-1} \left(\mu \left(\frac{\tilde{t}_j + t + 1}{T} \right) - \tilde{\mu} \left(\frac{\tilde{t}_j + t + 1}{T} \right) \right)
- \left(\mu \left(\frac{\tilde{t}_j + t}{T} \right) - \tilde{\mu} \left(\frac{\tilde{t}_j + t}{T} \right) \right)
\times \int_{-\pi}^{\pi} \phi_{0j}(u_j, \lambda) d_N^{X-\mu}(u_j, \lambda) \Pi_{N,N}(-\lambda) \, d\lambda
\]

\[
+ c_T \sum_{j=1}^{M} \left(\mu \left(\frac{\tilde{t}_j + N}{T} \right) - \tilde{\mu} \left(\frac{\tilde{t}_j + N}{T} \right) \right)
\times \int_{-\pi}^{\pi} \phi_{0j}(u_j, \lambda) d_N^{X-\mu}(u_j, \lambda) \Pi_{N,N}(-\lambda) \, d\lambda.
\]

Summation by parts implies \(\Pi_{t,N}(-\lambda) \leq KL_N(\lambda) \) uniformly in \(t \). We now can prove by similar methods as in the proof of Lemma A.9 that

\[
\text{var} \int_{-\pi}^{\pi} \phi_{0j}(u_j, \lambda) d_N^{X-\mu}(u_j, \lambda) \Pi_{t,N}(-\lambda) \, d\lambda = O(N)
\]

uniformly in \(u_j \) and \(t \). Since \(Ed_N^{X-\mu}(u_j, \lambda) = 0 \) the whole expressions tends to zero in probability. The second term of (A.7) is treated in the same way, which proves the result. \(\Box \)

Acknowledgments. I am grateful to L. Giraitis, R. von Sachs and two anonymous referees whose comments helped to improve the paper. The computations were done together with M. Diller and E. Ioannidis on the basis of the framework *Random and Template* by G. Sawitzki. I am grateful to them for their excellent work.

REFERENCES

Universität Heidelberg

Institut für Angewandte Mathematik

Im Neuenheimer Feld 294

D-69120 Heidelberg

Germany

E-mail: dahlhaus@statlab.uni-heidelberg.de