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OPTIMAL RATES OF CONVERGENCE OF EMPIRICAL BAYES
TESTS FOR THE CONTINUOUS ONE-PARAMETER

EXPONENTIAL FAMILY1

By Rohana J. Karunamuni

University of Alberta

The empirical Bayes linear loss two-action problem in the continuous
one-parameter exponential family is studied. Previous results on this prob-
lem construct empirical Bayes tests via kernel density estimates. They also
obtain upper bounds for the unconditional regret at some prior distribution.
In this paper, we discuss the general question of how difficult the above
empirical Bayes problem is, and why empirical Bayes rules based on kernel
density estimates are useful. Asymptotic minimax-type lower bounds are
obtained for the unconditional regret, and empirical Bayes rules based on
kernel density estimates are shown to possess a certain optimal asymptotic
minimax property.

1. Introduction. We investigate the following component decision prob-
lem: let θ ∼ G and consider testing H0: θ ≤ θ0 against H1: θ > θ0 based on an
observationX; withX, given θ, being distributed according to the exponential
family

�1:1� f�x�θ� =m�x�h�θ�exθ; −∞ ≤ a < x < b ≤ ∞;
where m is positive on �a; b�: The loss function is L�θ;0� = max �θ−θ0;0� for
accepting H0 and L�θ;1� = max �θ0 − θ;0� for accepting H1: The parameter
θ is distributed according to a completely unknown prior distribution G on
the natural parameter space � = �θ: �h�θ��−1 =

∫
m�x�exθ dx <∞�:

We study empirical Bayes (EB) tests for the above problem when a sequence
of past observations is available. Let X1; : : : ;Xn denote the observations from
n independent past experiences: X1; : : : ;Xn are i.i.d. random variables with
(marginal) density fG�x� =

∫
m�x�exθh�θ�dG�θ�: Let X denote the observa-

tion in the present experience. Then the conditional Bayes risk of an EB test
φn is defined as R̂�G;φn� = E�L�θ;φn�X1; : : : ;XnyX���X1; : : : ;Xn�; and the

unconditional Bayes risk is defined as R�G;φn� = ER̂�G;φn�: The minimal
attainable risk, or the Bayes risk envelope, which is achieved by a Bayes test,
is denoted by R�G�: Then the conditional regret (excess risk) is defined by
1̂n = R̂�G;φn� −R�G�; and the unconditional regret is defined by 1n = E1̂n:
An EB rule φn is said to be asymptotically optimal [Robbins (1956, 1964)]
w.r.t. G if limn→∞ 1n = 0:
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Johns and Van Ryzin (1972) constructed asymptotically optimal EB tests
for the above component problem and investigated upper bounds for the
corresponding unconditional regret. See also Yu (1970) and Karunamuni
(1989). Van Houwelingen (1976) showed that the EB tests of Johns and
Van Ryzin can be readily improved if the monotonicity of the problem is used.
The upper bound on the unconditional regret of his EB tests is of the form
O�n−2r/�2r+3� log2 n� asymptotically, where r ≥ 1 is an integer. Stijnen (1985)
studied both monotone and nonmonotone EB tests and obtained limiting
distributions of the corresponding conditional regrets. Recently, Karunamuni
and Yang (1995) also studied a monotone EB rule and established the limiting
distribution of the corresponding conditional regret. They were able to obtain
an improved upper bound (i.e., a faster rate of convergence) of the regret
assuming some auxiliary information on the prior distribution.

In all of the above work, the particular EB rules that have been investigated
are based on kernel estimates of the density and its derivatives. Furthermore,
upper bounds on the corresponding regrets have been obtained only for some
specific prior distributions. Also, more general issues relating to the inherent
difficulty of the problem in general have not been discussed. Clearly, it is of
theoretical and practical interest to ask the following questions. How well can
the EB testing problem described above be solved by any procedure (prefer-
ably by a monotone procedure)? In terms of rates of convergence what are
the best EB testing rules? What are the optimal rates of convergence? Why
use EB testing rules based on kernel density estimates? The purpose of this
paper is to attempt to answer these questions systematically. In a decision-
theoretic framework, we can formulate these questions as an asymptotic min-
imax problem. The more general question of how well any (monotone) EB
rule can be performed is discussed in Section 2. Specifically, a lower bound
on the unconditional regret is obtained in an asymptotic minimax sense. The
best achievable minimax rates are established. Section 3 considers the ques-
tion of why one should use EB rules based on kernel estimates. This sec-
tion specifically focuses on a certain optimal asymptotic minimax property
of such EB rules: they achieve the optimal minimax rate. The optimal rates
of convergence are established for two specific distributions of the exponen-
tial family (1.1), namely, the normal �θ;1� family and the scale exponential
family.

2. Minimax lower bounds on the regret. For convenience, the nota-
tions � and �a; b� under the integral signs that follow are suppressed when-
ever they are clear from the context. Further, we assume that � is either
�−∞;∞� or �0;∞�: It is easy to show that a Bayes test (w.r.t. G� for the com-
ponent problem described in Section 1 is of the form [see Johns and Van Ryzin
(1972) and van Houwelingen (1976)]

φG�x� =
{

1; if lG�x� > 0;
0; if lG�x� ≤ 0;
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where

lG�x� =
∫
�L�θ;0� −L�θ;1��f�x�θ�dG�θ�

=
∫
�θ− θ0�f�x�θ�dG�θ�;

(2.1)

or, equivalently, φG can be written as

�2:2� φG�x� =
{

1; if EG�θ�X = x� > θ0;
0; if EG�θ�X = x� ≤ θ0:

We tacitly assume that EG�θ�X = x� is well defined. This will be the case in
applications of the theory to the two-action problem in exponential families
with linear losses. Of course, EG�θ� < ∞ is a sufficient condition. Since the
class �f�x�θ�: f�x�θ� is given by �1:1�� has monotone likelihood ratio in x,
EG�θ�X = x� is nondecreasing on �a; b�: Hence the rule (2.2) is a monotone
decision rule [see Berger (1985), Section 8.4, for the definition and some results
for monotone decision rules]. To avoid degeneracy, we shall assume that

�2:3� lim
x↓a

EG�θ�X = x� < θ0 < lim
x↑b

EG�θ�X = x�:

Let G denote the class of all prior distributions G on � such that (2.3) is
satisfied. This notation will be employed throughout the remainder of the
paper without further mention. The following consequences of (2.3) can easily
be verified:

(i) G is nondegenerate;

(ii) EG�θ�X = x� is strictly increasing on �a; b�y
(iii) there exists a unique cG ∈ �a; b� such that

EG�θ�X = cG� = θ0:

(2.4)

Hence the Bayes rule (2.2) can be written as

�2:5� φG�x� =
{

1; if x > cG;
0; if x ≤ cG:

Let R�G� denote the Bayes envelope value of the component w.r.t. G: Then
R�G� = E�L�θ;φG�X���; where φG is given by (2.5).

Now consider the EB problem when G is completely unknown. Let
X1; : : : ;Xn denote observations from n repetitions: X1; : : : ;Xn are assumed
i.i.d. with (marginal) density

�2:6� fG�x� =m�x�
∫
exθh�θ�dG�θ�:

Then, motivated by (2.5), EB rules can be constructed by defining

�2:7� ψn�X1; : : : ;Xny x� =
{

1; if x > cn;
0; if x ≤ cn;
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where cn = cn�X1; : : : ;Xn� denotes any estimate of cG: It is easy to show that
the conditional regret R̂�G;ψn� −R�G� of EB rules of the form (2.7) satisfy
[van Houwelingen (1976)]

�2:8� 0 ≤ R̂�G;ψn� −R�G� =
∫ cn
cG

lG�x�dx = SG�cn�;

where lG�x� is given by (2.1) and SG�y� is defined by

SG�y� =
∫ y
cG

lG�x�dx; a < y < b:

Note that lG�x� > 0 if x > cG and lG�x� ≤ 0 if x ≤ cG: If the second derivative
of m�·� [see (1.1)] exists, then SG�·� has the following properties:

(i) 0 = SG�cG� ≤ SG�y� ≤
∫ b
a �lG�x��dx ≤ EG�θ� + θ0y

(ii) SG has second derivative on �a; b� and �S�2�G � is bounded
on each interval �a1; b1� with a < a1 < b1 < by

(iii) S�1�G �cG� = 0y

(iv) for any ε > 0; there exists ρG > 0 s.t. S�2�G �y� ≥ ρG
for all y ∈ �cG − ε; cG + ε�:

(2.9)

Then, by Taylor expansion of order 2 of SG�y� about cG; we obtain from (2.8)
and (2.9) that

�2:10� R̂�G;ψn� −R�G� = S
�2�
G �c∗n��cn − cG�2;

where c∗n is an intermediate value between cn and cG: Therefore, if cn lies in
a neighborhood of cG; the rate of convergence of R̂�G;ψn� − R�G� is deter-
mined by that of �cn − cG�2: If �cn − cG� ≥ ε for some ε > 0 and S�2�G �c∗n� 6= 0
asymptotically, then clearly the corresponding EB rule is not asymptotically
optimal, though the lower-bound result (2.19) below will be trivially satisfied.
This is the situation with the cases cn = ±∞: However, EB rules which are
not asymptotically optimal are practically less attractive. Therefore, in this
paper we study the following class of asymptotically optimal EB rules: for
each G ∈ G ; define

FG = �ψn: ψn is defined by (2.7) with an estimator cn such that cn→ cG
as n→∞, w.p.1�,

and we let F = ∪G∈G FG denote the class of EB rules of interest.
A general method of constructing desirable cn’s is as follows: let fn and f�1�n

denote any estimators of fG and f�1�G (the first derivative of fG�; respectively,
where fG is given by (2.6). Let

�2:11� Vn�x� = f
�1�
n �x�m�x� − fn�x�m�1��x� − θ0fn�x�m�x�:
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Define an estimator cn of cG by

�2:12� cn = min�x: Vn�x� = 0; a < x < b�:
[In applications, any finite solution of the equation Vn�x� = 0 could be em-
ployed.] Note that (2.12) is motivated by the fact that cG is the unique solution
of the equation VfG

�x� = 0; where

�2:13� VfG
�x� = f�1�G �x�m�x� − fG�x�m�1��x� − θ0fG�x�m�x�y

see (2.4)(iii). With further conditions, convergence of cn to cG can be estab-
lished; see Section 3 for such a situation.

For the main results of this paper that concern the asymptotic minimax
lower bounds on (2.10), the following construction is essential: let G0 be a
distribution function in G with density function g0 satisfying g0�0� > 0 and
g0�θ� 6= 0 for all θ ∈ �: In the case � = �0;∞�; the condition g0�0� > 0 is
replaced by g0�0+� > 0: Let fG0

denote the corresponding marginal density of
X; that is,

�2:14� fG0
�x� =

∫
m�x�exθh�θ�dG0�θ�:

For brevity, we denote fG0
by f0 in what follows. Let �δn� be a sequence of

positive numbers such that δn → 0 as n → ∞: For some positive number k;
define the function gn on � by

�2:15� gn�θ� = g0�θ� + δknH�θδn�;
where H is a bounded continuous function on � satisfying

∫
�H�θ�dθ = 0:

Then, by suitable choice of (the tail of) H and g0 such that gn�θ� ≥ 0 for small
δn; gn will be a density function on �: Let Gn denote its distribution function.
Then Gn ∈ G : Let f∗n denote the marginal density of X w.r.t. Gn; that is,

�2:16� f∗n�x� = fGn
�x� =

∫
m�x�exθh�θ�dGn�θ�:

The pair �f0; f
∗
n� is known as the “least-favorable” pair (when G0 and H are

properly chosen) in the class of density functions of interest in this context
[Donoho and Liu (1991a, b)].

Theorem 2.1. Suppose thatm�2� exists andm�i�; i = 0;1;2; m�0� ≡m; are
bounded on �a; b�: Further, suppose that m�c0� 6= 0; where c0 is the solution
of the equation Vf0

�x� = 0 with Vf0
and f0 defined by (2.13) and (2.14),

respectively. Let f
�i�
n;0 denote any estimator of f

�i�
0 �ith derivative of f0; f

�0� ≡ f�
such that, with probability 1, limn→∞ supx �f

�i�
n;0�x�−f

�i�
0 �x�� = 0 for i = 0;1;2:

Suppose that the functions H; g0 and the sequence �δn� in (2.15) are chosen
such that gn is nonnegative and, for some real numbers k > j > 0;

�2:17�
∫
�θ− θ0�ec0θh�θ�H�θδn�dθ = O�δ−jn � as n→∞;
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and

�2:18�
∫ (
f∗n�x� − f0�x�

)2
f−1

0 �x�dx ≤
d1

n

for some constant d1 > 0; where f∗n is given by (2.16). Then for any EB rule
ψn ∈ F [for the definition of F ; see circa (2.10) and (2.11)], we have

�2:19� sup
G∈G ∗

E
(
R̂�G;ψn� −R�G�

)
> d2δ

2�k−j�
n

for all sufficiently large n and some positive constant d2 > 0 �d2 is also
independent of ψn�;where G ∗ denotes any subset of G such that �G0;Gn� ⊆ G ∗:

The explicit forms of δn; which is determined by the restriction (2.18), are
exhibited below in two examples. The condition (2.17) can usually be verified
for any sequence δn→ 0:

Remark 2.1. Theorem 2.1 above sheds some light on the general question
of how much EB rules can be improved whenever G is completely unknown.
The inequality (2.19) essentially implies that

lim inf
n→∞

inf
ψn∈F

sup
G∈G ∗

δ
−2�k−j�
n E

(
R̂�G;ψn� −R�G�

)
> 0:

The preceding asymptotic minimax result explains that no sequence of EB
rules in F has regret that converges to 0 faster than δ

2�k−j�
n uniformly over

the class G ∗: Thus, δ2�k−j�
n is a lower bound on the best achievable minimax

rate for the class F : In the next section, we shall show, in fact, that δ2�k−j�
n

can be attained by certain EB rules, thus proving the fact that δ2�k−j�
n is the

optimal minimax rate of convergence for the class F : If, however, G ∗ is par-
tially known, then the rates can be improved. For example, if the form of each
G ∈ G ∗ is known and only the hyperparameters are unknown, then, of course,
the optimal rate of convergence is n−1: When G is completely unknown, the
problem becomes an “infinite-parameter” or nonparametric problem. Slow con-
vergence rates, compared to n−1; in nonparametric problems are well known
to occur.

Remark 2.2. The left-hand side of (2.18) is known as the “χ2-distance”
in the literature on rates of convergence. But other distances can also be
implemented; see Donoho and Liu (1991a, b). The inequality (2.19) gives a
lower bound on the rate of convergence of unconditional regrets of EB rules
in F : However, a similar lower bound in terms of convergence in probability
can be established for conditional regrets also.

The basic idea in the proof of Theorem 2.1 is borrowed from Donoho and Liu
(1991a, b) where they showed that the difficulty in establishing lower bounds
on the asymptotic minimax risk in the “full infinite-dimensional problem” is no
greater than that of the “hardest one-dimensional subproblem” in many cases.



218 R. J. KARUNAMUNI

Their arguments are heavily based on the use of Le Cam’s (1972) theory [see
also Hájek (1972)] of convergence of experiments and asymptotic efficiency.

Proof of Theorem 2.1. Define a class U by

U = �fG: fG is defined by (2.6); G ∈ G�;
that is, U is the class of marginal densities of X generated by G for the
exponential family (1.1). Then f0 and f∗n belong to U; where f0 and f∗n are
defined by (2.14) and (2.16), respectively. Let x0 ∈ �a; b� be a fixed point. For
f ∈ U; define

T�f� = Vf�x0� = f�1��x0�m�x0� − f�x0�m�1��x0� − θ0m�x0�f�x0�
[a functional of f of interest to us—compare with (2.13)]. We suppose that
m�x0� 6= 0: Let Tn denote any estimator of T�f� based on a random sample
of size n from f: If δn is chosen such that (2.18) holds, then it is proved by
Donoho and Liu (1991a, b) that a lower bound for estimating T�f� by any
estimator Tn is

�2:20� sup
f∈�f0; f

∗
n�
Pf��Tn −T�f�� > �T�f0� −T�f∗n��/2� > d

for some positive constant d: A direct consequence of (2.20) is that

�2:21� sup
f∈�f0; f

∗
n�
Ef

(
Tn −T�f�

)2
>
d

4
�T�f0� −T�f∗n��2;

and hence

�2:22� sup
f∈U∗

Ef

(
Tn −T�f�

)2
>
d

4
�T�f0� −T�f∗n��2

for any subset U∗ of U such that �f0; f
∗
n� ⊆ U∗: In other words, the order of

�T�f0� −T�f∗n�� provides a lower bound for estimating T�f� by any estimator
based on a sample of size n: It is proved below that �T�f0�−T�f∗n�� is of order
O�δk−jn � under the assumptions of the theorem. Then one only needs to find δn
as large as possible such that (2.18) holds. From (2.15) and (2.16), we obtain

�2:23� f∗n�x� = f0�x� + δknm�x�
∫
exθh�θ�H�θδn�dθ;

and hence [using Theorem 2.9 of Lehmann (1959)],

�2:24� T�f∗n� −T�f0� = δkn�m�x0��2
∫
�θ− θ0�ex0θh�θ�H�θδn�dθ:

Now take x0 = c0 and Tn = Vn�c0� [where c0 is as defined in the theorem and
Vn is defined by (2.11)], and then use (2.17), (2.21) and (2.24) to obtain

�2:25� sup
f∈�f0; f

∗
n�
Ef

(
Vn�c0� −Vf�c0�

)2
> d2δ

2�k−j�
n
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for some finite constant d2 > 0: Observe that V�1�f0
�c0� < 0: To see this, note

that w�x� = EG0
�θ�X = x� − θ0 = Vf0

�x�/fG0
�x�m�x� is a strictly increasing

function of x∈�a; b�: Thus, w�1��c0�>0: But w�1��c0�=−V
�1�
f0
�c0�/fG0

�c0�m�c0�
since Vf0

�c0� = 0: Therefore, V�1�f0
�c0� < 0 since m�c0�fG0

�c0� > 0: Now, using
the mean value theorem, one obtains

�2:26� Vn�c0� = Vn�cn� + �cn − c0�V
�1�
n �c∗n�;

where c∗n is an intermediate value between c0 and cn: The assumptions that
supx �f

�i�
n;0�x� − f

�i�
0 �x�� → 0 as n → ∞, w.p.1, and m�i� are bounded for i =

0;1;2 yield supx �V
�j�
n;0�x� −V

�j�
f0
�x�� → 0 as n→∞, w.p.1, for j = 0;1; where

Vn;0 is defined by (2.11) with f�i�n replaced by f�i�n;0, i = 0;1; and V�1� denotes
the first derivative of V: But �Vn;0�cn� −Vf0

�cn�� ≤ supx �Vn;0�x� −Vf0
�x��:

Therefore, from the preceding results we obtain Vn;0�cn� = Vf0
�cn� + o�1�

as n → ∞, w.p.1. Furthermore, as n → ∞, Vf0
�cn� = Vf0

�c0� + o�1� (since

cn→ c0 andVf0
is continuous) andV�1�n;0�c∗n� = V

�1�
f0
�c∗n�+o�1� = V

�1�
f0
�c0�+o�1�,

w.p.1. The latter statement follows from �V�1�n;0�c∗n�−V
�1�
f0
�c∗n�� ≤ supx �V

�1�
n;0�x�−

V
�1�
f0
�x�� → 0 and c∗n→ c0 as n→∞, w.p.1.

The above results together with a result similar to (2.26) for Vn;0 imply

that Vn;0�c0� = Vf0
�c0�+�cn−c0�V

�1�
f0
�c0�+o�1� as n→∞, w.p.1. Similarly, it

is easy to show that Vn; ∗�c0� = Vf∗n
�c0� + �cn − c0�V

�1�
f0
�c0� + o�1� as n → ∞,

w.p.1, where Vn; ∗ is defined by (2.11) with f�i�n �x� replaced by f�i�n; ∗, i = 0;1;
where fn; ∗�x� = fn;0�x� + δknm�x�

∫
exθh�θ�H�θSn�dθ [an estimator of f∗n

defined by (2.23)]. Now, combining the above results and (2.25), we obtain

�2:27� sup
f∈�f0; f

∗
n�
Ef�cn − c0�2 > d3δ

2�k−j�
n

for some finite constant d3 > 0 and any cn such that cn → c0 as n → ∞,
w.p.1. Then from (2.10) and (2.27) we obtain that, for any ψn ∈ FG with G ∈
�G0;Gn�;

�2:28� sup
G∈�G0;Gn�

E
(
R̂�G;ψn� −R�G�

)
≥ d4δ

2�k−j�
n

for some finite constant d4 > 0; since S�2�G �y� > ρ0 > 0 in a neighborhood
of c0 for G ∈ �G0;Gn�: [For the definition of G0 and Gn; see circa (2.14)
and (2.15), respectively.] The inequality (2.19) now follows from (2.28), since
supG∈G ∗ E�·� ≥ supG∈�G0;Gn�E�·�: This completes the proof. 2

We now formally discuss two examples and exhibit the form of δn (as a
function of n� in each case.

Example 2.1 [Normal �θ;1� family]. Consider the exponential family in
(1.1) with m�x� = exp�−x2/2� and h�θ� = �2π�−1/2 exp�−θ2/2�; that is, for
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each −∞ < θ < ∞, f�x�θ� = �2π�−1/2 exp�−�x− θ�2/2�, −∞ < x < ∞: Then
� = �−∞;∞�: Consider testing H0: θ ≤ 0 against H1: θ > 0; so that θ0 = 0:
Let G0 be the prior distribution on �−∞;∞� with density function g0 [see
circa (2.14)] defined by

�2:29� g0�θ� = ρl/�1+ θ2�l; −∞ < θ <∞;

for some 1:5 > l > 1; where ρl is a constant such that ρl�1+ θ2�−l is a density
function. Then G0 ∈ G and clearly g0�θ0� = g0�0� > 0: Furthermore, it is easy
to show that Vf0

�0� = 0 using (2.29) in the expressions (2.13) and (2.14). That
is, c0 = 0 is this case.

Corollary 2.1. For the normal family in Example 2.1 and for the prior G0
with density (2.29) and for an appropriate functionH defined later in the proof,
(2.17) holds with j = 4 for any δn → 0; and (2.18) holds with δn = n−1/�2k−4�:
Thus, the lower bound in (2.19) is of order n−2�k−4�/�2k−4�; k > 4:

To prove the above corollary, we require the following lemma.

Lemma 2.1. Suppose that F is a cumulative distribution function. Let l be
a real number s.t. 1:5 > l > 1: Then the density

g̃�x� =
∫ ∞
−∞

ρl(
1+ �x− y�2

)l dF�y�

satisfies g̃�x� ≥ β�x�−2l as �x� → ∞ for some positive constant β; where ρl is a
constant s.t. ρl�1+ x2�−l is a density function on �−∞;∞�:

Proof of Corollary 2.1. Since m�x� = exp�−x2/2�; the second deriva-
tive of m clearly exists and m�c0� = m�0� 6= 0: To examine (2.17) and (2.18),
we first construct an appropriate function H to use in (2.15).

Define w�x� = �2π�−1/2 exp�−x2/2�, −∞ < x < ∞: Let φw�t� denote its
characteristic function. Then φw�t� = exp�−t2/2�: Let H�x� = ρl�w�x�−w�x+
1��: Then

∫∞
−∞H�x�dx = 0 and

∫∞
−∞ xH�x�dx 6= 0: Furthermore, its Fourier

transformation is φH�t� = ρl�1 − e−it�φw�t�: Also
∫∞
−∞ �φH�t��2 dt < ∞: With

the preceding choice of H and g0 defined by (2.29), it is easy to see that gn ≥ 0
for all large n; since g0�x� ≥ �H�x�� as �x� → ∞; where gn is given by (2.15).
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We now verify condition (2.17). Since θ0 = 0 and c0 = 0; by a change of
variable �θδn = t� and by rearranging terms, (2.17) becomes

ρl�2π�−1/2
∫ ∞
−∞

θe−θ
2/2H�θδn�dθ

= ρl�2π�−1/2δ−2
n

{ ∫ ∞
−∞

tw�t�
[
exp

(−�tδ−1
n �2

2

)

− exp
(−��t− 1�δ−1

n �2
2

)]
dt

+
∫ ∞
−∞

exp
(−��t− 1�δ−1

n �2
2

)
w�t�dt

}
:

(2.30)

Using the dominated convergence theorem (DCT), it is easy to show that, as
n→∞;

�2:31�
∫ ∞
−∞

exp
(−��t− 1�δ−1

n �2
2

)
w�t�dt = o�δ−2

n �:

Expanding exp�−�tδ−1
n �2/2� and exp�−��t− 1�δ−1

n �2/2� separately and then
taking the difference, we obtain

�2:32�
∫ ∞
−∞

tw�t�
[
exp

(−�tδ−1
n �2

2

)
− exp

(−��t− 1�δ−1
n �2

2

)]
dt = 2δ−2

n + o�δ−2
n �

for all sufficiently large n; since all moments of w�x� are finite. From (2.30),
(2.31) and (2.32), we then have

ρl�2π�−1/2
∫ ∞
−∞

θ exp
(−θ2

2

)
H�θδn�dθ = 2ρl�2π�−1/2δ−4

n + o�δ−4
n �

for all sufficiently large n: Hence, (2.17) is satisfied with j = 4:
Now consider (2.18). Under the hypotheses of Example 2.1, observe that

(2.18) is equivalent to

�2:33� δ2k
n

∫ (
�2π�−1/2

∫
exp

(−�x− θ�2
2

)
H�θδn�dθ

)2

f−1
0 �x�dx ≤

d

n
;

where H is as defined in the beginning of the present proof and f0 is given by
(2.14) with prior density (2.29). Let β1 = maxx∈�−1;1� f

−1
0 �x�: Then 0 < β1 <∞:
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By Parseval’s identity for Fourier transforms, we obtain

I =
∫
�x�≤1

(
�2π�−1/2

∫ ∞
−∞

exp
(−�x− θ�2

2

)
H�θδn�dθ

)2

f−1
0 �x�dx

≤ β1

∫ ∞
−∞

(
�2π�−1/2

∫ ∞
−∞

exp
(−�x− θ�2

2

)
H�θδn�dθ

)2

dx

= β1

∫ ∣∣∣∣δ
−1
n exp

(−t2
2

)
φH

(
t

δn

)∣∣∣∣
2

dt

= β1δ
−1
n

∫
exp

(−�tδn�2
2

)
�φH�t��2 dt

= O�δ−1
n �;

(2.34)

uniformly in δn; since
∫
�φH�t��2dt <∞: By the Fourier inversion formula,

�2π�−1/2
∫

exp
(−�x− θ�2

2

)
H�θδn�dθ

= −�2π�−1/2
∫
e−itxδ−1

n exp
(−t2

2

)
φH

(
t

δn

)
dt

= δ−1
n �2πx2�−1

∫
e−itx

d2

dt2

{
exp

(−t2
2

)
φH

(
t

δn

)}
dt;

(2.35)

where the last equality follows from the result that T �ψ�2�� = −x2T �ψ� for
any integrable function ψ; with T denoting the Fourier transformation oper-
ator. Using the integrability of φH, φ�1�H and φ�2�H ; it is easy to show that

�2:36�
∫ ∞
−∞

∣∣∣∣
d2

dt2

{
exp

(−t2
2

)
φH

(
t

δn

)}∣∣∣∣dt ≤Kδ
−1
n

for some finite constant K > 0: Hence, from (2.35), (2.36) and Lemma 2.1, we
have

II =
∫
�x�>1

(
�2π�−1/2

∫
exp

(−�x− θ�2
2

)
H�θδn�dθ

)2

f−1
0 �x�dx

≤K2δ−4
n

∫
�x�>1
�2πx2�−2f−1

0 �x�dx

= O�δ−4
n �:

(2.37)

In view of (2.34) and (2.37), we see that δ2k
n

∫
��2π�−1/2

∫
exp�−�x− θ�2/2� ·

H�θδn�dθ�2f−1
0 �x�dx is of order O�n−1� by taking δn = n−1/�2k−4�: This com-

pletes the proof of Corollary 2.1. 2

Example 2.2 (Scale exponential family). Consider the exponential family
in (1.1) with m�x� = I�x>0��x� and h�θ� = θy that is, for each θ > 0, f�x�θ� =
θe−xθ if x > 0, and 0 elsewhere. Consider testing H0: θ ≤ θ0 against H1: θ >
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θ0 for some θ0 > 0: The parameter space � = �0;∞�: Let G0 be the prior
distribution on � with density

�2:38� g0�θ� = ρ̃l/�1+ θ2�l; θ > 0;

for some l > 1; where ρ̃l is a constant s.t. ρ̃l�1 + θ2�−l is a density function
on �0;∞�: Then again G0 ∈ G and clearly g0�θ0� > 0: Let c0 be the solution
of Vf0

�x� = 0 in �0;∞�; where Vf0
and f0 are given by (2.13) and (2.14),

respectively, with G0 defined according to (2.38).

Corollary 2.2. For the scale exponential family in Example 2.2 and for the
prior G0 with density (2.38) and for an appropriate function H defined later in
the proof, (2.17) holds with j = 4 for any δn → 0; and (2.18) holds with δn =
n−1/�2k−3�:Hence, the order of the lower bound in (2.19) is n−2�k−4�/�2k−3�; k > 4:

Lemma 2.2. Let f0�x� =
∫∞

0 θe−xθg0�θ�dθ, x > 0; where g0�θ� is given by

(2.38). Then f0�x� satisfies f0�x� ≥ β3x
−2 as x → ∞ for some finite constant

β3 > 0:

Proof of Corollary 2.2. Since m�x� = I�x>0��x� and c0 > 0; clearly
m�c0� > 0: Again, to study (2.17) and (2.18), we first define an appropriate
function H to employ in (2.15). For p > 1; define

w̃�x� =
{
�0�p��−1xp−1e−x; x > 0;
0; elsewhere:

LetH�x� = ρ̃l�w̃�x�−w̃�x−1�� for x > 0 and 0 elsewhere, where ρ̃l is as defined
in (2.38). Then

∫∞
0 H�x�dx = 0;

∫∞
0 xH�x�dx 6= 0 and g0�x� ≥ �H�x�� as

x→∞; where g0 is given by (2.38).
Consider now condition (2.17) with the above specifications. Note that, un-

der the hypotheses of Example 2.2, (2.17) reads as

�2:39�
∫ ∞

0
θ2 exp�−c0θ�H�θδn�dθ− θ0

∫ ∞
0
θ exp�−c0θ�H�θδn�dθ = O�δ−jn �:

By a change of variables and rearrangement of terms,

the first term on the l.h.s. of (2.39)

= ρ̃lδ−3
n

{∫ ∞
0
t2w̃�t��exp�−c0tδ

−1
n � − exp�−c0�t+ 1�δ−1

n ��dt

− 2
∫ ∞

0
t exp�−c0�t+ 1�δ−1

n �w̃�t�dt

−
∫ ∞

0
exp�−c0�t+ 1�δ−1

n �w̃�t�dt
}
:

(2.40)

Using the DCT, it is easy to show that, as n→∞;

(i)
∫ ∞

0
t exp�−c0�t+ 1�δ−1

n �w̃�t�dt = o�1�;

(ii)
∫ ∞

0
exp�−c0�t+ 1�δ−1

n �w̃�t�dt = o�1�:
(2.41)
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Expanding exp�−c0tδ
−1
n � and exp�−c0�t+ 1�δ−1

n � separately and then taking
the difference, one obtains

�2:42�

∫ ∞
0
t2w̃�t��exp�−c0tδ

−1
n � − exp�−c0�t+ 1�δ−1

n ��dt

= δ−1
n c0

∫ ∞
0
t2w̃�t�dt+ o�δ−1

n �

for all sufficiently large n; since
∫∞

0 tiw̃�t�dt < ∞ for all i ≥ 0: In view of
(2.39) to (2.42), we have

∫ ∞
0
θ2 exp�−c0θ�H�θδn�dθ = δ−4

n c0

∫ ∞
0
t2w̃�t�dt+ o�δ−4

n �

for all sufficiently large n: Also, the second term on the left-hand side of (2.39)=
δ−2
n

∫∞
0 t exp�−c0tδ

−1
n �H�t�dt = o�δ−2

n � for all sufficiently large n: In view of
the above results together with (2.39), we see that (2.17) is satisfied for j = 4:

Let us now examine condition (2.18). For the setup in Example 2.2, (2.18)
is equivalent to

�2:43� δ2k
n

∫ ∞
0

(∫ ∞
0
θe−xθH�θδn�dθ

)2

f−1
0 �x�dx ≤

d

n
;
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where H is now as defined in the beginning of the present proof and f0 is
given by (2.14) with prior density (2.38). By a change of variable �θδn = t�
followed by another change of variable �xδ−1

n = y�; (2.43) is equivalent to

�2:44� δ2k−3
n

∫ ∞
0

(∫ ∞
0
te−ytH�t�dt

)2

f−1
0 �yδn�dy ≤

d

n
:

Since H�x� = ρ̃l�w̃�x� − w̃�x − 1�� for x > 0; an application of the Cauchy–
Schwarz inequality followed by the moment inequality and some simplification
yields

( ∫ ∞
0
te−ytH�t�dt

)2

≤ 2ρ̃ 2
l

∫ ∞
0
t2e−2ytw̃�t�dt+ 2ρ̃ 2

l

∫ ∞
0
�t+ 1�2e−2y�t+1�w̃�t�dt

≤M1��2y+ 1�−�p+2�

+ e−2y��2y+ 1�−�p+2� + �2y+ 1�−�p+1� + �2y+ 1�−p��

(2.45)

for some finite constant M1 > 0: Let β4 = max0<x<1 f
−1
0 �x�: Then 0 < β4 <∞:

Therefore, using (2.45), we obtain

J1 =
∫ 1

0

(∫ ∞
0
te−ytH�t�dt

)2

f−1
0 �yδn�dy

≤ β4

∫ 1

0

(∫ ∞
0
te−ytH�t�dt

)2

dy

≤M2β4

(2.46)

for some finite constant M2 > 0: Also, by Lemma 2.2 and (2.45),

J2 =
∫ ∞

1

(∫ ∞
0
te−ytH�t�dt

)2

f−1
0 �yδn�dy

≤M1δ
2
n

∫ ∞
1
y2��2y+ 1�−�p+2� + e−2y�dy

= O�δ2
n� = O�1�:

(2.47)

Now, in view of (2.46) and (2.47), we conclude that the left-hand side of (2.44)
is of order O�n−1� by taking δn = n−1/�2k−3�; and the order of the lower bound
in (2.19) is n−2�k−4�/�2k−3�, k > 4: This completes the proof of Corollary 2.2. 2

3. EB rules based on kernel density estimates. In this section, we
study EB rules based on kernel estimates of density f and its derivatives f�i�,
i = 1;2: We show below that EB rules of the form (2.7), with cn obtained
via kernel estimates of Vf [see (2.13)], achieve the rates established in Corol-
laries 2.1 and 2.2. In the following, we apply kernel function K and its νth
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derivative K�ν� satisfying, for some positive integer r�≥ ν�;

(i) support of K�ν� = �−τ; τ�; τ > 0y
(ii) K�j��τ� =K�j��−τ� = 0; j = 0;1; : : : ; ν − 1y

(iii)
∫ τ
−τ
K�ν��x�xj dx =

{
0; if j = 0; : : : ; ν − 1; ν + 1; : : : ; r− 1;
�−1�νν!; if j = νy

(iv)
∫ τ
−τ
K�ν��x�xr dx 6= 0:

(3.1)

Then the kernel estimate of f�ν��x� �νth derivative of f, f�0� ≡ f� is defined
by

�3:2� f̂�ν��x� = 1

nhν+1
n

n∑
j=1

K�ν�
(
Xj − x
hn

)
;

where X1; : : : ;Xn denote a sample from the density f and hn �hn → 0 as
n→∞� is the bandwidth.

In the following, it is assumed that unknown densities belong to the class

�3:3� CB;r =
{
f: sup

x
�f�r��x�� ≤ B

}

for some known finite constantB > 0: That is, rth derivatives of f are assumed
bounded uniformly in CB;r [this can be weakened to a Lipschitz condition

on the �r − 1�th derivative]. Some useful properties of f̂�ν� are given in the
following lemmas. Detailed proofs of Lemmas 3.1 and 3.2 can be found, for
example, in Müller and Gasser (1979) and Singh (1977), respectively.

Lemma 3.1. For r > ν ≥ 0; let f ∈ CB;r: Then, for ν ≥ 0;

�3:4� Ef̂�ν��x� − f�ν��x� = hr−νn f�r��x�Br; ν�1+ o�1��
and

�3:5� var f̂�ν��x� = �nh2ν+1
n �−1f�x�Aν�1+ o�1��;

where

�3:6� Br;ν =
�−1�r−ν
�r− ν�!

∫ τ
−τ
K�t�tr−ν dt

and

�3:7� Aν =
∫ τ
−τ

(
K�ν��t��2 dt:

Lemma 3.2. Let K�2� be Lipschitz continuous on �−τ; τ�: Let f ∈ CB;r with

integer r ≥ 3: Let hn = n−1/�2r+1�: Then, as n → ∞, supx �f̂ �ν��x� − f�ν��x�� =
o�1�; with probability 1, for ν = 0;1;2:
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Lemmas 3.1 and 3.2 hold for a kernel function with a support on the interval
�0;1� as well; see, for example, Singh (1977). Such kernels have been used in
the literature in order to estimate densities with left endpoints, such as those
connected with Example 2.2.

For any known large finite number A > 0; define

�3:8� GA = �G ∈ G : �cG� ≤ A�;
where cG is the solution of the equation VfG

�x� = 0 with VfG
given by (2.13),

G ∈ G ; that is, cG satisfies (2.4)(iii). (The value of A can be chosen arbitrarily
large as desired.)

Let ε > 0 be fixed. Since �V�1�fG
�cG�� > 0 and V�1�fG is continuous, there exists

αG > 0 s.t. �V�1�fG �x�� ≥ αG for all x ∈Nε�αG�; where Nε�αG� = �x: �x−cG� ≤ ε�
is an ε-neighborhood of αG: Define α�H � = inf�αG: G ∈ H ⊆ G� for any
H ⊆ G : Let H ∗ be the largest subset of G s.t. α�H ∗� > 0: For brevity, we
denote α�H ∗� by α∗ below. Let

�3:9� H̃ = �G ∈ H ∗: fG ∈ U ∩ CB;r�;
where

�3:10� U = �fG: fG�x� =m�x�
∫
exθh�θ�dG�θ�; G ∈ G�;

and CB;r is given by (3.3).
Now define

�3:11� ĉ = min�x ∈ �−A;A�: V̂�x� = 0; a < x < b�;
where A is as used in (3.8) and

�3:12� V̂�x� = f̂ �1��x�m�x� − f̂�x�m�1��x� − θ0f̂�x�m�x�;

with f̂�ν� as defined by (3.2), ν = 0;1;2: If fG ∈ U ∩CB;r, m, m�1� and m�2� are
bounded, then by Lemma 3.2, as n→∞;

�3:13� sup
x
�V̂�i��x� −V�i�fG�x�� = o�1�; w.p.1,

for i = 0;1;2:

Theorem 3.1. Let r > 4 and let B = �2π�−1/2∑r
j=0�aj�; where aj is the jth

coefficient of the rth Hermite polynomial. Let ψ̂ denote the EB rule of the form
(2.7) with cn = ĉ; where ĉ is defined by (3.11). Let the kernel K satisfy (3.1)
and let K�2� be Lipschitz continuous on �−τ; τ�: Then, under the assumptions
of Example 2.1, by choosing the bandwidth hn = n−1/�2r+1�; we have

�3:14� sup
G∈H̃ ∩GA

E
(
R̂�G; ψ̂� −R�G�

)
= O�n−2�r−1�/�2r+1��

for all sufficiently large n:
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Proof. We first show that ĉ→ cG as n→∞, w.p.1, for any fG ∈ U∩CB;r;
where ĉ is defined by (3.11). Define αG�x� = EG�θ�X = x�, x ∈ �−∞;∞�,
G ∈ G : Then αG is a strictly increasing continuous function on �−∞;∞�y see
(2.4). Note that αG�x� = VfG

�x�/m�x�fG�x�; since θ0 = 0; where m�x� =
exp�−x2/2� and fG�x� = �2π�−1/2

∫∞
−∞ exp�−�x− θ�2/2�dG�θ�: Then

αG�ĉ �−αG�cG� =
VfG
�ĉ �

m�ĉ �fG�ĉ �
−

VfG
�cG�

m�cG�fG�cG�
=

VfG
�ĉ �

m�ĉ �fG�ĉ �
− V̂�ĉ �
m�ĉ �fG�ĉ �

;

since VfG
�cG� = 0 and V̂�ĉ � = 0: Hence,

�αG�ĉ � − αG�cG�� ≤ sup
x
�VfG
�x� − V̂�x��

/
m�ĉ �fG�ĉ �:

Thus, αG�ĉ� → αG�cG� as n → ∞, w.p.1, from (3.13) and since m�ĉ�fG�ĉ� is
bounded away from 0 for all n: Now ĉ→ cG as n→∞, w.p.1, follows from the
fact that α−1

G (the inverse function of αG� is a continuous function on �−∞;∞�:
Recall from (2.10) that, for any G ∈ G ;

�3:15� R̂�G; ψ̂� −R�G� = S�2�G �c∗��ĉ− cG�2;
where c∗ is an intermediate value between ĉ and cG: By repeated differen-
tiation under the integral sign, f�r�G �x� = �−1�r

∫
Hr�x − θ�f�x�θ�dG�θ� for

any G ∈ G ; where f�x�θ� = �2π�−1/2 exp�−�x− θ�2/2� and Hr is the rth
Hermite polynomial. Thus, supx �f

�r�
G �x�� ≤ �2π�−1/2∑r

j=0�aj� for any G ∈ G :

Furthermore, since θ0 = 0, SG�y� =
∫ y
cG
lG�x�dx =

∫ y
cG

( ∫
θf�x�θ�dG�θ�

)
dx

has second derivative

S
�2�
G �y� = �2π�−1/2

{∫
�y− θ�2 exp

(−�y− θ�2
2

)
dG�θ�

− y
∫
�y− θ� exp

(−�y− θ�2
2

)
dG�θ�

}
:

Therefore, for −∞ < y <∞;

�3:16� �S�2�G �y�� ≤ �2π�−1/2�1+ �y��
for any G ∈ G : Then, since ĉ→ cG as n→∞; from (3.16) we have

�3:17� �S�2�G �c∗n�� ≤ �2π�−1/2�1+ �cG�� ≤ �2π�−1/2�1+A�
for all sufficiently large n and G ∈ GA: By the mean value theorem we find
[observing V̂�ĉ� = 0]

�3:18� ĉ− cG = V̂�cG�/V̂�1��c∗1�;
where c∗1 lies between ĉ and cG: Now ĉ→ cG and (3.13) yield that, w.p.1,

�3:19� sup
x∈Nε�cG�

∣∣∣∣
1

V̂�1��x�

∣∣∣∣ = sup
x∈Nε�cG�

∣∣∣∣
1

V
�1�
fG
�x�
·
V
�1�
fG
�x�

V̂�1��x�

∣∣∣∣ ≤
2
αG
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for all sufficiently large n and G ∈ GA [for the definitions of αG and Nε�cG�;
see circa (3.9)]. From (3.18) and (3.19) one obtains, w.p.1,

�3:20� �̂c− cG� ≤
2
αG
�V̂�cG��

for all sufficiently large n and G ∈ GA: Now combine (3.15), (3.17) and (3.20)
to obtain

�3:21� E
(
R̂�G; ψ̂� −R�G�

)
≤ �2π�−1/2�1+A�

(
2
αG

)2

E
(
V̂�cG�

)2

for all sufficiently large n and G ∈ GA: Since VfG
�cG� = 0; from (3.12) we

have

V̂�cG� −VfG
�cG�

=
(
f̂�1��cG� − f

�1�
G �cG�

)
m�cG� +m�1��cG�

(
fG�cG� − f̂�cG�

)
:

(3.22)

Now (3.21) and (3.22) together with (3.4) and (3.5) yield

sup
G∈H̃ ∩GA

E
(
R̂�G; ψ̂� −R�G�

)

≤ �2π�−1/2�1+A�
(

2
α∗

)2

× 2�h2�r−1�
n �B ·Br;1�1+ o�1��� + �nh3

n�−1�A1�1+ o�1���
+ h2r

n �B ·Br;0�1+ o�1��� + �nh2
n�−1�A0�1+ o�1����

= O�h2�r−1�� +O��nh3
n�−1�

for all sufficiently large n: The result (3.14) now follows by choosing hn =
n−1/�2r+1�: 2

Remark 3.1. To see why the EB rule ψ̂ defined in Theorem 3.1 attains
the lower bound in (2.19) with δn as in Corollary 2.1, it is enough to observe
that G0 and Gn belong to H̃ ∩ GA; where G0 and Gn are the distribution
functions of densities (2.29) and (2.15), respectively, withH in (2.15) as defined
in the proof of Corollary 2.1. Clearly, G0 ∈ GA; since c0 = 0: Hence, Gn ∈ GA

for all sufficiently large n: Also, we notice that fG ∈ U ∩ CB;r when B =
�2π�−1/2∑r

j=0�aj� for all G ∈ G : Thus, f0 ∈ U ∩ CB;r and hence f∗n ∈ U ∩ CB;r
for all sufficiently large n; where f∗n is given by (2.16). Furthermore, �V�1�f0

� ≥
α0 > 0 for all x ∈ Nε�0� for any ε > 0 (note that c0 = 0 in this case). Thus,
G0 ∈ H̃ : Hence, Gn ∈ H̃ for all sufficiently large n: Then, from (2.19) and
Corollary 2.1, we obtain [by taking 3k = 8+ 4r in (2.19)]

�3:23� sup
G∈H̃ ∩GA

E
(
R̂�G; ψ̂� −R�G�

)
≥ dn−2�r−1�/�2r+1�

for some finite constant d > 0: The upper and lower bounds (3.14) and (3.23)
show that the EB rule ψ̂ achieves the optimal minimax rate n−2�r−1�/�2r+1�:
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Theorem 3.2. Let r > 4: Let B > 2 be a large but fixed number. Let ψ̂ be
defined by (2.7) with cn = ĉ; where ĉ is defined by (3.11). Suppose that support
of the kernel function K is �0;1� and satisfies (3.1)(iii) and suppose that K�2�

is Lipschitz continuous on �0;1�: Then, under the assumptions of Example 2.2,
by choosing the bandwidth hn = n−1/�2r+1�; we have

�3:24� sup
G∈H̃ ∩G0∩GA

E
(
R̂�G; ψ̂� −R�G�

)
= O�n−2�r−1�/�2r+1��

for all sufficiently large n; where G0 = �G ∈ G :
∫∞

0 θr dG�θ� ≤ B�:

Proof. Again, it is easy to show that ĉ → cG as n → ∞, w.p.1 [the
proof is exactly similar to the proof given for Theorem 3.1, since m�ĉ�fG�ĉ�
is bounded away from 0 in this case as well]. By repeated differentia-
tion under the integral sign [using Theorem 2.9 of Lehmann (1959)], the
ith derivative of fG�x� =

∫∞
0 f�x�θ�dG�θ� =

∫∞
0 θe−θx dG�θ�, x > 0; is

f
�i�
G �x� = �−1�i

∫∞
0 θif�x�θ�dG�θ�, i ≥ 1: Thus, �f�r�� ≤ B; and hence G ∈ G0

implies that fG ∈ U ∩ CB;r: In this case, S�1�G �y� = f
�1�
G �y� − θ0fG�y�; y > 0;

and therefore �S�2�G � ≤ M for some finite positive constant M depending only
on θ0 and B for all G ∈ G0: Then from (2.18), for any G ∈ G0;

�3:25� E
(
R̂�G; ψ̂� −R�G�

)
= E

(
S
�2�
G �c∗n��ĉ− cG�2

)
≤ME�ĉ− cG�2:

As in (3.20) we have, w.p.1,

�3:26� �̂c− cG� ≤
2
αG
�V̂�cG��

for all sufficiently large n and G ∈ GA: In this case, V̂�x� = f̂�1��x� − θ0f̂�x�
and θ0 > 0: Therefore, since VfG

�cG� = 0;

�3:27� V̂�cG� −VfG
�cG� =

(
f̂ �1��cG� − f

�1�
G �cG�

)
+ θ0

(
fG�cG� − f̂�cG�

)
:

Then, from (3.25), (3.26), (3.27) together with (3.4) and (3.5), we obtain

sup
G∈H̃ ∩G0∩GA

E
(
R̂�G; ψ̂� −R�G�

)

≤M
(

2
α∗

)2

2�h2�r−1�
n �B ·Br;1�1+ o�1���2

+ �nh3
n�−1�A1�1+ o�1��� + o�h

2�r−1�
n � + o��nh3�−1��

= O�h2�r−1�
n � +O��nh3

n�−1�

for all sufficiently large n: The result follows by taking hn = n−1/�2r+1�: 2
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Remark 3.2. By choosing l ≥ r + 2 in (2.38), it is easy to show that
�G0;Gn� ⊆ H̃ ∩ G0 ∩ GA for some sufficiently large A and for all sufficiently
large n; where G0 and Gn are the distribution functions of (2.38) and (2.15),
respectively, with H in (2.15) as defined in the proof of Corollary 2.2. Then
from (2.19) and Corollary 2.2 we obtain, by taking 3k = 5r+ 7 in (2.19),

�3:28� sup
G∈H̃ ∩G0∩GA

E
(
R̂�G; ψ̂� −R�G�

)
≥ d0n

−2�r−1�/�2r+1�

for some finite constant d0 > 0: The upper and lower bounds (3.24) and (3.28)
show that the EB rule ψ̂ achieves the optimal minimax rate n−2�r−1�/�2r+1� in
this case.

Remark 3.3. One can replace the constant A in (3.8) by a suitably chosen
sequence of positive numbers, �bn�; such that bn ↑ b as n→∞: However, the
result of such a generality is weaker rates of convergence at (3.14) and (3.24).
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