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LOCALLY UNIFORM PRIOR DISTRIBUTIONS1
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< Ž 2 .Suppose that X u ; N u, s and that s ª 0. For which priors

distributions on u is the posterior distribution of u given X asymptoti-s

Ž 2 . Ž 2 .cally N X , s when in fact X ; N u , s ? It is well known that thes s 0
stated convergence occurs when u has a prior density that is positive and
continuous at u . It turns out that the necessary and sufficient conditions0
for convergence allow a wider class of prior distributions}the locally
uniform and tail-bounded prior distributions. This class includes certain
discrete prior distributions that may be used to reproduce minimum
description length approaches to estimation and model selection.

< Ž 2 .1. Introduction. Suppose X u ; N u, s given the random variables
2yx r2'Ž . Ž .u. Let f x s 1r 2p e . If u has the prior distribution P, not necessar-

ily proper, the posterior distribution function is

H t f X y u rs dP uŽ . Ž .Ž .y` s
<P u F t X s .s `H f X y u rs dP uŽ . Ž .Ž .y` s

ŽThe symbol P is used to denote a generic probability in linear functional
form. The same symbol is used for both expectation and probability, identify-
ing probability of a set with expectation of the corresponding characteristic

.function.
Ž 2 .We say the posterior distribution is asymptotically N X , s ifs

t
<P u y X rs F t X ª f u duŽ . Ž .Hs s

y`

in X -probability as s ª 0. There are two plausible choices for the probabil-s

ity distribution of X : the first is the marginal distribution of X for each s ;s s

<the second is the conditional distribution of X u for some fixed u . We wills 0 0
use the second choice, because it has more application to standard asymptotic
problems, but the first choice is also worth exploring.

Ž 2 .For which prior distributions P, when in fact X ; N u , s , as s ª 0, iss 0
Ž 2 . wthe posterior distribution asymptotically N X , s ? A referee has suggesteds

Ž .the same question, when the normality of X is only asymptotic: if X y u rss s

Ž .converges weakly to N 0, 1 as s ª 0 for each choice of u , for what prior
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Ž .distributions P will the posterior distribution of u y X rs converge in Xs s

Ž . xprobability to N 0, 1 , when in fact u is true? Good question.0
The posterior distribution is exactly normal when the prior is uniform over

w Ž .xthe real line. It is well known Walker 1969 that the convergence occurs
if the prior density has a density that is positive and continuous at u0
and if the posterior density is proper for some choice of s . The prior
distribution then behaves like a uniform in the neighbourhood of u , and0
contributions outside the neighbourhood are negligible.

A prior distribution P is locally uniform at u if0

� 4P as - u y u F bs0 ª b y a for each a - b as s ª 0.� 4P 0 - u y u - s0

In n-dimensions, P is locally uniform at u , if for each pair of bounded0
nonempty open sets S , S ,1 2

� 4P u y u g s S l SŽ .0 1 1ª as s ª 0,� 4P u y u g s S l SŽ .0 2 2

where l denotes Lebesgue measure.
Say that P is tail-bounded at u if0

H f u y u rs dP uŽ . Ž .Ž .<uyu < G K s 00lim lim sup s 0.
< <P u y u F s� 4Kª` sª0 0

This condition ensures that contributions to the posterior distribution from
outside s-neighbourhoods of u are negligible. The condition would not be0
met, for example, if P gave zero probability or too little probability to a
neighbourhood of u . It will be met, for example, by a prior density bounded0
away from infinity and zero.

<It will be shown that the posterior distribution of u X is asymptoticallys

Ž 2 .N X , s if and only if P is locally uniform and tail-bounded.s

There are discrete prior distributions that are locally uniform and tail-
w xbounded at all nonatoms of the prior in y1, 1 : for example, for each set of

< < n � n4 Ž Žintegers i, n, k, with n G 1, 0 - k - 2 , k odd, P u s kr2 s 1r n n q
. n.1 2 . The atoms are the binary fractions of finite length.

The discrete prior distributions may be used in penalized likelihood meth-
Ž < .ods for parameter estimation and model selection. Suppose that f x u is the

likelihood of the data x for a parameter u which may take values in a
number of spaces of different dimensionalities corresponding to different
models. Suppose that the prior density of u with respect to some measure

Ž .over the several spaces is p u . The modal posterior density is achieved at
Ž . Ž < .the penalized likelihood maximum of p u f x u , but the modal value will

not necessarily occur within the true model consistently. Parameter spaces of
higher dimensionality in the neighbourhood of the true model will compete
for the location of the modal posterior density. For example if the prior
density is 1 in the different spaces, the modal density will be the maximum of
the likelihood, which will tend to be larger in the higher dimensional spaces.



J. A. HARTIGAN162

However, locally uniform discrete priors may be chosen so that the mode
of the posterior density occurs with asymptotic probability 1 in the true
subspace.

w ŽMinimum description length methods using coding theory Rissanen 1978,
. Ž . Ž .1983, 1987, 1989 , Wallace and Boulton 1968 , Wallace and Freeman 1987

Ž .xand Barron and Cover 1991 take the possible estimates of a parameter in a
particular subspace to be a grid of values about 1 standard error apart in the
subspace. Such methods are not apparently consistent with Bayesian infer-
ence because the range of the parameter is determined by the data, and it
appears as if a different prior is required for different sample sizes, since the
standard errors depend on the sample sizes. For discrete random variables,
we can express coding theory in statistical terms by identifying code length

wwith negative log probability as suggested by Dawid in the discussion of
Ž . Ž .xRissanen 1987 and Wallace and Freeman 1987 . The minimum code length

description of data and parameters is at the maximum joint probability of
data and parameters. For certain locally uniform discrete priors, the mode of
the posterior density can occur only at a possible set of parameter values
about 1 standard error apart. Thus the minimum description length prescrip-
tion for estimation may be reproduced in a strict Bayesian framework with a
single prior for all sample sizes.

2. Asymptotic normality equivalent to local uniformity and tail-
boundedness. We say the posterior distribution is asymptotically
Ž 2 .N X , s ifs

t
<P u y X rs F t X ª f u duŽ . Ž .Hs s

y`

in X -probability as s ª 0.s

< Ž 2 .THEOREM 1. Let X u ; N u, s . Let P be any measure on the real line.s

< Ž 2 .The posterior distribution of u X is asymptotically N X , s , when X ;s s s

Ž 2 .N u , s as s ª 0, if and only if P is locally uniform and tail-bounded at u .0 0

PROOF. Let u s 0 without loss of generality. The condition for asymptotic0
normality, after a change of variable, may be written

H t f u dP X q s uŽ . Ž . ty` s ª f u duŽ .H`H f u dP X q s uŽ . Ž . y`y` s

in X probability as s ª 0.s

In this formulation, it is apparent that we need P to behave like a uniform
near 0. If P were exactly uniform, the left-hand side would be identical to the
right-hand side of the above equation. The form of convergence somewhat
resembles weak convergence. The difference is that the limiting uniform
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Ž .distribution is improper and the approximating measures dP X q s u ares

random.
Without loss of generality, we may choose a fixed unit normal Z and set

X s s Z. We now prove a result for Z fixed that eliminates the randomnesss

of the approximating measures. It is necessary to adapt weak convergence
arguments to the improper limiting uniform distribution.

For each fixed Z,

H t f u dP s u q ZŽ . Ž .Ž . ty`
f t , Z s ª f u du for all tŽ . Ž .H`H f u dP s u q ZŽ . Ž .Ž . y`y`

if and only if P is locally uniform and tail-bounded.
< <If P is locally uniform, the distribution of urs given u rs F K converges

w x < < < < < < < <weakly to a uniform on yK, K . Thus taking K ) Z , Z q 1 , Z q b ,

H b f u dP s u q Z H b f u duŽ . Ž . Ž .Ž .0 0ª ,
< <� 4P urs F K 2 K

H b f u dP s u q Z H b f u duŽ . Ž . Ž .Ž .0 0ª .1 1H f u dP s u q Z H f u duŽ . Ž . Ž .Ž .0 0

1 1< < < < < < < < < < ŽChoose K ) 2 Z . For u ) K, Z q u - u - 2 Z q u . Setting v s u q2 2

.Z ,

f u dP s u q Z F f v dP 2s v .Ž . Ž . Ž . Ž .Ž .H H
< < < <u )K v )Kr4

Thus if P is tail-bounded,

H f u dP s u q ZŽ . Ž .Ž .< u < ) K
lim lim sup

H dP s uKª` Ž .sª0 < u < F1

H f u dP 2s uŽ . Ž .< u < ) K r2F lim lim sup s 0.
H dP s uKª` Ž .sª0 < u < F1

Since

H1 f u dP s u q Z f 1 H1 dP s u q Z 1Ž . Ž . Ž . Ž .Ž . Ž .0 0
) ª f 1 as s ª 0,Ž .

H dP s u H dP s u 2Ž . Ž .< u < F1 < u < F1

H f u dP s u q ZŽ . Ž .Ž .< u < ) K
lim lim sup s 0.1H f u dP s u q ZKª` Ž . Ž .Ž .sª0 0

Thus local uniformity and tail-boundedness together imply

H t f u dP s u q ZŽ . Ž .Ž . ty` ª f u du for all tŽ .H`H f u dP s u q ZŽ . Ž .Ž . y`y`
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for every Z, and so the convergence also takes place in probability for
Ž .Z ; N 0, 1 :

H t f u dP X q s uŽ . Ž . ty` s ª f u du.Ž .H`H f u dP X q s uŽ . Ž . y`y` s

To show the converse, we use the fact that weakly convergent sequences
have strongly convergent subsequences. Suppose that

t
f t , Z ª f u du for all tŽ . Ž .H

y`

Ž .in probability for Z ; N 0, 1 . Choose a subsequence s on which, except for ai
set of Z-values of probability zero,

t
f t , Z ª f u du for all t .Ž . Ž .H

y`

For example, choose s such that the convergence is accurate to 2yi, withi
probability 1 y 2yi, for the set of t-values y2 i, y2 i q 2yi, . . . , 2 i y 2yi, 2 i.

Thus the convergence occurs for all t for at least one Z. This is sufficient to
establish local uniformity and tail-boundedness.

w xFor each « ) 0, divide the interval yK, K into equal segments of length
Ž . Ž . < < U Ž .d such that f x rf y - 1 q « whenever x y y F d . Define f I s

Ž .sup f x . For any two segments I, J,I

H dP s u q Z fU J H f u dP s u q ZŽ . Ž . Ž . Ž .Ž . Ž .I I
lim sup F lim sup 1 q «Ž . UH dP s u q Z f I H f u dP s u q ZŽ . Ž . Ž . Ž .Ž . Ž .sª0 sª0J J

fU J H f u duŽ . Ž .IF 1 q «Ž . Uf I H f u duŽ . Ž .J

H duI2 2F 1 q « s 1 q « .Ž . Ž .
H duJ

Combining the segments, for integer i,

H id dP s u q Z id q KŽ .Ž .0 2lim sup F 1 q « .Ž .K 2 KH dP s u q ZŽ .Ž .sª0 yK

Letting « , d ª 0 gives

H b dP s u q Z bŽ .Ž .0
lim sup FK 2 KH dP s u q ZŽ .Ž .sª0 yK

and a similar argument establishes the reverse inequality. Thus local uni-
formity is established.
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< <Finally, tail-boundedness follows, once K ) Z , by

1` `H f u dP s u H f u dP s u q ZŽ . Ž . Ž .Ž .Ž .4 K K2
lim sup F lim sup

H dP s u H dP s uŽ . Ž .sª0 sª0< u < F1 < u < F1

H` f u dP s u q ZŽ . Ž .Ž .Ks lim sup
H dP s u q ZŽ .Ž .sª0 < u < F1

H` f u dP s u q ZŽ . Ž .Ž .KF f 0 lim supŽ .
H f u dP s u q ZŽ . Ž .Ž .sª0 < u < F1

H` f u duŽ .Ks f 0 ª 0 as K ª `. IŽ .
H f u duŽ .< u < F1

3. A discrete locally uniform and tail-bounded prior. It is easy to
show that P is locally uniform at u if P has a density at u that is0 0
continuous and positive, and P is not locally uniform if the density is
continuous and positive in the neighborhood of u , except for a jump at u .0 0
We will exhibit a class of discrete locally uniform and tail-bounded distribu-
tions.

A binary fraction distribution is a mixture of discrete uniforms in the
Ž .interval y1, 1 :

k
ynP u s s 2 q n , k odd,Ž .n½ 52

Ž .where the denominator probability q n is the probability that u is some
binary fraction with minimum denominator 2 n.

THEOREM 2. A binary fraction distribution is locally uniform and tail-
Ž . Ž .bounded at 0 if and only if q n rÝ q i ª 0 as n ª `.i) n

Ž . Ž .PROOF. Let Q n s Ý q i . First suppose that the binary fraction dis-i) n
tribution is locally uniform at 0. For p ) n, there are 2 pyny1 fractions having
denominator 2yp that are between 0 and 2yn. Thus

1 1 1
P 0 - u F s q n q Q n .Ž . Ž .n n nq1½ 52 2 2

� yn4 � yn4Thus, as n ª `, P u s 2 is negligible compared to P 0 - u - 2 if and
Ž . Ž .only if q n rQ n ª 0. Thus if the binary fraction distribution is locally

Ž . Ž .uniform, necessarily q n rQ n ª 0.
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Ž . Ž .Now suppose that q n rQ n ª 0. For k odd,
kk j y 1 j

P 0 - u F s P - u FÝn n n½ 5 ½ 52 2 2js1

k kj y 1 j j
s P - u - q P u sÝ Ýn n n½ 5 ½ 52 2 2js1 js1

k1 j
s kP 0 - u - q P u s .Ýn n½ 5 ½ 52 2js1

k � n4 2 yn Ž .For fixed k, Ý P u s jr2 F k 2 max q m is negligible com-js1 �nyk F mF n4
� n4 yny1 Ž .pared to P 0 - u - 1r2 s 2 Q n , as n ª `. Thus

P 0 - u F K r2n K� 41 1ªnP 0 - u F K r2 K� 42 2

uniformly in the integers 1 F K , K F K, as n ª `. For integer K, b ) 01 2
fixed, define n, K , K for each s by1 2

K K K K q 1 K K q 11 1 2 2
- s F , - s F , - bs F .n n n n nnq1 2 2 2 2 22

1 1Note that K y 1 F K F K, Kb y 1 F K F Kb,1 22 2

n � 4 nP 0 - u F K r2 P 0 - u F bs P 0 - u F K q 1 r2� 4 � 4Ž .2 2F F .n n� 4P 0 - u F K q 1 r2 P 0 - u F s P 0 - u F K r2� 4� 4Ž .1 1

Ž . Ž .In the limit, the bounds approach K r K q 1 and K q 1 rK , which each2 1 2 1
1 1Ž . Ž Ž ..differ from b by less than K q Kb q 1 r K K y 1 . Since K may be2 2

chosen arbitrarily large, it follows that

� 4P 0 - u F bs
ª b� 4P 0 - u F s

Ž .as required for local uniformity at 0 negative b are treated similarly .
To show that the binary fraction distribution is tail-bounded at 0, we need

that

H f urs dP uŽ . Ž .<u < ) K s
lim lim sup s 0.

< <� 4P u F sKª` sª0

Let s s 2yp , let K be some positive integer. Consider contributions from
each of the discrete uniform components of the binary fraction distribution:

k
< < <S n , s s u u G Ks , u s , k odd ,Ž . n½ 52

u u
f dP u s f p u .Ž . Ž .Ý ÝH ž / ž /s s< <u GK s n Ž .ugS n , s
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Ž .For n ) p, since f x is convex in the region x G 1,
u

pynf s f k2Ž .Ý Ýž /s pynŽ . < <ugS n , s k 2 )K

` `
pyn nyps 2 f k2 F 2 f u du 2 ,Ž . Ž .Ý H

nyp Kks1q2 K

u
ypf p u F 2 1 y F K 2 q nŽ . Ž . Ž .Ý Ý Ýž /sn)p n)pŽ .ugS n , s

yps 2 1 y F K 2 Q p .Ž . Ž .
� < < 4 yp Ž .Since P u F s G 2 Q p ,

Ý Ý f ursŽ .n) p u g SŽn , s .
lim lim sup s 0.

< <� 4P u F sKª` sª0

Ž pyn. Ž pyn.kFor n F p, using f k2 F f 2 gives
u

f p uŽ .Ý Ý ž /snFp Ž .ugS n , s

F 4 f 2 pyn 2ynq nŽ . Ž .Ý
nFp

yp pyn pyns 4Q p 2 f 2 2 q n rQ pŽ . Ž . Ž . Ž .Ý
pGn)pyJ

pyn pynq f 2 2 q n rQ p .Ž . Ž . Ž .Ý
nFpyJ

Ž . Ž . Ž . Ž .Since q n rQ n ª 0, it follows that Q n rQ n q 1 ª 1 and so for some
Ž . Ž . Ž . Ž . pynfinite l, Q n rQ n q 1 F l all n, and then q n rQ p F l . Take « ) 0.

` Ž j. j j ` Ž j. j jThe series Ý f 2 2 l converges, so J may be chosen so that Ý f 2 2 l1 J
p Ž . Ž .- « . Next, for p large enough, Ý q n rQ p - « . ThenpyJ

u
ypf p u F 8« Q p 2 .Ž . Ž .Ý Ý ž /snFp Ž .ugS n , s

Since this result holds for every « ) 0, for p sufficiently large,

Ý Ý f urs p uŽ . Ž .nF p u g SŽn , s .
lim lim sup s 0.

< <� 4P u F sKª` sª0

Combining the contributions from n ) p and n F p establishes tail-bounded-
ness. I

Ž . Ž Ž ..One convenient binary fraction distribution sets q n s 1r n n q 1 . An-
other possible choice of denominator distribution is the long-tailed ‘‘universal

w Ž .xprior on the integers’’ Rissanen 1983 :

log q n s C y log n y log log n y log log log n q ??? ,Ž .
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where the summation is carried out as long as the terms remain nonnegative,
which will produce locally uniform, tail-bounded distributions.

A useful improper binary fraction distribution that does not satisfy the
Ž .local uniformity property sets q n s 1 all n. This prior distribution gives

infinite probability to every open interval. Nevertheless the posterior proba-
bility at any binary fraction may be computed, and the posterior mode is
simply computed and behaves reasonably well compared to maximum likeli-
hood.

A distribution dense on the real line is the binary rational distribution
which is nearly the product of two binary fraction distributions; a binary

w xrational of type l, k has l binary digits before the decimal point, beginning
with a 1, and k binary digits after the decimal point, ending with a 1. It may

w xbe positive or negative. The probability of each binary rational of type l, k is
Ž lqky1 Ž . Ž ..1r 2 l l q 1 k k q 1 . This distribution is locally uniform and tail-

bounded at nonatoms.
Another possible distribution on the rationals assigns the probability
Ž 2 2 .Cr k l to the rational krl, where k, l have no common factors. I conjecture

this distribution to be locally uniform in the neighbourhood of any irrational,
but the calculations are abstruse.

4. Penalized likelihood estimation using binary fraction priors.
Ž .Suppose we wish to estimate u using the 0]1 loss function L d, u s 1 if

Ž .d / u , L d, u s 0 if d s u . For a discrete prior distribution, the Bayes
ˆestimate is the penalized likelihood estimate u maximizing the posterior

Ž . ŽŽ . .density or penalized likelihood p u f X y u rs .s

THEOREM 3. For the binary fraction prior P, with nonincreasing denomi-
ˆ< <nator probability q, when X F 1, the penalized likelihood estimate u iss

achieved by some u s kr2n, k odd, where 2yn ) sr2.

n ˆPROOF. Let u s kr2 for odd integer k. We wish to find u minimizingk , n

21 2L u s X y u rs y log p u .Ž . Ž . Ž .s2

For each fixed n, since the neighbouring values of u are separated by ank , n
1yn Ž .2interval of length 2 , the quantity X y u has a minimum value nots k , n

yn Ž .2exceeding 4 . Also at the overall optimum u , the quantity X y u isk̂ , n s k , nˆ
nonnegative. Thus

ylog p u F min L u F min L uŽ . Ž . Ž .k , n k , n k , ny1ˆ ˆ ˆ
k k

1 1yn 2ˆF 4 rs y log p u .Ž .k , ny12 ˆ

Since q is nonincreasing and 2 log 2 ) 1,
1 1yn 2ˆn log 2 y log q n F 4 rs q n y 1 log 2 y log q n y 1 ,Ž . Ž . Ž .ˆ ˆ ˆ ˆ2

1 1yn 2ˆlog 2 F 4 rs ,2

sr2 - 2yn as required. I



LOCALLY UNIFORM PRIOR DISTRIBUTIONS 169

The effect of this theorem is that, in penalized likelihood calculations, we
need consider only atoms of the prior distribution separated by at least 1
standard error. Such a separation is recommended for minimum description

Ž .length estimation in Wallace and Freeman 1987 . Thus the binary fraction
prior gives a strict Bayesian justification of minimum description length
estimation procedures.

It is of interest to know how far away the penalized likelihood estimator
can be from X .s

< < Ž . Ž . ny1THEOREM 4. For X F 1, q nonincreasing, q n rq 1 G a for all n,s
ˆthe penalized likelihood estimate u satisfies

1r2ˆ< <X y u F s 1 q 2 log s log 2ra rlog 2 .Ž .s

PROOF. We compare the optimal penalized likelihood at n with the penal-ˆ
ized likelihood for n satisfying 2yn - s F 21yn. Assume n F n, for otherwiseˆ
the inequality stated follows trivially.

21 12 yn 2ˆX y u rs q n log 2 y log q n F 4 rs q n log 2 y log q n ,Ž . Ž .ˆ ˆs2 2

21 12 yn 2ˆX y u rs F 4 rs q n y 1 log 2raŽ . Ž .s2 2

1F q log s log 2ra rlog 2,Ž .2

from which the desired inequality follows. I

Ž .'Thus the penalized likelihood estimate may be O s log s from X .s

< < Ž . Ž .THEOREM 5. For X F 1 and if q n rq n y 1 G 2re for each n, thes
ˆpenalized likelihood estimate u satisfies

ˆ< < < <u F 4 max s , X .s

ym y1 w < <x ymPROOF. Suppose that 2 - max s , X F 2 . Assume that X G 0s s
ˆ ymwithout loss of generality. If u F 2 , the stated inequality is satisfied. If not,

the optimal u will be of form 2yp for p - m. The penalized likelihood at
u s 2yp will exceed the penalized likelihood at u s 2ym , so

2 21 1yp 2 ym 2X y 2 rs y X y 2 rss s2 2

F m y p log 2 q log q p y log q m ,Ž . Ž . Ž .
2yp ym 2w x2 y 2 F 2s m y p log 2 y log 2re ,Ž . Ž .
2mypw x2 y 1 F 2 m y p , m y p F 1.Ž .

ˆ 1ym ˆ w < <xThus u s 2 , which implies that u F 4 max s , X as required. Is

Ž .Similar bounds are obtained if q n decreases at a different rate. The effect
ˆ Ž .of this theorem is that u s O s whenever the true value is 0. I would expectp

that a similar bound holds for other choices of true value.
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Ž .5. Model selection. Let f X denote the marginal densitys

Ž . ŽŽ . . Ž .H 1rs f X y u rs dP u . The asymptotic behaviour of this density hass

Ž .been used in model selection to justify the Schwarz 1978 ‘‘correction factor’’
to adjust for differing dimensionalities of competing models. The usual
asymptotics assume a prior density p that is continuous and positive near

Ž . Ž .the true value u . In this case, f X rp u ª 1 in probability, if X ;0 s 0 s

Ž 2 .N u , s . We wish to develop the asymptotic behaviour for locally uniform0
and tail-bounded priors.

THEOREM 6. If P is locally uniform and tail-bounded at u , then0

log f X rlog s ª 0Ž .s

Ž 2 .in probability when X ; N u , s .s 0

Ž .PROOF. Let u s 0 and set X s s Z, where Z ; N 0, 1 . We first show0 s

that

� 4P 0 - u - s
ª 1.

s f s ZŽ .

Following the proof of Theorem 1, for each fixed Z, t,

<P u - s Z q t X s s Z ª F t .� 4Ž . Ž .s

Thus

H« f u dP s Z q uŽ . Ž .Ž .0 ª F « y F 0 .Ž . Ž .
s f s ZŽ .

Ž . Ž .Since f u - f « for 0 - u - « ,

P s Z - u - s Z q «� 4Ž .
lim sup f « F f 0 « .Ž . Ž .

s f s ZŽ .sª0

By local uniformity of P, and taking « arbitrarily small,

� 4lim sup P 0 - u - ss ª 0 F 1.
s f s ZŽ .

A similar argument reverses the inequality, so that

� 4P 0 - u - s
ª 1.

s f s ZŽ .

Ž � 4 .To prove the theorem, it suffices to show that log P 0 - u F s rs rlog s
ª 0. Because P is locally uniform,

� 4P 0 - u F sr2 1
ª as s ª 0.� 4P 0 - u F s 2



LOCALLY UNIFORM PRIOR DISTRIBUTIONS 171

For each « ) 0, choose s so that0

� 42 P 0 - u F sr2
y«) 2� 4P 0 - u F s

for s - s . Then, applying the inequality n times,0

2nP 0 - u F 2yns� 40 yn«) 2 ,� 4P 0 - u F s0

yn yn � 4log P 0 - u F 2 s r 2 s log P 0 - u F s rs n« log 2� 4 Ž .0 0 0 0
) y .yn yn ynlog 2 s log 2 s log 2 sŽ . Ž . Ž .0 0 0

The right-hand side is bounded below by y2« for n large enough. A similar
argument bounds the left-hand side above by 2« . Thus

� 4log P 0 - u F s rs rlog s ª 0 as s ª 0.Ž .
Ž ynWe have shown this only for sequences of form s s 2 , but it also follows

.for general sequences. I

If the prior density has a continuous positive density at u , then the0
Ž . Ž .stronger result log f X ª log p u as s ª 0 in probability holds. However,s 0

the present theorem is strong enough to guarantee consistency of model
selection for models of different dimensionality. Consider first the simplest

Ž .case of a sample X , . . . , X from N u , 1 , when the prior has positive and1 n
Ž < .continuous density p at u . Let f X u denote the density of the observations0

Ž .given u and let f X denote the corresponding marginal density of the
ˆobservations. Then, with u the maximum likelihood estimator of u ,

1ˆ '<log f X rf X u s y log n q log 2p p u q o 1 .Ž . Ž . Ž .Ž . 0 p2

Such a formula for general densities with k-dimensional parameters is given
Ž . Ž .by Jeffreys 1936 ; it is the basis for the Schwarz 1978 correction factor,

1which penalizes the log likelihood in k dimensions by y k log n.2

For locally uniform and tail-bounded priors, this is weakened to

1ˆ<log f X rf X u s y log n q o log n .Ž . Ž .Ž . p2

Ž . wŽ .Related formulae appear in Dawid 1984 and Rissanen 1987 , Theorem
x4.1 . The leading order term in log n is the same in both approximations, and

it is this term that determines consistency in model selection. For example,
for X and u two dimensional,

1ˆ<log f X rf X u s 2 y log n q o log n .Ž . Ž .Ž . Ž . p2

U Ž .Now suppose that u s u , 0 defines a one-dimensional subspace of the1
original two-dimensional parameter space. Then

U U 1ˆ<log f X rf X u s y log n q o log n .Ž . Ž .Ž . p2
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ˆ ÛŽ < . Ž < . Ž .The terms f X u and f X u differ by O 1 when u lies in the smallerp 0
subspace, by the standard theory of likelihood ratio tests. Thus

U 1log f X rf X s log n q o log nŽ . Ž . Ž .p2

for locally uniform and tail-bounded priors at u in each of the parameter0
spaces, when u lies in the smaller subspace. Thus the posterior probability0
of the smaller subspace given X approaches 1 as n ª `.

If estimation is done by maximizing the posterior density, it is of interest
Ž . Ž < .to know when the value of u maximizing p u f X u lies in the same

parameter subspace as the true value u . The maximizing u lies in the0
correct subspace with probability approaching 1 if an appropriate discrete
locally uniform and tail-bounded prior is chosen for the various subspaces.
For example, suppose that X , . . . , X are two-dimensional random variables1 n

Ž .sampled from the circular normal N u , I , where the set V of u values is the
U � . < 4plane and the subspace V s u , u u s 0 is to be allowed for. Choose1 2 2

binary fraction priors for u and u holding independently. For example,1 2

n n n qn1 2 1 2P u s k r2 , u s k r2 s 1r 2 n n q 1 n n q 1� 4 Ž . Ž .1 1 2 2 1 1 2 2

for n , n G 1 and k , k odd. The subspaces V and VU, with V > VU are1 2 1 2
assumed to have prior probabilities 0.5, and the specified binary fraction
priors hold within each of the subspaces.

Suppose now that the true value is u s 0. We have shown in Section 4 that
U Uˆ ˆ ˆ ˆ'Ž . Ž < . Ž < .both u and u are O 1r n . The log likelihoods log f X u and log f X up

ˆ Û Ž .for the posterior modes u , u therefore differ by O 1 .p
ˆAlso, for V, the log prior density for u is

ˆ ˆ ˆ ˆ< < < < < < < <log u q log u y 2 log ylog u y 2 log ylog u q O 1Ž .1 2 1 2 p

s ylog n y 4 log log n q O 1 .Ž .p

U ÛFor V , the log prior density for u is

U U 1ˆ ˆ< < < <log u y 2 log ylog u q O 1 s y log n y 2 log log n q O 1 .Ž . Ž .1 1 p p2

Thus the lower dimensional log posterior differs from the higher dimensional
1 Ž .log posterior by log n q 2 log log n q O 1 , which has the same first orderp2

term as the Schwarz correction factor. This means that we favour the
estimate in the lower dimensional subspaces about the same using penalized
likelihoods as we do using the marginal probabilities of the observations
under the different models, and so we can rely on simple optimization of the
penalized likelihood to identify the correct model.
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