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FUNCTION ESTIMATION VIA WAVELET SHRINKAGE
FOR LONG-MEMORY DATA1

BY YAZHEN WANG

University of Missouri]Columbia

In this article we study function estimation via wavelet shrinkage for

data with long-range dependence. We propose a fractional Gaussian noise

model to approximate nonparametric regression with long-range depen-

dence and establish asymptotics for minimax risks. Because of long-range

dependence, the minimax risk and the minimax linear risk converge to 0

at rates that differ from those for data with independence or short-range

dependence. Wavelet estimates with best selection of resolution level-

dependent threshold achieve minimax rates over a wide range of spaces.

Cross-validation for dependent data is proposed to select the optimal

threshold. The wavelet estimates significantly outperform linear esti-

mates. The key to proving the asymptotic results is a wavelet]vaguelette

decomposition which decorrelates fractional Gaussian noise. Such

wavelet]vaguelette decomposition is also very useful in fractal signal

processing.

1. Introduction. Consider nonparametric regression

1 y s f x q « , i s 1, . . . , n ,Ž . Ž .i i i

w xwhere x s irn g 0, 1 , « , . . . , « are observational errors with mean 0 andi 1 n

f is an unknown function to be estimated. Common assumptions on « , . . . , «1 n

are i.i.d. errors or stationary processes with short-range dependence such as

classic ARMA processes. However, real data do not always meet these

assumptions. Scientists in diverse fields have observed empirically that corre-

lations between observations that are far apart decay to 0 at a slower rate

than we would expect from independent data or short-range dependent data.

These fields include agronomy, astronomy, chemistry, economics, engineer-

ing, environmental sciences, geosciences, hydrology, physics and signal and

image processing. For example, in the study of trends in global temperature,
w Ž .observational errors exhibit slow decay in correlation see Beran 1994 ,

xSection 1.4 . In fact, due to the vast number of examples from hydrology and

geophysics, slowly decaying correlations are recognized by most hydrologists
wand geophysicists to be the rule rather than the exception see, e.g., Beran
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Ž . Ž . x1992 or Beran 1994 , Chapter 1 . Slow decay in correlation is often referred
Ž .to as long-range dependence or long memory. Suppose « is a station-i 1F iF n

Ž .ary Gaussian process with mean 0. Then « is said to have long-rangei

Ž . Ž .dependence or long memory if there exists a g 0, 1 such that

< <ya
2 R j y i s Corr « , « 7 j y i , j y i ª `,Ž . Ž . Ž .i j

where a 7 b means that arb is asymptotically bounded away from 0 and `.

An alternative definition of long-range dependence is that the spectral den-
Ž . w Ž .sity of « has a pole at 0 see, e.g., Beran 1994 , Chapter 2, for thei

xequivalence as well as justifications of the definition . This article will study

minimax estimation of f via wavelet shrinkage for long-range dependent

data.

Long-range dependence had been observed empirically long before suitable

mathematical models were known. Mandelbrot and his co-workers
w Ž . Ž .xMandelbrot and van Ness 1968 and Mandelbrot and Wallis 1968, 1969

first introduced fractional Gaussian noise and fractional Brownian motion to

model long-range dependence. Since then a considerable body of literature

has evolved which explores these so-called 1rf processes as a study in
w Ž .self-similarity and long-range dependence Barton and Poor 1988 and Kesh-

Ž .xner 1982 . These processes have much more persistent long-term correlation

structure than the well-studied short-range processes such as ARMA pro-

cesses and mixing processes. Traditionally, they have been mathematically

awkward to manipulate. Recently wavelets have been used advantageously to

analyze them and study their statistical self-similarity and long-range depen-
Ž .dence. Wornell 1990 used a wavelet basis to provide an approximate

Karhunen]Loeve expansion for fractional Brownian motion. Studies of the`

correlation structure of the wavelet transform of fractional Brownian motion
Ž . Ž .were accomplished in Flandrin 1989, 1992 , Ramanathan and Zeitouni 1991

Ž .and Tewfik and Kim 1992 . The auto and cross-correlation functions of the

discrete wavelet coefficients of fractional Brownian motion at different scales

decay hyperbolically fast at a rate much faster than that of the fractional
Ž .Brownian motion itself. Wornell and Oppenheim 1992 considered recovering

fractal signals corrupted by white noise using wavelets. Benassi and Jaffard
Ž .1993 investigated wavelet decompositions of Gaussian processes including

fractional Brownian motion.

The development of a theory of statistical inference for long-memory data

has become a very active field of research in the past decade. Estimation for

data with long-range dependence is quite different from that for observations

with independence or short-range dependence, and many basic problems are
w Ž . Ž .xstill unsolved see, e.g., Beran 1992 and Beran 1994 . For example, for

Ž .estimating a regression function or a density, Hall and Hart 1990a, b

showed that convergence rates differ from those with independence or short-

range dependence.

The approach in this paper is as follows. Inspired by the seminal work of
Ž . Ž .Donoho 1995 , Donoho and Johnstone 1994, 1995a, b and Donoho,

Ž .Johnstone, Kerkyacharian and Picard 1995 , we propose a fractional Gauss-
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ian noise model to approximate nonparametric regression with long-range

dependence and establish asymptotic results for minimax risks. Because of

long-range dependence, the minimax risk and the minimax linear risk con-

verge to 0 at rates that differ from those for data with independence or

short-range dependence. Wavelet shrinkage estimates with resolution level-

dependent threshold can be ‘‘tuned’’ to achieve minimax rates over the entire

scale of Besov spaces Bs
. Linear estimates cannot achieve even the mini-p, q

max rates over Besov classes when p - 2, so the wavelet estimates signifi-

cantly outperform linear estimates.

The wavelet estimates with best selection of level-dependent threshold

achieve the minimax risk over a wide range of spaces, so selection of the
Ž .optimal threshold is very important. Nason 1996 reported that the universal

Žand sure methods and Nason’s cross-validation method removing half of the
.data each time do not work well for correlated data. We propose a cross-

validation method to select thresholds for dependent data. To reduce correla-

tion, the cross-validation method deletes more than half of the data each

time.

The difficulty in proving asymptotic results is that the wavelet coefficients

of fractional Gaussian noise are correlated and hence do not form a white

noise process. We are, however, able to show that the wavelet coefficients are
Ž .nearly independent by using a wavelet]vaguelette decomposition WVD of

fractional Gaussian noise and then deriving minimax risks by methods
Ž .developed by Donoho 1995 . Here we utilize the idea of simultaneous diago-

Ž .nalization through WVD described in Donoho 1995 and the fact that frac-

tional Gaussian noise is linked to dilation-homogeneous operators which are

almost diagonal in a wavelet basis.

Decorrelation of fractional Gaussian noise and fractional Brownian motion

via WVD has its own interest. In fractal signal processing, it is very desirable

to decorrelate fractional Gaussian noise and fractional Brownian motion
w Ž .xWornell and Oppenheim 1992 . Although wavelets reduce the dependence

of fractional Gaussian noise, the wavelet coefficients of fractional Gaussian

noise and fractional Brownian motion are correlated. Hence wavelets them-

selves do not decorrelate fractional Gaussian noise and fractional Brownian

motion.

The rest of this paper is organized as follows. Section 2 introduces a

fractional Gaussian noise model and derives asymptotics for the minimax

risks. Section 3 relates the fractional Gaussian noise model to nonparametric

regression with long-range dependence. Sections 4 to 6 consist of derivations

of the asymptotic results. The WVD’s to decorrelate fractional Gaussian noise

and fractional Brownian motion are given in Section 5. Section 7 discusses

wavelet estimates and threshold selection by cross-validation for dependent

data.

2. The fractional Gaussian noise model. Suppose we observe the
Ž . w xstochastic process Y x , x g 0, 1 , from the fractional Gaussian noise model

3 Y dx s f x dx q e 2y2 HB dx ,Ž . Ž . Ž . Ž .H



WAVELET SHRINKAGE FOR LONG-MEMORY DATA 469

where f is an unknown function, e is the noise level which we think is small
Ž .and B dx is a fractional Gaussian noise which is the formal derivative of aH

standard fractional Brownian motion defined below. Fractional Gaussian

noise and fractional Brownian motion are often used to model phenomena
w Ž .exhibiting long-range dependence see, e.g., Beran 1992, 1994 and

Ž .xMandelbrot and van Ness 1968 . Section 3 will show that the fractional
Ž .Gaussian noise model 3 is an approximation of nonparametric regression

Ž .with long-range dependence. A standard fractional Brownian motion B t ,H

w xt g 0, 1 , with parameter H, 1r2 - H - 1, can be written as

1 t Hy 1r2 w xB t s t y u B du , t g 0, 1 ,Ž . Ž . Ž .HH
G H q 1r2Ž . 0

where B is a standard Brownian motion. B has covariance functionH

< <2 H < <2 H < <2 H
4 Cov B s , B t s V s q t y t y s r2,� 4 � 4Ž . Ž . Ž .H H H

where

cos p H G 1 y 2 HŽ . Ž .
5 V s Var B 1 s .� 4Ž . Ž .H H

p H

Ž . w xOur goal is to estimate f on the basis of the data Y x , x g 0, 1 , and a

priori information f g FF. We use squared-error loss and are interested in the

minimax risk

ˆ 25 5R e ; FF s inf sup E f y f .Ž . 2

f̂ fgFF

2.1. Wavelets. Let c be a Daubechies wavelet of compact support having

M vanishing moments, M continuous derivatives and unit L2 norm. Wavelets

are derived from c by a process of dyadic dilations and translations of c . Let
Ž .l s j, k with j and k integers, and define

c x s 2 jr2c 2 j x y k , j, k g Z.Ž . Ž .l

Ž . 2Daubechies’ construction guarantees that c is a complete orthonormall lg Z
2Ž . 2Ž .basis for the space L R . Hence, for a function f g L R , the wavelet

decomposition of f is written as

6 f x s u c x ,Ž . Ž . Ž .Ý l l

l

with wavelet coefficients of f :

7 u s f x c x dx .Ž . Ž . Ž .Hl l

w xFor functions supported in a fixed unit interval, say 0, 1 , we can select an
Ž .index set L ; Z and modify some of the c , l g L, such that c forms al l lg L

2w x wcomplete orthonormal basis for L 0, 1 see Cohen, Daubechies, Jawerth and
Ž . Ž . Ž .Vial 1993 , Daubechies 1992, 1994 , Donoho and Johnstone 1995a and
Ž .xMeyer 1992 .
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2.2. Wavelet estimates. Let

8 y s c x Y dxŽ . Ž . Ž .Hl l

be the empirical wavelet coefficients of the data Y. Wavelet estimates of f are

defined to be

ˆ9 f s d y c ,Ž . Ž .ÝŽ t . t l lj j

l

Ž . Ž .Ž < < . Ž .with d y s sign y y y t for the soft-threshold rule, d y s y 1t l l l j q t l l � < y < G t 4j j l j

Ž .for the hard-threshold rule and t the resolution level-dependent threshold.j

w Ž . Ž .See Donoho 1993, 1995 , Donoho and Johnstone 1994, 1995a, b and
Ž . xDonoho, Johnstone, Kerkyacharian and Picard 1993, 1995 .

We define the minimax-wavelet threshold risk:

ˆ 25 5R e ; FF s inf sup E f y f .Ž . 2W Ž t .jŽ .t fgFFj

This is the best that we can do for recovering objects in FF by the wavelet
Ž .shrinkage method with optimal selection of t .j

2.3. Asymptotics of minimax risk. Let FF be a ball of Besov space Bs
p, q

such that the wavelet coefficients of functions f in FF belong to the set Q s ofp, q

Ž .sequences u obeyingl L

1rq
qrp

pjsq < <10 2 u F C ,Ž . Ý Ý lž /ž /
j k

w Ž . Ž .where s s s q 1r2 y 1rp see Donoho 1995 , Donoho and Johnstone 1995a
Ž .xand Meyer 1992 . For comparison purposes, we define the minimax linear

risk:

ˆ 25 5R e , FF s inf sup E f y f .Ž . 2L
f̂ linear FF

The following theorem, which is proved in Sections 4 to 6, gives asymp-

totics of the minimax risks.

Ž .Ž .THEOREM 1. Suppose s ) 1 y H 2 y p rp. Then

R e ; FF 7 e 2 r , e ª 0,Ž .

with rate exponent

2s 1 y HŽ .
r s ;

s q 1 y H

and

R e ; FF F const R e ; FF , e ª 0.Ž . Ž .W

However, the minimax linear risk tends to 0 at the rate

R e ; FF 7 e 2 r
X

, e ª 0,Ž .L
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with rate exponent

2 s q 1r2 y 1rp 1 y HŽ . Ž .yX
r s ,

s q 3r2 y 1rp y Hy

Ž .where p s min 2, p . The minimax linear risk converges to 0 slower than they
minimax risk for p - 2.

Comparing the convergence rates in Theorem 1 with those in Corollary 1 of
Ž .Donoho and Johnstone 1995a , Section 1, we see that minimax risks con-

verge to 0 slower than those for the white noise model, which corresponds to

the case with independence or short-range dependence. The convergence
Ž .rates in Theorem 1 are also related to those in Theorem 4 of Donoho 1995 ,

Section 6.2, for a linear inverse problem with white noise and in Theorem 1 of
Ž . ŽWang 1994 for a linear inverse problem with long-range dependence see

.Section 5 for details .

3. Nonparametric regression and fractional white noise. We now

relate the fractional Gaussian noise model to nonparametric regression with

long-range dependence. As the white noise model approximates nonparamet-
w Ž .ric regression with i.i.d. errors Brown and Low 1996 and Donoho and

Ž . xJohnstone 1995a , Section 9 , the fractional Gaussian noise model is an
Ž .approximation of the nonparametric regression model 1 with long-range

dependence, and results established for the fractional Gaussian noise model

can then be applied to nonparametric regression.

Ž .For estimating f g FF based on the data y , . . . , y from model 1 , we1 n

Ž . Ž .denote by R n, FF and R n, FF the minimax risk and the minimax linearL

risk, respectively, that is

ˆ 2 ˆ 25 5 5 5R n , FF s inf sup E f y f and R n , FF s inf sup E f y f .Ž . Ž .2 2L
ˆ ˆf f linearf f

Let

n n
Ž .1r 2y2 H2L s R i y j , H s 1 y ar2 and e s L rn .Ž . Ž .Ý Ýn n n

is1 js1

Ž .From 2 we have

11 L2 7 n2 H and e 7 ny1r2
.Ž . n n

Ž .The definition of the rate exponent r see Theorem 1 implies that r - 2 y 2 H
Ž 2y2 H .2 Ž yr .and hence e s o n .n

Ž .Theorem 5.1 of Taqqu 1975 implies that there exist fractional Brownian

motions B such that, for all x ,H i

i1
12 « s B x q c ,Ž . Ž .Ý j H i n , i

Ln js1
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� 4 wwhere max c , 1 F i F n ª 0 as n ª `. It may be necessary to changen, i

probability spaces such that « , . . . , « and B live on common probability1 n H

Ž . xspaces. Also see Lemma 5.1 and its proof in Taqqu 1975 . Define the
� Ž . w x4regression process Y x , x g 0, 1 vian

i1
Y 0 s 0, Y x s y , i s 1, . . . , n ,Ž . Ž . Ýn n i j

n js1

with interpolation between the x by B : for x - x - x seti H i iq1

Y x s Y x q x y x yŽ . Ž . Ž .n n i i iq1

2y2 Hq e B x y n x y x B xŽ . Ž . Ž .n H i H iq1

q n x y x y 1 B x y n x y x c� 4Ž . Ž . Ž .i H i i n , iq1

q n x y x y 1 c .� 4Ž .i n , i

Let
n

13 f x s f x 1 .Ž . Ž . Ž .Ýn i � x F x - x 4iy 1 i

is1

Ž . Ž .Then by the definition of Y , 12 and 13 , we can easily check that Yn n

satisfies

14 Y dx s f x dx q e 2y2 HB dx .Ž . Ž . Ž . Ž .n n n H

Therefore, on a common probability space, we have that Y differs from Yn

Ž . Ž .with e s e defined by 3 exactly by the difference between f and f.n n

Ž . 5 5 2 Ž . Ž yr .For a class FF of functions, define D FF s f y f . If D FF s o n ,2n n n

where r is the rate exponent defined in Theorem 1, then minimax risks based
Ž .on Y and based on Y with e s e are equivalent. Similar to Theorems 15n n

Ž .and 16 of Donoho and Johnstone 1995a , Section 9, we have that for
Ž . Ž . Ž . w xs ) a 2 y p r 2 p the minimax risks based on Y x , x g 0, 1 , are equiva-n

Ž . w x Ž .lent to those based on Y x , x g 0, 1 with e s e , and hence from Theoremn
y1r2 w Ž .x1 with e 7 n by 11 and H s 1 y ar2, we conclude thatn

R n; FF 7 nyr , n ª `,Ž .

with rate exponent

2as
r s ;

2s q a

the minimax-wavelet threshold risk based on Y satisfiesn

ˆ 25 5R n , FF s inf sup E f y f F const R n; FF , n ª `,Ž . Ž .2W Ž t .jŽ .t fj

ˆwhere f are wavelet estimates based on Y ; andŽ t . nj

R n; FF 7 nyr
X

, n ª `,Ž .L
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with rate exponent

2a s q 1r2 y 1rpŽ .yX
r s ,

2s q 1 y 2rp q ay

Ž .where p s min 2, p . The minimax linear risk converges to 0 slower thany
the minimax risk for p - 2.

Ž . Ž .Hall and Hart 1990a considered nonparametric regression 1 with «i

following an infinite-order Gaussian autoregression, which satisfies the long-
Ž .range dependence relation 2 with 0 - a - 1. They showed that, for a class

of functions with bounded second derivative, the risk of the best kernel

estimate has a convergence rate ny4 a rŽ4qa .
. This convergence rate corre-

sponds to the minimax rate with s s 2 and p s q s `. Since p G 2, linear

estimates can achieve the minimax rate. However, linear estimates such as

kernel estimates cannot achieve the minimax risk when p - 2. For example,
ˆ Y p� < Ž . < 4for estimating f g FF s f , H f x dx F C with p - 2, the best kernel esti-

mate can achieve only the linear rate nya Ž5y2r p.rŽ5y2r pqa ., which is slower

than the optimal rate ny4 a rŽ4qa .
.

4. Estimation in sequence space.

4.1. Wavelet coefficients of fractional Gaussian noise.

LEMMA 1.

E g s dB s g t dB tŽ . Ž . Ž . Ž .H H1 H 2 H½ 5
< <2 Hy2s V H 2 H y 1 g s g t s y t ds dt ,Ž . Ž . Ž .HHH 1 2

Ž .where V is defined in 5 .H

PROOF. The lemma is easily proved by use of integration by parts. I

LEMMA 2. Let

1r2
2 Hy2< <t s V H 2 H y 1 c u c v u y v du dv .Ž . Ž . Ž .HHH½ 5

Then

Var c s dB s s t 2 2 jlŽ1y2 H .
.Ž . Ž .H l H½ 5
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PROOF. By Lemma 1, we have

Var c s dB sŽ . Ž .H l H½ 5
s E c s dB s c t dB tŽ . Ž . Ž . Ž .H Hl H l H½ 5
s E c s c t dB s dB tŽ . Ž . Ž . Ž .HH l l H H½ 5

< <2 Hy2s V H 2 H y 1 c s c t s y t ds dtŽ . Ž . Ž .HHH l l

< <2 Hy2 jlŽ1y2 H .s V H 2 H y 1 c u c v u y v du dv 2 . IŽ . Ž . Ž .HHH½ 5
Let

y1r2

z s Var c s dB s c u dB uŽ . Ž . Ž . Ž .H Hl l H l H½ 5ž /
15Ž .

s ty1 2 jlŽHy1r2. c u dB u .Ž . Ž .H l H

LEMMA 3.

Ž .2 HyMŽ j qj .r2 yj yjl m m l< <Corr z , z 7 2 2 k y 2 kŽ . � 4l m m l

Ž . Ž . Ž .holds uniformly in l s j , k and m s j , k . In particular, z at eachl l m m l l

level is a stationary Gaussian process with zero mean, unit variance and

< <2Ž HyM .
Corr z , z 7 k y k ,Ž .l m m l

Ž . Ž .uniformly for l s j, k and m s j, k .l m

PROOF. Using Lemma 1 and arguments in proving Theorem 1 of Tewfik
Ž .and Kim 1992 , we obtain

y2 Ž jlqjm.ŽHy1r2. < <2 Hy2
E z z s t 2 c s c t s y t ds dtŽ . Ž . Ž .HHl m l m

y1
2 Hy2 ŽHy1.Ž j qj .l m< <s c u c v u y v du dv 2Ž . Ž .HH½ 5

=
2 Hy2yj yjl mc u c v u q k 2 y v q k 2 du dvŽ . Ž . Ž . Ž .HH l m

ŽHyM .Ž jlqjm. < yjm yjl <2Ž HyM .7 2 2 k y 2 k ,m l

Ž . Ž .uniformly in l s j , k and m s j , k . Il l m m
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4.2. Regression on the wavelet domain. The empirical wavelet coefficients
Ž .y of the data Y defined in 8 satisfyl

16 y s u q te 2y2 H 2 jlŽ1r2yH .z ,Ž . l l l

Ž . Ž .where u and z are defined in 7 and 15 , respectively.l l

Ž . Ž .Now model 3 is equivalent to model 16 . The problem of estimating f is

equivalent to recovering u . Because wavelets provide a complete orthonormall

ˆ 2 ˆ 2
25 5 5 5system, f y f is essentially the same as u y u . We therefore work2 l ŽL .

Ž . Ž . swith the sequence of observations from model 16 . We assume that u g Ql p, q

and define the minimax risk

2
ˆ 2R e s inf sup E u y y u .Ž . Ž . Ž .l Lz

sû Qp , q

Ž . Ž .The noise z in 16 is not a white noise, but we will show that it satisfiesl

2 < 217 g F Var z z F Var z F gŽ . Ž . Ž .Ž .l/m0 l l l 1

for each l g L, where 0 - g - g - ` are positive generic constants. Such a0 1

Ž .noise process is called a nearly independent noise in Donoho 1995 .

Ž .For observations from the model 16 with nearly independent noise,
Ž . Ž .Donoho 1995 , Section 7.3, showed that the minimax risk R e is equivalentz

Ž .to the minimax risk R e for observations from the discrete white noisew

model

18 x s u q te 2y2 H 2 jlŽ1r2yH .w , l g L ,Ž . l l l

Ž .where w is a Gaussian white noise, andl

2
ˆ 2R e s inf sup E u x y u .Ž . Ž . Ž .l Lw

sû Qp , q

Ž . Ž .For the white noise model 18 , R e can be explicitly given by the renormal-w

Ž .ization arguments in Sections 7.4 to 7.6 of Donoho 1995 . Also, the minimax-

wavelet risk and the minimax linear risk can be derived by the methods
Ž .developed in Sections 8 and 9 of Donoho 1995 . Hence it is enough to prove

Ž .17 . In the next two sections we will decorrelate fractional Gaussian noise by
Ž .WVD and then use the WVD to prove 17 .

5. Decorrelation of fractional Gaussian noise via WVD. In the study
Ž .of a linear inverse problem, Donoho 1995 introduced a WVD to simultane-

ously quasidiagonalize both an operator K and a priori information f g FF

such that f can be recovered through a reproducing formula by use of

information about Kf. The WVD uses wavelets and vaguelettes instead of
Ž .eigenfunctions used by the singular value decomposition SVD and hence is

wbetter at representing spatially variable functions than the SVD see also
Ž . Ž .xKolaczyk 1994 and Wang 1995b . A WVD is defined as follows:

Ž . Ž .1. three sets of functions c }an orthonormal wavelet basis}and u andl l l l

Ž . 2v }near-orthogonal vaguelettes with unit L -norm;l l
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U Ž .2. quasisingular value relations Kc s k v and K u s k c for l s j, kl j l l j l

Ž .with quasisingular values k , depending on resolution index j but notj

spatial index k;
w x3. biorthogonality relations u , v s d ;l m l, m

4. near-orthogonality relations

19 a u 7 a and a v 7 a .2 2Ž . Ž . Ž .Ý Ýl l l l l ll l

l l2 2

We will use the WVD to decorrelate fractional Brownian motion and
Ž .Hq 1r2 2 2fractional Gaussian noise below. Let A s yD , where D s d rdx isH

2Ž .an elliptic operator. For f , g g L R , define

w x w xf , g s f x g x dx , f , g s A f x g x dx ,Ž . Ž . Ž . Ž .H HH H

5 5 2 w xf s f , fH H

and
2 5 5K s f g L R , f - ` .� 4Ž . HH

Then fractional Brownian motion B is linked to the operator A and K isH H H

the space of the reproducing kernel A of B . Let c be a usual waveletH H l
2Ž .orthonormal basis of L R , and define

Hr2y1r4 1r4yHr2
20 u s yD c , v s yD c .Ž . Ž . Ž .l l l l

THEOREM 2. Assume c has vanishing moments of order less than orl

equal to M and continuous derivatives of order less than or equal to M. If

M ) H q 3r2, then:

Ž . Ž . Ž yjlŽHq1r2. 1r2 . Ž jlŽHq1r2. y1r2 . 1r2i c , 2 A c and 2 A c form a WVD of A ,l l H l l H l l H

and hence the WVD decorrelates B ; that is, B has a representationH H

21 B x s j Ay1r2c ,Ž . Ž . ÝH l H l

l

Ž .where j is a white noise;l

Ž . Ž . Ž jlŽ1r2yH . . Ž jlŽHy1r2. . Ž .Hr2y1r4ii c , 2 u and 2 v form a WVD of yD ,l l l l l l

Ž .and hence the WVD decorrelates fractional Gaussian noise B dx and nearlyH

Ž . Ž .decorrelates white noise B dx ; that is, B dx has a representationH

22 B dx s j v x dx ,Ž . Ž . Ž .ÝH l l

l

Ž . w Ž .x w Ž .xwhere j is a white noise and u , B dx and v , B dx are nearlyl l l

independent Gaussian noises.

PROOF. The proofs of the two results are similar, so we give arguments

only for the first result. It is easy to show that K is the reproducing kernelH

Ž . Ž .space of the process defined on the right-hand side of 21 and hence 21
w Ž .xholds see also Benassi and Jaffard 1993 . The near independence of the

w Ž .x w Ž .xnoise processes u , B dx and v , B dx is a consequence of the nearl l

w Ž . xorthogonality of vaguelettes Donoho 1995 , Section 7.2 . So it is enough to

show c , u and v form a WVD of A1r2
. The biorthogonality and quasisingu-l l l H
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lar value relations can be easily checked. The near orthogonality of u and vl l

is proved as follows.
1r2 y1r2 ˆ Hq 1r2Ž . < <The Fourier transformations of A c and A c are c v v andH H

ˆ yH y1r2Ž . < <c v v , respectively, and hence they are vaguelettes by Definition 1
Ž . 1r2and Lemma 4 of Donoho 1995 . Therefore, the near orthogonality of A cH l

y1r2 Ž .and A c is a consequence of Theorem 2 of Donoho 1995 . IH l

It is of interest to point out that the two problems, a linear inverse problem

and estimation with long-range dependence, can be formally converted from
Ž . Ž .one to another by WVD. By 22 , model 3 can be written as

23 Y dx s f x dx q e 2y2 H j v x dx .Ž . Ž . Ž . Ž .Ý l l

l

U w Ž . x Ž .Let y s Y dx , u . By 6 we havel l

24 f x dx , u s u c dx , u s Ku ,Ž . Ž . Ž .Ý ll m m l

m

Ž . Ž .where u s u , u are the wavelet coefficients of f defined in 7 and K is al l

Ž .transformation on u which is represented as an infinite matrix. By 23 and
Ž . Ž .24 , we formally convert model 3 as a linear inverse problem with white

noise

25 yU s Ku q e 2y2 Hj , l g L .Ž . Ž . ll l

For an ill-posed inverse problem, minimax rates are slower than those for
w Ž . Ž .xdirect observations see Donoho 1995 and Donoho and Low 1992 , so from

this perspective we also naturally see slow convergence of minimax risks for

data with long-range dependence. The linear inverse problem observes a

transformed function contaminated by white noise, while the long-range

dependence problem has a transformation in white noise. These noninvertible

transformations cause the convergence rate losses. Moreover, there is a

corresponding relationship between the minimax rates in Theorem 1 and
Ž .those in Theorem 4 of Donoho 1995 for a linear inverse problem with white

noise.

Ž .It is also worth mentioning that Wang 1994 considered the following

linear inverse problem with long-range dependence:

2y2 H w x26 Y dx s Kf x dx q e B dx , x g 0, 1 ,Ž . Ž . Ž . Ž . Ž .H

Ž . Ž .where e and B dx are the same as those in model 3 , K is a linearH

Ž .transformation and f is an unknown function to be recovered. Model 3 is

the special case where K s I and H ) 1r2, and linear inverse problems with
Ž . Ž .white noise considered in Donoho 1995 correspond to 26 with H s 1r2

Ž . Žwhite noise . By using two WVD’s one decorrelates fractional Gaussian

noise and one simultaneously quasidiagonalizes both the operator K and the
. Ž . Ž .prior information f g FF , Wang 1994 derived minimax risks for model 26

and showed that estimates constructed by the WVD’s can achieve minimax

rates over a wide range of spaces. For example, suppose K has a WVD
yj a wwith quasisingular values k 7 2 , then for estimating f g FF a ball inj

s Ž .xBesov space B defined by 10 , the minimax risk has a convergence ratep, q

Ž . Ž .2s 1 y H r s q 1 q a y H .
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( ) Ž .6. Near independence of the noise z . This section proves 17 by
l l

Ž . Ž .WVD. The upper bound g in 17 can be taken as g s Var z s 1. Now we1 1 l

Ž <Ž . . Ž < Ž . .prove the lower bound. Let z s E z z . Then Var z z sl̂ l m l/ m l m l/ m

Ž . Ž .Var z y z . As z is a zero-mean Gaussian random field, z andˆ ˆl l l lg L l

Ž .z y z are independent, and there exists a sequence a such thatˆl l m m / l

27 z s a z .Ž . ˆ Ýl m m

l/m

Ž . jlŽHy1r2.For convenience, let a s y1, and for l s j , k let s s t 2 with tl l l l

Ž .defined in Lemma 2. On the other hand, by 22 we have, for any m,

X X28 z s s B dx , c s s v , c j .Ž . Ž . Ým m H m m l m l
X

l

Ž . Ž . Ž . Ž .By 27 , 28 and the biorthogonality of u and v , we obtainm m

z y z s z y a zˆ Ýl l l m m

l/m

X X X Xw xs s v , c j y s a v , c jÝ Ý Ýl l l l m m l m l
X X

l l/m l

X Xs v , s c y s a c jÝ Ýl l l m m m l
X

l l/m

29Ž .

X Xs y v , s a c jÝ Ýl m m m l
X

ml

and

1r4yHr2 1r4yHr2
X X X X30 v , c s yD c , c s c , yD c s c , v .Ž . Ž . Ž .l m l m l m l m

Ž . Ž .By 29 and 30 , we get

X Xz y z s y c , t a v j ,ˆ Ý Ýl l l m m m l
X

ml

and hence by complete orthogonormal bases of wavelets, the near orthogonal-
Ž . 5Ž .5 2 < <ity of the vaguelette s v proved in Theorem 2 and a G a s 1, welm m m l

have
2

XVar z y z s c , s a vŽ .ˆ Ý Ýl l l m m m
X

ml

2

s s a vÝ m m m

m

2

s a s vŽ . Ž .Ý m m m

m

G C aŽ . 20 m l

G C s g ) 0.0 0

Ž .This proves the lower bound in 17 .
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7. Discussion. Data from nonparametric regression are discrete, and,

consequently, a discrete version of wavelet transformation must be performed

to find wavelet coefficients and compute wavelet estimates. Suppose we have
J Ž .observations y , . . . , y , n s 2 , from model 1 .1 n

7.1. Discrete wavelet transformation. The discrete wavelet transforma-
Ž .tion DWT is a discretized version of the continuous wavelet transformation

and can be written as linear transformation involving an n = n orthogonal
Ž .matrix WW which depends on parameters M number of vanishing moments ,

Ž . Ž . wS support width , j low-resolution cutoff and boundary adjustments see0

Ž . Ž .Cohen, Daubechies, Jawerth and Vial 1993 , Daubechies 1994 , Donoho and
Ž . Ž .xJohnstone 1994 and Wang 1995a . The rows of WW correspond to a dis-

Ž .cretized version of the wavelets c . Indeed, if we denote by W i the ithl j, k

Ž .element of the j, k th row of WW , then

ny1
l j31 i W i s 0, l s 0, . . . , M , j G j , k s 0, . . . , 2 y 1,Ž . Ž .Ý j , k 0

is1

and

jr2 j yj'32 n W i f 2 c 2 x , x s irn y k2 .Ž . Ž . Ž .j , k

w Ž . x Ž .See Donoho and Johnstone 1994 . Let y s y , . . . , y . The DWT of the1 n

data y is given by w s WW y. The elements of w are indexed dyadically as

follows: w , j s 0, . . . , J y 1, k s 0, . . . , 2 j y 1, and w . w is called thej, k y1, 0 j, k

empirical wavelet coefficient at level j and position k2yj, k s 0, . . . , 2 j y 1,

j s 0, . . . , J y 1. Because WW is orthogonal, the inverse DWT is easy and y is

recovered from the DWT w by

y s WW
T w or y s w W i .Ž .Ýi j , k j , k

j, k

w Ž . Ž .Mallat’s pyramidal algorithm see, e.g., Mallat 1989 and Chui 1992 , pages
x Ž .20 and 21 requires only O n operations for computing the DWT and

reconstruction of the DWT.

ˆ7.2. Wavelet estimates. The wavelet estimates f of f are computed asŽ t .j
follows. First, find the DWT w and then threshold w by the soft-thresholdj, k j, k

rule

< <d w s sign w w y t ,Ž . Ž . Ž .t j , k j , k j , k j qj

or the hard-threshold rule

d w s w 1 ,Ž .t j , k j , k � < w < G t 4j j , k j

Ž . wwith level-dependent threshold t . In practice, the wavelet coefficients wj j, k

at the first three levels are often left untouched. See Donoho and Johnstone
Ž . Ž . x1994 and Nason 1996 . The wavelet estimates are the reconstruction of the

thresholded w .j, k
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7.3. Threshold selection. Wavelet estimates with best selection of level-

dependent threshold achieve the minimax risk over a wide range of spaces, so
Ž .it is very crucial for wavelet estimates to select the threshold t . Donoho andj

Ž .Johnstone 1994, 1995b developed the universal and sure methods to select
Ž .thresholds. Nason 1996 proposed a threshold selection by cross-validation

Ž .which removes half of the data each time. However, Nason 1996 reported

that for correlated data these methods are unable to find the ‘‘true’’ optimal
wthreshold and noted that level-dependent thresholds must be used see also

Ž .xJohnstone and Silverman 1994 .

Because of long-range dependence, the wavelet coefficients of the data are
Ž . Ž .correlated. However, by Lemma 3, 31 and 32 , the correlations of the

Ž .wavelet coefficients w decay faster than those of the data y . In particu-j, k i

Ž .lar, at each level the wavelet coefficients « of the errors « are stationaryj, k i

with mean 0 and correlation

< X <2Ž HyM .
XCorr « , « 7 k y k .Ž .j , k j , k

We take the structure of dependence into consideration and propose two

level-dependent thresholds.

7.3.1. Universal threshold. Lemma 2 implies that the variance of the

wavelet coefficients w at level j is approximately equal to that of w atj, k j, k
Ž2 Hy1.Ž Jyj. Ž .the finest level multiplying by 2 , so we select the threshold t inj

the following way:

U ŽHy1r2.Ž Jyj.'33 t s 2 log n 2 s ,Ž . Ž . ˆj

where s is the median of absolute values of w at the finest level.ˆ j, k

Ž .The threshold 33 depends on H, so a simple method is proposed to

estimate H as follows: since the wavelet coefficients w at level j arej, k

stationary with variance approximately proportional to 2 jŽ1y2 H ., we regress

the logarithm of the sample variance of w at level j on j for 3 F j F J, andj, k

Ž .denote by b the estimated slope. Then H is estimated by 1r2 y br 2 log 2 .

7.3.2. Selection by cross-validation. Nason’s cross-validation method re-

moves half the data each time and hence deletes only adjacent observations.

As in applying cross-validation to density estimation and nonparametric
w Ž .xregression for dependent data see Hart and Vieu 1990 , in order to reduce

Ž .correlation we propose a cross-validation method to select the threshold t j

by removing more than half the data each time. The algorithm is described as

follows.

1. Select an integer l and divide the data into 2 Jy ln groups as follows: then

first 2 ln observations y , . . . , y l are the first group, the next 2 ln observa-n1 2

tions y l , . . . , y l are the second group, so on and so forth.n n2 q1 2 q1

Ž lny1 .2. We take the first observation and the 2 q 1 th observation out from

each group. All the first observations form a data set of size 2 Jy ln, while
Ž lny1 .the 2 q 1 th observations consist of a data set of the same size. A
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t t ln� 4wavelet estimate f s f , 1 F b F 2 for the former data set is con-1 1, b

structed using the threshold t s t2ŽHy1r2.Ž Jyj., and the latter data set isj
t ln� 4used to interpolate the values g s g , 1 F b F 2 of the former data1 1, b

Ž lny1 .set. Similarly, we take the second observation and the 2 q 2 th obser-
Ž lny1 .vation, the third observation and the 2 q 3 th observation, . . . , and

Ž lny1 . Ž ln.the 2 th observation and the 2 th observation out from each group,
t l y1nŽ .and obtain f , g , a s 2, . . . , 2 , respectively.a a

3. Switching the data sets used to construct wavelet estimates and the data
tŽ . Ž . Ž .sets used to do interpolation in step 2 , we repeat step 2 and get f , g ,a a

a s 2 lny1 q 1, . . . , 2 ln.

4. Define

2 ln

2
tM t s f y g ,Ž . Ý Ý a , b a , b

as1 b

t t CVŽ . Ž .where f g , resp. is the bth coordinate of f g , resp. . Let t bea, b a, b a a

Ž .the value of t at which M t takes its minimum. Then the cross-validation

threshold is defined to be

y1r2
l log 2nCV ŽHy1r2.Ž Jyj. CV34 t s 1 y 2 t .Ž . j ž /log n

y1r2 tŽ .The factor 1 y l log 2rlog n is an adjustment constant because f aren a
Jy ln w Ž .xbased on 2 data see Nason 1996 . Nason’s cross-validation method

corresponds to l s 1.n

The cross-validation method not only provides a decrease in correlation

within the observations used to construct wavelet estimates, but it also

reduces the dependence between the samples used to calculate wavelet

estimates and the samples used to assess the wavelet estimates. In fact, the

correlation between the samples for construction of f and for assessment ofa
yŽ l y1.anf is 2 of the correlation between two adjacent original observations ya i

and y . The dependence within the observations used to construct f isiq1 a

approximately reduced to 2yl n a of the correlation of the original data. For

example, if a s 0.8 and the correlation of two adjacent original observations

y and y is 0.8, then the correlation of two adjacent observations in eachi iq1

selected data set will be 0.264, 0.152, 0.087 for l s 2, 3, 4, respectively. Muchn

of the dependence is reduced, and hence the selected threshold will be close to

the optimal threshold. Generally, the larger l is, the more dependence isn

reduced. As l increases, however, the sample sizes of the selected data setsn

decrease very fast. For large l , we may not have enough data to obtainn

accurate estimates f . So, in practice, we select a moderate l such as 2, 3 ora n

4. For short-range dependence, cross-validation with l G 2 decreases correla-n

Ž . Ž .tion dramatically. For example, for stationary errors « with Corr « , « si i j
< iyj < < < Ž X. < iyj < X 2 ln

r , r - 1, the correlation of the selected data will be r with r s r .
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7.3.3. Simulations. A small-scale Monte Carlo study was conducted to

check performance of the methods. We consider the piecewise polynomial
Ž .example in Nason 1996 :

¡ 2 w x4 x 3 y 4 x , x g 0, 1r2 ,Ž .
2~4 x 4 x y 10 x q 7 r3 y 3r2, x g 1r2, 3r4 ,Ž . Žf x sŽ .

2¢16 x x y 1 r3, x g 3r4, 1 .Ž . Ž

w xThe function was sampled 1024 times evenly on the interval 0, 1 , and then
Ž .simulated errors « were added, where « is a stationary Gaussian processi i

w Ž .xwith mean 0, variance 0.1 and a s 0.5 see 3 or H s 0.75. As indicated in
Ž .Nason 1996 , these correlated data derail the universal, sure and Nason’s

cross-validation thresholds.

We applied the proposed methods to this example and repeated 100 times.

Based on 100 replications, we found that the estimate of H has the MSE s
Ž .0.003. As in Nason 1996 , for each simulated data set we computed the

U CV Ž . Othresholds t and t with l s 3 and the ‘‘true’’ optimal threshold t sj j n j

2ŽHy1r2.Ž Jyj.tO, where tO was chosen to minimize the integrated squared

error between the true function and the thresholded noisy function. Since tU,j

tCV and tO are proportional to 2ŽHy1r2.Ž Jyj., we plot the two thresholdsj j

against the ‘‘true’’ optimal threshold in Figure 1 as follows: tO s
tO 2ŽHy1r2.Ž jyJ . is plotted on the x axis, while on the y axis we plotj

tU 2ŽHy1r2.Ž jyJ . and tCV 2ŽHy1r2.Ž jyJ .
. The line x s y is also plotted to givej j

Žsome idea of whether the method underfits above the line: too many wavelet
. Žcoefficients are removed because of the large threshold or overfits below the

Ž U . Ž CV . Ž O .FIG. 1. Plot of the thresholds t and t against the ‘‘true’’ optimal threshold t : v and `j j j

Ž U . Ž CV .correspond to t and t , respectively, and the line is x s y.j j
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line: too many wavelet coefficients are retained because the chosen threshold
.is too small . Thresholds that are clustered around the line y s x indicate

that the corresponding method can find the ‘‘true’’ optimal threshold. Figure
Ž CV .1 shows that the cross-validation threshold t performs very well, whilej

Ž U .the threshold t often tends to underfit. The finding is very similar to thatj

of the universal threshold and Nason’s cross-validation threshold for i.i.d.

data.
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