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Consider the problem of estimating the location vector and scatter
matrix from a set of multivariate data. Two standard classes of robust
estimates are M-estimates and S-estimates. The M-estimates can be
tuned to give good local robustness properties, such as good efficiency and
a good bound on the influence function at an underlying distribution such
as the multivariate normal. However, M-estimates suffer from poor break-
down properties in high dimensions. On the other hand, S-estimates can
be tuned to have good breakdown properties, but when tuned in this way,
they tend to suffer from poor local robustness properties. In this paper a
hybrid estimate called a constrained M-estimate is proposed which com-
bines both good local and good global robustness properties.

1. Introduction and summary. A fundamental problem in multivari-
ate statistics is the development of affine equivariant robust alternatives to
the sample mean vector and sample covariance matrix. An early class of
robust alternatives was the M-estimates of multivariate location and scatter;
see Maronna (1976) and Huber (1977). Besides being intuitively appealing,
the multivariate M-estimates have good local robustness properties; that is,
they are not greatly influenced by small perturbations in the data and have
reasonably good efficiencies over a broad range of population models. On the
other hand, Maronna (1976) and Stahel (1981) have shown that the multi-
variate M-estimates are not globally robust in the sense that they have
relatively low breakdown points in high dimensions. Subsequently, high
breakdown point affine equivariant multivariate location and scatter statis-
tics have been introduced by Stahel (1981), Donoho (1982), Rousseeuw (1985),
Davies (1987) and others. An ironic drawback to many of the high breakdown
point statistics though is that they tend to have poor local robustness
properties. A discussion of this problem is given in Tyler (1991). There
currently exists a need to better understand the interplay between local and
global robustness in the multivariate setting and to develop multivariate
location and scatter statistics which are both locally and globally robust. To
this end we introduce here a new class of multivariate location and scatter
statistics which we call constrained M-estimates, or CM-estimates for short,

Received January 1994; revised May 1995.

'Research supported in part by NSF Grant DMS-91-06706 and SERC visiting fellowship at
the University of Leeds.

AMS 1991 subject classifications. Primary 62F35, 62H12.

Key words and phrases. Breakdown, M-estimates, robustness, S-estimates.

1346



CONSTRAINED M-ESTIMATION 1347

and show that they not only have high breakdown points but when properly
tuned also have good local robustness properties.

Let X, = {x;,...,x,} be a data set in R” and let 2, denote the set of all
p X p positive definite symmetric matrices. For the data set X, we define the
constrained M-estimates of multivariate location [(X,) € R? and scatter
V(X)) € %, to be any pair which minimizes the objective function

(11) L(w,V;X,) = ave[ p{(x; — u)'V-'(x; — w))] + tlog{det(V))
over all u € R” and V € 2, subject to the constraint

(1.2) ave[ p{(x; — 1)’V (x; - p)}]| < ep(=),

where “ave” stands for the arithmetic average over i = 1,...,n, ¢ is a fixed
value between 0 and 1 and p(s) is a bounded nondecreasing function for
s = 0. In general, the minimization problem which defines the CM-estimates
may have multiple solutions. The notation (a(X,), V(X,)) will be used to
refer to an arbitrary solution to the minimization problem rather than to the
set of all solutions.

Regardless of the dimension p, we show in Section 4 that the breakdown
point of the CM-estimate is approximately min(e, 1 — &), and so for & = 1 the
breakdown point is approximately i. Furthermore, the CM-estimates are
affine equivariant in the following sense. For any nonsingular p X p matrix
A and any b € R?, if i(X,) and V(X,) correspond to CM-estimates of
location and scatter, respectively, for the data set X,, then

(1.3) A(AX, +b) =Ai(X,) +b and V(AX, +b) =AV(X,)A’

correspond to CM-estimates of location and scatter, respectively, for the data
set AX, +b={Ax; +b,..., Ax, + b}.

When p is differentiable, the CM-estimates satisfy the following estimat-
ing equation:

(14) u = ave(u(s,)x,} /ave(u(s,)),

(1.5) V =pave{u(s;)(x; — n)(x; — n)'}/ave{y(s;)},
and either

(1.6) ave(u(s;)} = p

(1.7) ave( p(s,)) = ep(=),

where s; = (x; — w)'V 1{x — w), u(s) = 2p'(s) and ¥(s) = su(s). Equations
(1.4), (1.5) and (1.6) hold whenever strict inequality holds in (1.2) for the
CM-estimate, and (1.4), (1.5) and (1.7) hold whenever the CM-estimate re-
sults in (1.2) being an equality. Equations (1.4), (1.5) and (1.6) arise as the
critical points of (1.1). Usually, these critical points are expressed as the
simultaneous solutions to (1.4) and (1.5) but with the term ave{y/(s;)} re-
placed by p in (1.5), in which case (1.6) holds automatically. To verify this
latter claim, just multiply the modified equation by V™! and then take the
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trace. See, for example, Maronna (1976) or Kent and Tyler (1991). It is more
convenient for our purposes here to use the three expressions (1.4), (1.5) and
(1.6). Equations (1.4), (1.5) and (1.7) arise as the critical points of (1.1) after
introducing a Lagrange multiplier to account for the constraint (1.7).

The estimating equations are useful for establishing and studying local
properties of the CM-estimates, such as influence functions, asymptotic
normality and asymptotic relative efficiencies. All solutions to the estimating
equations though need not correspond to CM-estimates since we are seeking
a global minimum rather than just critical points. Global properties such as
existence, uniqueness, consistency and breakdown points rely on the com-
plete definition of the CM-estimates.

The paper is organized as follows. The functional version of the CM-esti-
mates and conditions for the existence of the CM-estimates and CM-func-
tionals are given in Section 3. The problem of uniqueness is discussed in
Section 4. The finite sample breakdown points of the CM-estimates are given
in Section 5. In Section 6, the influence functions of the CM-functionals are
derived and asymptotic normality of the CM-estimates is proven under
general conditions. The form of the influence functions and the asymptotic
variance—covariance matrices of the CM-estimates can be expressed in rela-
tively simple forms when the underlying population has a multivariate
normal distribution or more generally when it has an elliptically symmetric
distribution; see Section 7. Based on the results of Section 7, simple indices
for assessing the local robustness of the CM-estimates are given in Section 8.

In Section 9, we consider classes of p-functions of the form p(s) = cp(s)
and propose a procedure for choosing the tuning constant ¢ > 0 in order to
achieve desirable local robustness properties. The choice of the tuning con-
stant, though, does not affect the breakdown point. We demonstrate the
results of the paper by taking a more detailed look at the influence functions
and the asymptotic relative efficiencies under the multivariate normal model
for the class of biweighted CM-estimates.

Proofs are reserved for the Appendix. Throughout the paper, data points,
whether viewed as random variables, observations or realizations of random
variables, are represented by lowercase boldface letters and always have a
subscript, for example, x;. Whether or not a data point is a random variable
is to be understood from its context. Data sets are represented by uppercase
italic letters, for example, X, and random vectors are represented by upper-
case boldface letters, for example, X.

Before presenting the technicalities of the paper, we discuss in Section 2
several ways to heuristically motivate and interpret the CM-estimates.

2. Motivation.

Relationship to redescending M-estimates. Our initial motivation arose
from first addressing the question of why the multivariate M-estimates break
down easily. The solutions to the simultaneous equations (1.4), (1.5) and (1.6)
correspond to M-estimates of multivariate location and scatter. Maronna’s
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(1976) upper bound of 1/(p + 1) for the breakdown point of these multivari-
ate M-estimates presumes that (s) is nondecreasing. Maronna’s (1976)
result does not apply when p(s) is bounded since a bounded p-function
implies that the function ¢(s) = 2sp’(s) must redescend. More generally,
Stahel (1981) shows that the multivariate M-estimates cannot have break-
down points greater than 1/p. What breakdown means in Stahel’s (1981)
context is that at least one solution to the M-estimating equations can be
made to break down when the proportion of contamination in the data
exceeds 1/p, and not necessarily that all solutions can be made to break
down; see Tyler (1991) for more details.

It is natural to ask if it is possible to choose a solution to (1.4), (1.5) and
(1.6) in such a way so that the resulting statistics have a high breakdown
point. Since the solutions to (1.4), (1.5) and (1.6) represent the critical points
of (1.1), a natural choice is to choose (u, V) which minimizes (1.1) uncondi-
tionally. This approach is an alternative to the M-estimating equation ap-
proach for defining the M-estimates of multivariate location and scatter; see,
for example, Huber (1981) and Kent and Tyler (1991). For general p, how-
ever, it can be shown that this approach gives statistics with breakdown
points of at most 1/(p + 1). Moreover, when p is bounded, the breakdown
point is 0 since no values of (u, V) exist which minimize (1.1) uncondition-
ally. This follows since, as V approaches a singular matrix, log|V| - —o and
so (1.1) > —o. This phenomenon is reminiscent of Kiefer and Wolfowitz’s
(1956) classical observation on the behavior of the likelihood function for a
mixture of two normal distributions.

In order to define statistics based on the log-likelihood type objective
function L(u,V; X)), it is necessary to bound V away from singularity.
Introducing the constraint (1.2) does this in an affine equivariant manner
and, as is to be shown, results in high breakdown point statistics which are
locally robust when p(s) is properly tuned.

Relationship to MVE- and S-estimates. Another heuristic interpretation
of the CM-estimates arises by relating them to S-estimates. Suppose (1.1) is
minimized under the equality constraint (1.7) rather than under the inequal-
ity constraint (1.2). This is equivalent to minimizing det(V) subject to (1.7),
and this corresponds to the definition of the S-estimates of multivariate
location and scatter. These S-estimates have breakdown points approxi-
mately equal to & for & < 3; see Davies (1987) and Lopuhaa (1989). Moreover,
they satisfy the joint estimating equations (1.4), (1.5) and (1.7). As with the
CM-estimates, the local robustness properties of an S-estimate such as its
influence function and its asymptotic efficiency follow from its estimating
equations. Lopuhaa (1989) observed that for a fixed p-function the asymptotic
relative efficiency at the multivariate normal model for the S-estimate
severely decreases when the value of & increases. The reason for this trade-off
between the breakdown point and the efficiency of an S-estimate is that
larger values of & tend to force the weight function in the estimating
equations to be badly tuned.
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Now, if one had information concerning the maximum proportion of bad
observations in a data set, then one could tune an S-estimate by choosing &
accordingly. In this way, one could maintain some efficiency while still
protecting against breakdown. Generally speaking, such information is con-
tained in the data set itself, and the CM-estimates can be viewed as taking
advantage of this information. The realization of a CM-estimate with a
breakdown point of approximately i corresponds to an S-estimate defined
using the same p-function but with ¢ chosen to be equal to the realized value
of ave{ p(s;)}/p() from the CM-estimate. When sampling from a multivari-
ate normal or a 10% symmetrically contaminated normal, this realized value
can be substantially less than ;. In this sense, the CM-estimates are adaptive
versions of the S-estimates.

It is helpful to relate the above discussion to the MVE-estimates. The
MVE-estimates of multivariate location and scatter are, respectively, the
center and the orientation matrix associated with the minimum volume
ellipsoid covering at least half of the data. They correspond to S-estimates
with ¢ = § and

(2.1) p(s) ={cfors>sy;0fors <s,},

where the value of s, simply imposes a scaling factor on the scatter matrix.
The constant ¢ > 0 has no effect in defining the MVE-estimate since it
cancels out in constraint (1.7). The CM-estimates of multivariate location and
scatter defined using the p-function (2.1) and with &= % are, respectively,
the center and orientation matrix associated with the ellipsoid which mini-
mizes

(2.2) c(1—m) + 3log(v)

over all ellipsoids containing at least one-half of the data with = being
the proportion of the data within the ellipsoid and v being the volume of the
ellipsoid. Here, ¢ now acts as a tuning constant and does not affect the
breakdown point. This CM-estimate is an adaptive version of the MVE-
estimate in the following sense. If one enlarges the minimum volume ellipsoid
containing one-half of the data, then both the volume of the ellipsoid and the
proportion of the data within the ellipsoid increase. If nearly one-half of the
data is contaminated, then a relatively small increase in the proportion
results in a substantial increase in the volume. On the other hand, if the data
contains relatively little contamination, then the increase in the volume
relative to the increase in the proportion is modest. The CM-estimate dis-
criminates between these two cases by balancing the proportion 7 and the
volume v. In the first case, the CM-estimate and the MVE-estimate will
essentially result in the same statistics. In the second case, the CM-estimate
will be more stable than the MVE-estimate. In general, the resulting CM-
estimate would correspond to an MVE-estimate but not to one covering at
least one-half of the data, but rather to one covering at least a proportion 7 of
the data, where 7 is the value arising from the resulting CM-estimate. The
p-function (2.1) is not necessarily recommended, but is intended here to serve
only as a pedagogical example.
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3. Existence of CM-estimates and CM-functionals. We begin by ad-
dressing the question of existence. We assume throughout the paper that
p(s) satisfies the following condition. Stronger assumptions are needed in
later sections.

CoNDITION 3.1. For s > 0, p(s) is nondecreasing, 0 = p(0) < p(®) < % and
p(s) is continuous from above at 0.

Results on existence can be made more general by first introducing the
notion of CM-functionals. For a random vector X € R?, we define the CM-
functionals for location w(X) and scatter V(X) in a manner analogous to (1.1)
and (1.2); that is, (u(X), V(X)) minimizes over all (u,V) € R? X%, the
objective function

(3.1) L(p,V) = E[ p{(X = p)' VI (X = p)}] + 5 loglV]|
subject to the constraint
(32) E[ p{(X - w)V (X - p)}] < ep(=),

with 0 < ¢ < 1 being fixed. Estimating equations for the CM-functional are
analogous to (1.3)-(1.7). More specifically, if p 1is differentiable, then
(uX), V(X)) must satisfy the following equations:

(3-3) n=E[u(S)X]/E[u(S)],

(34) V =pE[u(S)(X - u)(X - n)']/E[¢(S)],
and either

(3.5) E[¢(S)] =p

or

(3.6) E[ p(8)] = ep(=),

where S = (X — w)'V (X — w) and u and ¢ are as previously defined.

Under the following mild condition on the distribution of X, the existence
of the CM-functionals can be guaranteed. In addition, although Theorem 3.1
below makes no statement concerning the uniqueness of the CM-functionals,
it does state that all solutions to the CM-criterion must lie in some compact
set.

CONDITION 3.2. For any hyperplane B c R?P, PX € B) <1 — &.

THEOREM 3.1. If Conditions 3.1 and 3.2 hold, then there exists a (u,, V,)
€ R? X2, which minimizes L(p, V') subject to the constraint (3.2). Further-
more, the set of all such (u,,V,) is bounded away from J(RP X)), the
boundary set of R? X2,

Condition 3.2 holds for any absolutely continuous distribution in R”. The
results of the theorem also apply to the CM-estimates (u(X,), V(X,)), by
taking the distribution of X to be the empirical distribution of X,. If X, is in
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general position, that is, no (p + 1) vectors from X, lie in a hyperplane in
R?, then Theorem 3.1 holds for the empirical distribution of X, provided
n>p/(1—e).

4. The uniqueness problem. Finding general conditions under which
the CM-estimates or the CM-functionals are unique is a far more difficult
problem than the existence problem. Establishing the uniqueness of the
CM-functionals is particularly important since, given uniqueness, the weak
continuity of the CM-functionals, the strong consistency of the CM-estimates
and other properties readily follow; see Section 6. Unfortunately, as with
Davies’ (1987) work on the multivariate S-estimates, we are only able to
establish the uniqueness of the CM-functionals under elliptically symmetric
distributions, and we leave the general uniqueness problem open.

We assume throughout the rest of this section that X has a density in R”
of the form

(4.1) flx;t,3) =137 2g{(x —t)'S " Y(x — t))

for some function g: R*—> R* and where (¢,3) € R? X.2,. Properties of
elliptically symmetric distribution have been studied in detail by Kelker
(1970); see also Muirhead (1982). The parameter ¢ corresponds to the ex-
pected value of X if it exists. If the second moments of X exist, then the
variance—covariance matrix of X is proportional to X. One would anticipate
that, for the CM-functionals, w(X) = ¢ and V(X) is proportional to 3. This is
shown in Theorem 4.1 below.

CONDITION 4.1.

(a) g(s) is nonincreasing for s > 0.
(b) There exists an s, > 0 such that, for all s; < s, < 8y, p(s;) < p(sy) <
p(sy) and g(s;) > g(sy) > g(sy).

THEOREM 4.1. Assume X has a density in R? of the form (4.1). Under
Condition 3.1, there exists a solution to minimizing (3.1) subject to the
constraint (3.2). Furthermore, if Condition 4.1 also holds, then any such
solution must be of the form (uwX, V(X)) = (¢, AX) for some 0 < A < o,

Although the results of Theorem 4.1 seem intuitive and natural, the proof
is surprisingly delicate. The proof itself is heavily reliant on Davies’ (1987)
results on the uniqueness of the S-functionals of multivariate location and
scatter at elliptically symmetric distributions. We refer the reader to Davies’
(1987) paper for a better appreciation of the difficulties arising when trying to
establish uniqueness results. The condition that g be nonincreasing and that
p(s) and g(s) have a point of common change (i.e., Condition 4.1) is needed to
apply Davies’ (1987) results. We note here that Theorem 4.1 does not imply
that all solutions to the corresponding estimating equations (3.3)-(3.6) are
necessarily of the form (¢, AX).
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To complete the discussion of the uniqueness of the CM-functionals under
elliptically symmetric distributions, we must establish when A in Theorem
4.1 is unique. Now, any such value of A is a solution which minimizes

(4.2) 1(x;8) = E{p(S/A)} + 3plog A

subject to the constraint A > A;, where A; is the unique solution to
(4.3) E{p(S/N)} = ep(>)

and S = (X — #)’2 (X — ¢) has density

(44) f(s) = C,s7/271g(s),

with C, being a constant dependent on p. Note that since p(s) is nondecreas-
ing, E[ p(S/M)] < egp(») for A > A;. Uniqueness of the CM-functionals for
elliptically symmetric distributions now follows assuming the following condi-
tion holds. For a given p-function, a given value of ¢ and a given function g,
this condition can in general be checked numerically since I();g) is a
univariate function, as will be demonstrated in Section 9.

CONDITION 4.2. There exists a unique 0 < Ay < © which minimizes (4.2)
over A = Aj.

COROLLARY 4.1. Under Conditions 3.1, 4.1 and 4.2, there exists a unique

solution to minimizing (3.1) subject to the constraint (3.2). Specifically,
(uX), VX)) = (¢, Ay2) with A, defined as in Condition 4.2.

If a distribution is close to an elliptically symmetric distribution, then the
weak continuity of the CM-functionals given by Theorem 6.1 ensures that
even if the CM-functional is not unique at the distribution, then at least all
possible solutions to the CM criterion are within some small neighborhood of
each other. Likewise, if we have a random sample from an elliptically
symmetric distribution, then the strong consistency of the CM-estimates,
which is established in Section 6, ensures that all possible solutions to the
CM criterion must lie within some shrinking compact set as the sample size
goes to ©. The uniqueness of the CM-estimates themselves is not necessary in
establishing strong consistency, asymptotic normality or in deriving its finite
sample breakdown point.

5. Finite sample breakdown point. In this section, we derive the
breakdown point of the CM-estimates, using the concept of the finite sample
replacement breakdown point introduced by Donoho and Huber (1983). For
the multivariate location—scatter problem, this concept can be defined as
follows: suppose m < n arbitrary data points Y = {y,,...,y,,} replace m data
points from the original data X, = {x,,...,x,} producing a corrupted sample
Z which consists of a fraction of ¢, = m/n bad values. For a given ¢,,, the
statistic (a(-), V(-)) is said to break down at X, under ¢,,-contamination if for
at least one solution ((Z), V(2)) | ((Z)|| can be made arbitrarily large, the
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largest eigenvalue of V(Z) can be made arbitrarily large or the smallest
eigenvalue of V(Z) can be made arbitrarily close to 0, for varying choices of Y
and of the m replaced data points from X,. The finite sample replacement
breakdown point of (a(-),V(-)) at X, is then defined to be £*(X,), the
minimum of all ¢,, causing breakdown. Note that the definition of breakdown
here does not depend on ( (), V(+)) being uniquely defined.

For X, in general position, Davies (1987) gives a strict upper bound for the
finite sample replacement breakdown point £*(X,) for any affine equivariant
location and scatter statistics, namely

(5.1) e"(X,) < [(n —p)/2|/n,

where [k] represents the smallest integer greater than or equal to & if
positive and O otherwise. By choosing &= (n — p)/(2n) in (1.2), the CM-
estimate (a(-), V(-)) obtains this upper bound, as is seen from the following
general result.

THEOREM 5.1. If Condition 3.1 holds, then, for X, in general position,
0<e<l,andn>p/(1— &),

e*(X,) = min{[ne]/n,[n(1 — &) — p|/n}.

6. Consistency, influence functions and asymptotic normality.
Unless otherwise stated, we assume throughout this section that the p-
dimensional random vector X has an absolutely continuous distribution in
RP. The existence of the CM-functional ( w(X), V(X)) is assured by Theorem
3.1. The results of this section also are dependent on the CM-functional being
uniquely defined. Although we have only been able to establish the unique-
ness of the CM-functional at elliptically symmetric distributions, rather than
assuming X has an elliptically symmetric distribution, we will assume
throughout this section that they are unique at X. We make this general
uniqueness assumption here since, given uniqueness, most other important
properties follow. One such property is the weak continuity of the CM-func-
tionals, which we establish in Theorem 6.1 below. We also need some condi-
tions on the p-function which are stronger than Condition 3.1.

CONDITION 6.1. The CM-functional ( w(X), V(X)) is uniquely defined at X.

CONDITION 6.2. For s > 0, p(s) is continuous, nondecreasing when 0 =
p(0) < p() < © and strictly increasing when 0 < p(s) < p().

THEOREM 6.1. Under Conditions 6.1 and 6.2, if X, — X in distribution,
then (u(X,), V(X,)) exists for large k and (u(X,),V(X,)) = (uX), V(X)) for
any (u(X,), V(X,)) satisfying the definition of the CM-functional at X,,.

The condition that p(s) is strictly increasing when 0 < p(s) < p(«) plays a
role in the proof of Theorem 6.1 only for certain distributions on X. Also, the
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presumption that X is absolutely continuous can essentially be relaxed to
Condition 3.2. These subtle technicalities are discussed in the Appendix; see
Remark 10.1.

Strong consistency of the CM-estimates follows readily from Theorem 6.1
since the empirical distribution function converges to the underlying distribu-
tion function almost surely. Thus, if x,,...,x, are ii.d. X, then

(6.1) (A(X,),V(X,)) > (w(X), V(X)) almost surely

for any sequence (A(X,),V(X,)) satisfying the definition of the CM-esti-
mates.

Given weak continuity and consistency, local properties of the CM-esti-
mates such as the influence functions and the asymptotic distributions follow
from the estimating equations (3.3)—-(3.6). To obtain general expressions for
the influence functions and the asymptotic distributions, we note that (w, V)
consists of m =p + sp(p + 1) parameters and so let # € R™ represent an
m-dimensional vector parameterization of (u,V) with w being the first p
components of 6 and with the upper triangular part of V being the remain-
ing +p(p + 1) components. Analogously, the CM-functionals ( w(X), V(X)) can
be represented by 0(X) € R™. Equations (3.3), (3.4) and (3.5) together, or
(3.3), (3.4) and (3.6) together, consist of m implicit equations for 0 since (3.4)
itself contains only +p(p + 1) — 1 implicit equations. This observation con-
cerning (3.4) follows from the symmetry of V and by noting that multiplying
both sides of (3.4) by V! and then taking the trace gives p = p. Thus, there
exists a function ¥;: R? X R™ — R™ such that (3.3), (3.4) and (3.5) together
are equivalent to

(6.2) E[¥,(X,0)] =0,

and there exists a function ¥,: R? X R* > R* such that (3.3), (3.4) and (3.6)
together are equivalent to

(6.3) E[¥,(X,0)] -0,

with the first (2 — 1) entries of ¥; and ¥, being the same.

The local properties of the CM-estimates are now obtained by using
standard expansion arguments on the estimating equations. To do this, we
need to ensure that the expansions are valid and so hereafter we assume the
following two conditions hold.

CONDITION 6.3. The function p(s) has a continuous second derivative, and
u(s), Y(s) and ¢'(s) are bounded.

CONDITION 6.4. For the CM-functional ( w(X), V(X)), (3.5) and (3.6) do not
both hold at X.

Another way of phrasing Condition 6.4 is that if the global minimum of
(3.1), subject to the constraint (3.2), occurs on the boundary of the constraint,
then it is assumed not to be a critical point of (3.1). This property carries over
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to distributions near the distribution of X.

THEOREM 6.2. Under Conditions 6.1, 6.2 and 6.4, if X, — X in distribu-
tion, then (3.5) and (3.6) cannot both hold for (w(X,), V(X,)) for large enough
k. Furthermore, for large k, if (3.5) holds for X, then (3.5) holds for X, and if
(3.6) holds for X, then (3.6) holds for X,.

The importance of Theorem 6.2 is that it allows us to treat (6.2) and (6.3)
as two separate cases when studying the local properties of the CM-esti-
mates. For convenience, we treat both cases together by defining ¥ = ¥, if
(3.5) holds and ¥ = ¥, if (3.6) holds.

The influence function of the functional 0(X), the R™ representation of
(u(X), V(X)), at X is defined by

(6.4) IF(x;0(X)) = lim (0(X,) — 0(X)}/z,

provided the limit exists, where X ~ F and X_ ~ F, = (1 — ¢)F + &6, with §,
being the distribution function of the constant x.

THEOREM 6.3. Let M0) = E[V(X;0)] and suppose N0) has a nonsingular
derivative A = dN0)/30 at 0, = 0(X). Under Conditions 6.1 through 6.4, the
influence function of 0(X) exists and is given by IF(x;0(X)) = — A~ 'W¥(x;0,).

The proof of Theorem 6.3 involves standard expansion arguments, as does
the proof of the following theorem concerning the asymptotic normality of the
CM-estimates. Whenever (3.6) holds, the influence function given in Theorem
6.3 and the asymptotic distribution given in Theorem 6.4 below are the same
as the multivariate S-estimates defined using the same p-function and the
same value of ¢; see Lopuhaa (1989).

THEOREM 6.4. {]nder Conditions 6.1, 6.2, 6.3 and 64, if x,,...,X, are
i.i.d. X, then Vn{6(X,) — 6(X)} converges in distribution to a multivariate
normal with mean 0 and variance—covariance matrix A"*MA’' ', where M is

the variance—covariance matrix of V(X; 6,) and A is defined as in Theorem
6.3.

The form of the influence function in Theorem 6.3 and the form of the
asymptotic normal distribution in Theorem 6.4 simplify whenever the distri-
bution of X is symmetric about some vector w,. For this case, u(X) = u, and
the matrix A is block diagonal in the sense that when the first p parameters
of 0 are taken to correspond to u, the upper right p X (m — p) entries of A
and the lower right (m — p) X p entries of A are 0. The matrix M is
similarly block diagonal, and so vn { MX,) — uX)} and Vn {V(Xn) - VX)}
are asymptotically independent. The influence function given in Theorem 6.3
and the asymptotic variance—covariance matrix given in Theorem 6.4 sim-
plify further whenever X has an elliptically symmetric distribution.
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7. Behavior under elliptical distributions. In this section, we as-
sume X has a multivariate normal or some other elliptically symmetric
density in R”; see (4.1). We then know by Theorem 4.1 that under general
conditions the CM-functional (u(X), V(X)) is uniquely defined. Further, we
note that Condition 6.3, which is assumed in establishing the asymptotic
normality of the CM-estimates and in deriving the influence functions of the
CM-functionals, can be expressed in the simpler form given by Condition 7.1
below. Here, Ay, A; and I(A; g) are defined as in Section 4. As with Condition
4.2, for a given p-function, a given value of ¢ and a given function g, this
condition can in general be checked numerically.

CoNDITION 7.1. If Ay = Ay, then A, is neither a local minimum nor an
inflection point of I(X; g).

Now, since IF(x; (X)) is block diagonal, we can treat the influence func-
tion for w(X) and V(X) separately. Using standard invariance arguments [see,
e.g., Lopuha# (1989) or Huber (1981)], we have
(7.1) IF(x;t(X)) =AY 2hi(s/19) 2 22,

(7.2) IF(x; V(X)) =Aohy(5/1)2V % (22" — p ')ZV2 + Ahy(s/X) 3,
where s = (x —t)'S " Wx —¢t), 2=3"Y%(x —t)/Vs and h,, h, and h, are
scalar-valued functions dependent on p and g. Specifically,
(73) hi(w) = w2 u(w) /B,
(7.4) ho(w) = (p + Di(w)/Bs,
2( p(w) — &p(*))/Bs; if Ay = Ag,
(7.5) hy(w) = B B i
2(¢(w)/p—1)/( By — B3), if g > Ay,

where
e o (5), 28 /8
(7.6) B = u()\—o +;/\—Ou ik
. o (8) 28 (8
(7.7) By = -llf)\—o +;/\—Ol!f/\—0,
[ S
(7-8) Bs =E ‘l’(/\_”
| 0

In this section we are treating V € 2, as a p? parameter [which therefore
includes zp(p — 1) duplications], and so (7.2) is a p X p symmetric matrix.

For the asymptotic distribution of the CM-estimates, we know that
Vr{ X, — pX)} and Va{V(X,) — V(X)} are asymptotically independent.
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For the location estimate, we have by Theorem 6.3 and the equivariance
properties of i(X,) and X that

(7.9) Vn{a(X,) — n(X)} - Normal,(0, a3),
where
(7-10) a=E[u2(Sl//\O)S]/(p312).
For the scatter estimate, we have
(7.11) vee(Vn (V(X,) = V(X))} — Normal »(0,T),
where
(7.12) F=Xo(I+K, ,(2&3))+ Ao, vee(T)vec(Z),
with
(7.13) o= |1+ 2 E[W(E)Vﬁg,
p Ao
(7.14) o =E'[h2(§) —30'
. 2 3\ a v

The notation in (7.11) and (7.12) is standard notation which arises when
describing the asymptotic distribution of random matrices. For a p; X p,
matrix A, vec(A) represents the p,p, X 1 vector formed by stacking the
columns of A. The Kronecker product ® between a p,; X p, matrix A and a
p3 X py matrix B is the p; p3 X p, p, matrix A ® B = {a,;B} with i ranging
over rows of matrices and j ranging over columns of matrices. The commuta-
tion matrix K, , is the p® X p® matrix K, , = Le,e; ® e;e; with the sum
being over i,j=1,2,..., p and where e; € R? has a 1 in the ith position
and 0’s otherwise; see, for example, Muirhead (1982), Lopuhaia (1989) or

Tyler (1983).

8. Indices of local robustness. The behavior of the CM-estimates obvi-
ously depends on the choice of the p-function. For a given p-function, one way
of assessing the local robustness of the resulting CM-estimate is to consider
the asymptotic relative efficiency of the estimate over a range of possible
distributions. A simpler and perhaps more appealing way of assessing the
local robustness of the estimate is to consider the behavior of its influence
function along with its relative asymptotic efficiency at a specific distribution,
in particular the multivariate normal distribution or some other elliptically
symmetric distribution. We use the latter approach here in developing simple
indices for accessing the local robustness of the CM-estimates.

Hereafter we assume the data x,,x,,...,X, represents a random sample
from an elliptically symmetric distribution. Consider first the location compo-
nent. Although the asymptotic variance—covariance matrix of 4(X,) is matrix
valued, we note from (7.9) that the asymptotic relative efficiency of the
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location component for varying choices of p can be compared by simply
comparing the corresponding values of the scalar « given in (7.10). Compar-
ing the influence functions of the location component of CM-functions for
varying choices of p is more complicated since the influence functions are
vector-valued functions which differ by more than a simple scalar multiple.
We consider instead the most common measure of local robustness based on
the influence function, namely the gross error sensitivity (GES). In general,
the GES is defined to be sup, .g,l[F(x;-)ll for some norm | -|l. For the
location functional we note from (7.1) that regardless of the choice of the
norm the GES is proportional to the scalar

(8-1) G, = ()‘o)l/zKl/Bb

where K, = sup,. s/ %u(s). If the norm is taken to be the p-dimensional

Euclidean norm, then (8.1) is equal to the gross error sensitivity when 2 = I.

Consider now the scatter component. The asymptotic variance—covariance
matrix of the scatter component, given by (7.12), depends on the p-function
through two scalar quantities A20;, and A20,. It is helpful here to separate
the scatter component into a shape component and a scale component. By a
shape component, we mean any function of V(X) which is invariant under a
positive scalar multiple, such as V(X)/trace{V(X)}, and by a scale component
we mean any function of V(X) which is equivariant under a positive scalar
multiple, such as trace{V(X)}. In practice, one is often interested in scatter
only through its shape component. For example, the ratio of principal compo-
nent roots, principal component vectors, correlations, canonical vectors and
correlations, multiple correlation coefficients, multivariate linear regression
coefficients, and the ratio of variances are all shape components. Moreover,
the scale component is essentially an ill-defined nuisance parameter. For
elliptically symmetric distributions, the scale component for 3 is confounded
with the function g in (4.1). Thus, we choose here to focus only on the shape
of the scatter component, for which we have the following result concerning
their asymptotic distributions. For p > 2, if H: %, - R? is continuously
differentiable and H(V) = H(AV) for any A > 0, then

(82) Vo {H[V(X,)| - H[V(X)]} -, Normal, (0, 0,T; (%)),

where I'y(+) is a specific function on %, which is not dependent on p, g, t or
3, and for which I'y(2) = Iz (A3) for all X €2, and A > 0; see Tyler (1983)
for more detail. We note from (8.2) that the asymptotic relative efficiency of
CM-estimates of shape for varying choices of p can be compared by simply
comparing the corresponding values of o;. For p = 1, the concept of shape is
obviously meaningless.

Comparisons of gross error sensitivity for the shape of the scatter compo-
nent can also be reduced to a scalar comparison. If the function H is defined
as in (8.2), then we show in the Appendix that

(83) IF(x; H(V(X))) = ha(s/20)vu(2)(2 © 2),
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where v, (-) is a ¢ X p? matrix-valued function dependent on H but not on p,
g, t or 3, with the property y;(AZ) = y4(3) for any A > 0. Thus, regardless
of the norm chosen for the influence function, we see that the GES for the
shape functional H(V(X)) is proportional to the scalar

(8.4) G, =K,/B,,

where K, = sup,., #(s). For example, the influence function of V(X)/
trace{V(X)} is

(8.5) ho(s/Mo) |2 222'3Y/? — {2'Sz/trace(3)}3 ] /trace(S).

If we use the p2dimensional Euclidean norm in defining the GES of
V(X)/trace{V(X)}, then when 3 is proportional to I the GES equals a,G,,
where a, = (1 +2/p)X1 - 1/p)"/2.

Summarizing, our method for judging the local robustness of the CM-
estimates associated with different p-functions is to consider the correspond-
ing values of «, G,, o, and G, at some specific elliptically symmetric
distribution of interest. We note though that the scalars «, G,, o, and G, are
dependent on the underlying elliptically symmetric distribution only through
the function g in (4.1) and not through t or . Thus, for a given g and p, the
scalars a and o, serve as indices for the asymptotic efficiency of the location
and shape components, respectively, of the associated CM-estimate for the
entire location—scatter elliptically symmetric family given by (4.1). An analo-
gous statement holds for G; and G, as indices of gross error sensitivity. A
good p-function is one for which «, G, o, and G, are as small as possible.

9. Tuning the CM-estimates. The broad problem of choosing a p-func-

tion from the class of all possible p-functions is not addressed here. Instead,
for a given function p, we introduce a multiplicative tuning constant ¢ > 0 in
order to generate and study the class of p-functions defined by
(9.1) %, = {p.(s)] p.(s) = cp(s), ¢ > 0}.
From Theorem 5.1, we note that the breakdown point of the CM-estimate
associated with p,(s) does not depend on the tuning constant c. The value of
¢ though does affect the influence functions and the asymptotic distributions
of the CM-estimates, and hence the local robustness indices «, G, o; and
G,.

For the multivariate normal model or some other elliptical model of
interest, one can plot as a function of ¢ the indices of «, G;, o5 and G, in
order to determine a desirable value for c. A plot of the indices of «, G4, oy
and G, can be simplified by noting that they depend on the tuning constant ¢
only through the value of \,, and, moreover, the lower bound A; for A, does
not depend on c. Thus, we suggest plotting «, G,, o, and G, as a function of
A, rather than as a function of c¢. Based on these plots, one can determine a
desirable value for A, and then find the value of ¢, if any, which produces this
value of A,. Since p is increasing, it can be shown that A, is a nondecreasing
function of ¢. For A; > A, the only possible value of ¢ is

(9.2) ¢ =p/E[#(S/)],
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where, as before, /(s) = 2sp’(s) and S has density (4.4). This follows since if
Ao > Ap, then A; must be a critical point of

(93) L(X;8) = E[ p.(S/N)] + 3plog(2),

and the critical points of .(A; g) must satisfy E[¢.(S/M] = p, where §.(s) =
2sp.(s) = c(s). After obtaining ¢ from (9.2), it is necessary to check that the
desired value of A, does indeed minimize [ (A; g) subject to the constraint
A = ;. To obtain A, = A;, one can choose any ¢ < p/E[¢(S/A;)].

The formulas for the influence functions and the asymptotic distributions
of the CM-estimates depend on the value of & only through the lower bound
Az. Since p is nondecreasing, A; is a nonincreasing function of . For a fixed
value of A, the influence function and the asymptotic distribution of the
scatter component have a different form depending on whether A, > A; or
Ao = Ar. However, we note from (7.1), (7.9), (8.2) and (8.3) that this is not the
case for the location component or the shape part of the scatter component.
Thus, if for a given ¢ < 1 we determine a desirable value of A, > A;, then one
can always choose & = 3 instead and still use the desirable value of A,. In
this way we obtain a breakdown point of approximately % in large samples
without affecting the local robustness properties of the CM-estimates of
location and shape.

In contrast, Lopuhaa (1989) observes that the breakdown point and the
local robustness properties of the multivariate S-estimates are heavily re-
lated. Recall that the influence functions and the asymptotic distribution of
the CM-estimates when A, = A; correspond to those of the S-estimates. The
relationship between the large sample breakdown point of the S-estimate and
the value of A, is given by

(94) e=E[p(S/X)]/p().

The S-estimates can be tuned by either A, or &, but once one is specified, the
other is determined.

To illustrate these ideas, we assume a multivariate normal model and
consider the biweighted CM-estimates, which we defined by choosing & = 3
and

3s — 3s2 + s3, s<1,

(9.5) pu(s) = 3 =~

with ¢ > 0. These p-functions are also studied by Lopuhaa (1989) in connec-
tion with the S-estimates of multivariate location and scatter. If we normal-
ize the scatter matrix so that it is consistent for the covariance matrix of the
multivariate normal distribution, that is, define % = V /A, then the weight
function u,(s;) = 2p.(s;) in (1.4) can be replaced by u(r;; o,), where r; =
{(Xi - M)’Eil(xi - IJ«)}I/Z, gy = )\%)/2 and

(9.6) u(r;oy) = (1= (r/09)*)I(Irl < o).

The weight function u(r; o) corresponds to Tukey’s biweight function with
tuning constant .
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The values of «a, G;, o; and G, can be expressed in terms of ratios of
linear combinations of cumulative chi-square probabilities with varying de-
grees of freedom. These expressions are fairly easy to derive but are not very
tractable. We give them in the Appendix; see (A.6)—(A.9). It is better for our
purposes here to use graphs. Graphs of «, G, o; and G, as functions of A,
for p =2, 5 and 10 are given in Figures 2, 3 and 4, respectively, of the
Appendix. The values of A; for p = 2, 5 and 10 are 7.08, 21.64 and 45.91,
respectively. The values of «, G, o; and G, at A, coincide with those of the
biweighted S-estimates of Lopuhai (1989) which has a limiting breakdown
point of 1. We again emphasize that for the S-estimates with &£ = %, one has
no control of the biweight tuning constant in (9.6). The limiting values of «,
G4, o, and G, as A, — % correspond to those of the sample mean vector and
sample covariance matrix, namely « = 1, G; = », o; = 1 and G, = .

For p = 2, we note from the graphs that it is possible to substantially
improve upon both the asymptotic relative efficiencies and the gross error
sensitivities of the biweighted S-estimate by using an appropriately chosen
value for A,. For example, by choosing A, = 17, we obtain values of « = 1.130,
G, = 1927, o, = 1.243 and G, = 1.369 for the CM-estimate compared to
values of a = 1.725, G, = 2.390, o, = 2.646 and G, = 1.673 for the S-esti-
mate. In order to obtain the value A, = 17, we use (9.2) to determine that we
must choose ¢ = 4.627. A graph of [.(A; g) for ¢ = 4.627 is given in Figure 1.
From the graph we can verify that Conditions 4.2 and 7.1 hold and that A,
does equal 17. From (9.4) we note that a biweighted S-estimate having the
same values of «a, G;, o; and G, as the CM-estimate with ¢ = 4.627 has a
limiting breakdown point of 0.280. Similar observations arise from consider-
ing the graphs for p = 5.

For p = 10, we again note that an appropriately chosen biweighted CM-
estimate of location improves upon both the gross error sensitivity and the
asymptotic efficiency of the biweighted S-estimate of location. However, the
CM-estimates cannot improve upon the gross error sensitivity for shape, that
is, upon G,, of the S-estimate. To improve upon the asymptotic efficiency of
the S-estimate of shape, a trade-off with gross error sensitivity must be
made. For example, by choosing A, = 60, we obtain values of « = 1.037,

4.30

2N 9)

4.15

5 10 15 20 25 30
A

Fic. 1. Plot of (9.3) at the p = 2 dimensional standard normal distribution for the biweighted
CM-estimate with ¢ = 4.627.
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Fia. 2. Indices of local robustness biweighted CM-estimates: p = 2.

G, = 3428, o, = 1.048 and G, = 1.244 for the CM-estimate compared to
values of a = 1.072, G, = 3.482, o, = 1.093 and G, = 1.142 for the S-esti-
mate. The value A, = 60 corresponds to choosing ¢ = 15.464. Again, a graph
of 1.(A; g) for ¢ = 15.464 can be made to verify that Conditions 4.2 and 7.1
hold and that A, does equal 60. Also, from (9.4) we note that a biweighted
S-estimate having the same values of «, G, o, and G, as the CM-estimate
with ¢ = 15.464 would have a limiting breakdown point of 0.408.

If we let Ay = A;/7 with 0 <7< 1 and then let p —» ©, we get a — 1,
G,/p"?* - G = 0.64(ry,) 21 — 1y,)"2/5Y%, o0, > 1 and G, » G; =
4/27)(7y,) 11 — 7y,) "2, where y, = 0.2063. The constant y, ' is the limit-
ing value of A;/p. These limiting results are derived in the Appendix. The
minimum value of G equals 1, and this occurs at 7= (5y,)"! = 0.9695.
When r = 1, G = 1.0003. The minimum value of G5 is 1.140 which occurs
when 7= 1.

It was noted in Section 7 that G, represents the gross error sensitivity of
the location vector whenever the p-dimensional Euclidean norm is used in



1364 J. T. KENT AND D. E. TYLER

Asymptotic variance Index GES Index
location Jocation
<
N
-
w
e Gy
\ o
& N
-
S ©
- -~
20 30 40 20 30 40
Ao Ao
Asymptotic variance index GES Index
shape shape
o
@
-
o
91 8 o‘_v
-~
Gy
o
-
- o
N
~
20 30 40 20 30 40
Ao %o

Fi1c. 3. Indices of local robustness biweighted CM-estimates: p = 5.

defining the GES. It is interesting to compare the GES of the CM-estimate of
location to the GES of an estimate formed by using a univariate location
estimate on each of the p variables. The latter is not generally affine
equivariant. At the multivariate standard normal model, the componentwise
location estimate has GES = p'/?g,, where g, represents the gross error
sensitivity of the univariate location estimate at the standard normal distri-
bution. For the univariate median g, = (7/2)"/? = 1.2533, and this is known
to be the smallest possible value for g, among all translation equivariant
estimates of univariate location; see, for example, Hampel, Ronchetti,
Rousseeuw and Stahel (1986), Section 2.5¢. Curiously, for large p, we note
that biweighted CM-estimates of location can have gross error sensitivities
which are smaller than the componentwise median. This is true even for
p = 4. If we choose A, = 27 for p = 4, then G, /p*/? = 1.197.

For large p, the biweighted CM-estimates do not improve upon the bi-
weighted S-estimates in terms of the GES for shape (i.e., G,). Some computa-
tions show that this is true for p > 6. If we do choose A, > A;, though, a
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FiG. 4. Indices of local robustness biweighted CM-estimates: p = 10.

modest increase in G, may be a worthwhile sacrifice in order to obtain a
smaller value of o;. A small value of o; may be especially important when
considering problems involving simultaneous inference since there are 3
p(p + 1) — 1 functionally independent shape parameters.

APPENDIX

Proof of Theorem 3.1.  First note that if (u, V) € R? X2, then L(, V) <
. Also, (u, AV) € R? X2, satisfies (3.2) for large enough A. Thus, we only
need to show that if (u,,V},) - d(R? X.2)), then either L(y,,V,) — * or
(3.2) is not met for large k.

Let A, , and A, , represent the largest and smallest eigenvalue of V,,
respectively. If condition (3.2) is met for ( Uy, Vy,), then, for any s, ep(») >
p($)P[(X — p,)'V, *(X — w,) = s], which implies for any § > 0 there exists an
s large enough such that

(A1) Prob[(X — 1) Vi H(X — ) <s8] =1—e— 6.
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This, in turn, implies for any 6 > 0 there exists an s such that
(A.2) Prob|{al, (X — )}’ < A, 45| 21— ¢ -5,

where a, is an eigenvector of V) associated with A, , and is normalized so
that aja, = 1. If A, , — 0, then, by the condition on X in the theorem, (A.2)
cannot hold for large k. Thus, we may assume A, , > A, > 0. If A, , — o,
then L(u,,V,) — = since p is bounded and A, , must be bounded away from
0. Thus, we may assume A; , < A; < 0. Finally, we note that if || w,ll — o,
then (A.l) cannot be met. O

PrOOF OF THEOREM 4.1. Theorem 3.1 ensures the existence of a solution
(uX), V(X)). Define &, = E[ p{(X — uX)'VX) (X — wX))}/p(), and note
that (wX), V(X)) must minimize |V| subject to the constraint E[ p{(X —
RV IX — p}l = g, p(»). However, application of Theorem 1 of Davies
(1987) for multivariate S-estimators implies that the solution to this last
problem is unique and must be (wX), V(X)) = (., A2) for some fixed A > 0.
This completes the proof. In applying Davies’ (1987) results, it is helpful to
note that the function «(s) used by Davies (1987) is equivalent to 1 —
p(s)/p(). Also, Davies (1987) normalizes the function g in (4.1) so that
(uX), V(X)) = (u, 3). This normalization implicitly depends on &,. O

PrOOF OF THEOREM 5.1. (i) Upper bound. Suppose m > [ne] and consider
a sequence Y, ={y,;,...,¥, ;) such that |ly;,ll>« as k> for j=
1,...,m. Define Z, = Y, U{x,,,1,...,x,} and let (w,,V},) = (AU(Z,), V(Z,)).
Again, let A; , and A, & represent the largest and smallest eigenvalues of V,,
respectively. If (a(.), V( )) does not break down, then there exist constants
a,v;,vy such that ||u,ll<a < and 0 <uv, <A1k < A, ; <vy <. Thus,
(yj’k —u) Vil y o — ) > for j=1,2,...,m and so, for large &k,
ave{ pl(z; , — )V, '(z; , — w)l} > mp(OO)/n > 8p(00). This contradicts (1.2)
and so £¢%(X,) < [nel/n.

Suppose now that m > [n(1 — £) — p] and suppose all m elements of Y
equal x,. Since (A("), V() is affine equivariant, we can assume x, = 0,
X,.1 = €; and, when p > 2, x; = e; for j = 2,..., p, where e, is the vector
with 1 in the Jth position and 0’s elsewhere. Define Z = Y U {xq,...,x,_,,}
and let s, > 0 such that p(s,) < p(«). Such an s, exists since p(s) is
continuous at 0 and p(0) < p(). Consider now the sequence V, = s, ‘e e} +
A M = egey) with A, — 0. Thus, y;V, 'y, = x{V, 'x, = 0,%, .,V 'x,, ., = 5,
and, when p > 2, x;'V, 'x; =\, for j=2,...,p.If n — m > p + 1, we then
have ave{pz,V,'z)} <(n —m —p — Dp(®)/n + p(sy)/n + (p — DA, /n <
ep(e) — {p(e) — p(syll/n + (p — DA,/n. If n — m < p, then
ave{ p(z,V, 'z,)} < (p — 1A, /n. In either case, this implies that eventually,
for large enough £, the constraint (1.2) holds for (0,V,). However, for any
fixed (u,V), L(p,V;Z) > —o whereas L(0,V,;Z) - —» and so &X,) <
[n(1 — &) — pl/n.
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(i) Lower bound. Suppose m < min{[ne],[n(1 — &) — p]} and consider any

&,-contaminated samples Z. We first note that Theorem 3.1 ensures the
ex1stence of (a(Z), V(Z)) Let A(Z) and A,(Z) represent the largest and
smallest eigenvalues of V(Z), respectively. Our goal is to show that, for all
possible &,-contaminated samples Z, A,(Z) is bounded above, A,(Z) is
bounded below and || i(Z)|| is bounded above. This then implies £*(X) >
min{[nel/n,[n(1 — &) — pl/n).

The constraint (1.2) implies that there exists s, < « not dependent on Z
such that {z — W(2)}’ V(Z) Yz — w2} < s, for at least [n(1 — &)] values in
Z.Since m < [n(1 — &) — p], at least (p + 1) of such values must be from X,.
Since X, is in general position, this implies there exists a A; > 0 such that
A, (Z) > Ay. Also, if there exists a A, < © such that A,(Z) < A,, then there
must exist a p, < o such that || i/(Z)|| < w,. So it remains only to show that

A(Z) is bounded above.

To show this, note that L{ i(Z), V(Z); Z} is not bounded above if A,(Z) is
not since p is bounded and we have already shown that A,(Z) > A, > 0.
However, since m < [ne], constraint (1.2) is met for (u, V) = (O, AlI) and any
Z for large enough A, or specifically for A such that sup, . x p(x'x/A) < n(e —
m/n)p(®) /(n — m). Moreover, L(0, AI; Z) is bounded above over Z for any
fixed A. Thus, there must exist a A, < «© such that A,(Z) < A,. O

LEMMA Al. Let Y, be a sequence of random vectors in RP such that
Y, — Y in distribution. Also, suppose (u,;,V),) € R? X2, with (w,,V},) -
(u,V) e R?P XZ,. If G: R > R is bounded and contmuous then E[G{(Y, —
1)V (Y, — ] > ELG(Y — 'V Y — )l

PrOOF. Let d2 = (Y, — u,)'V; (Y, — p,) and d® = (Y — w)'V- XY — p).
We then have d? — d? in distribution. This implies E[G(d?)] — E[G(d?)] for
any bounded continuous G. O

PrROOF OF THEOREM 6.1. Since X is continuous, the conditions of Theorem
3.1 hold for X, for large enough %, say £ > K. Furthermore, there must exist
some compact set & such that (u,,V,) € & for £ > K, since, if not, then
there exists a subsequence of (u,, V) diverging to J(R? X.#,). An argument
analogous to the proof of Theorem 3.1 can be made to show that this last
statement leads to a contradiction. Thus, to complete the proof of Theorem
6.1, it is sufficient to show that if (w,,V,) - (uy,Vy) € R? X2, then
(g, Vy) = (uX), V(X)).

Let L,(u,V) be the objective function defined by applying (3.1) to X,
rather than to X. Also, let ¢,(u, V) = E[ p{(X, — w)'V (X, — w}l/p(), and
define ¢( u, V) accordingly for X. Thus, (u,,V,) minimizes L,(u,V) subject
to ¢,(u, V) < ¢, and (w(X), V(X)) minimizes L( u, V) subject to ¢(u,V) < &.

Suppose now that (w,,V,) = (u,,V,) # (uX), V(X)). By the presumed
uniqueness of ( w(X), V(X)), either L( uy, V) > LX), VX)) or ¢ gy, Vy) > &.
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The latter is not possible since ¢ > ¢,(u,, V,) = c¢( g, Vy). The limit follows
from Lemma A.1. Thus, we must have

(A.3) L( 1o, Vo) > L( (X), V(X)).
We divide the remainder of the proof into two cases.

CaSE I [e¢(u(X),V(X)) < ¢]. By Lemma A.1, we have c¢,(uX), V(X)) —
c(uX), VX)) < &, L(puX), VX)) - L(puX), VX)) and L,(u,, V,) -
L(py,Vy). These limits, together with (A.3), imply c¢,(u(X), V(X)) < ¢ and
L,(uX), VX)) < L,(p,V,) for large enough k. This contradicts the defini-
tion of (u,, V,) and so we must have (pu,, V,) = (uwX), V(X)).

CastE II [¢(u,X), V(X)) = ¢]. Since the distribution of X is absolutely
continuous in R?, the distribution of D? = {X — uX)}'VX) " 1{X — wX)} is
absolutely continuous in R. Now p(D?) = p(») w.p.1 is not possible since
c(uX), V(X)) = £ < 1. Thus, by Condition 6.2, for any 1 > 0, c(uX),(1 +
MVX)) < e. By (A.3), n > 0 can be chosen so that L(uX),(1 + n)VX)) <
L( g, Vy). The proof then proceeds as in Case I. O

REMARK A.1. From the proof of Theorem 6.1 we note for the case
c(uX), V(X)) < & that the conditions of Theorem 6.1 can be relaxed. In
particular, we do not need to assume that p(s) is strictly increasing. Also, the
assumption that the distribution of X is absolutely continuous can be re-
placed by Condition 3.2. Note that if Condition 3.2 holds for X, then it holds
for X, for large enough k. This follows since, for any hyperplane B C R?,
lim sup P(X, € B) < P(X € B).

The conditions of Theorem 6.1 can also be relaxed for the case
c(uX), V(X)) = &. For this case, the assumption that p(s) is strictly increas-
ing and the assumption that X is absolutely continuous can be replaced by
Condition 3.2 and P[D? Ap] # 0, where A, = {s > 0| p(sy) < p(s) < p(sy)
for s, < s < s,}. This last assumption simply states that the support of D? is
not mutually exclusive of the set on which p is strictly increasing.

PrOOF OF THEOREM 6.2. By Theorem 6.1, we know that (u(X,), V(X,)) —
(uX), V(X)). Now, if (3.5) holds for X, then (3.6) does not hold for X.
Application of Lemma A.1 then implies that (3.6) cannot hold for X, for large
enough k, and hence (3.5) must hold. An identical argument shows that if
(3.6) holds for X, then (3.6) but not (3.5) holds for X, for large enough %. O

PrOOFS OF THEOREMS 6.3 AND 6.4. These proofs mimic the proofs of
Theorems 3.3 and 4.1 given by Lopuhaa (1989). O

PRrOOF OF (8.2). For vectors a and b, let da/db represent the matrix of
partial derivatives {da;/ (ij} with { varying over rows and j varying over
columns. Taking into account the redundancy caused by the symmetry of V,
the first two terms of the Taylor series expansion of V about V|, are given by

(A4) H(V) =H(V,) + {H'(Vy)}vec{V = Vy} +0o(V - V),
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where H'(V) = ;{dH(V)/d vec(V)}I + J,) with J, = LF_,e,e; ® e;e. Us-
ing (A.4), it follows that

(A5) IF(x; H(V(X))) = (H'(V(X))} vec(IF(x; V(X))}.

Now, since H(AV) = H(V), AH'(A\V) = H'(V) and hence A, H'(V(X)) = H(Z).
Also, from the proof of Theorem 1 in Tyler (1983), we know that
{H'(V)}vec(V) = 0. Applying these results to (7.2) and using some standard
matrix algebra, we obtain

(A.6) IF(x; H(V(X))) = hy(s/A){H'(2)}(2* ® 3/%)(2 © 2).

The proof is complete by observing y,(2) = {H'(Z)HZ2 ® 3/2) and so
'YH()\E) = '}’H(E). O

Derivations for the biweighted CM-estimates. Expressions for o, G, o
and G, as functions of A, follow from the identity

er(X) = E[(S/0)"Is_,] = 2"T(3p + k)Prob| x2,,, < A] /{X*T(3p)},
where S has a sz distribution. We then have

(A7) a=p Noles(Ag) — deg(Ag) + 6eg(Ag) — dey(Ag) + ey(Ag)} /b7,
(A.8) G, =(96/125)V5 \}/2/b,

(A.9) o =(1+ 2/17){96(’\0) —des(Ag) + 6e4(A) — 492(/\0)}/17%,
(A.10) Gy =(8/9)(p + 2)/by,

where b; = (1 +4/ple,(A)) — 2(1 + 2/ple(Ay) + e,(Ay) and b, = ez(A,) —
des(Ay) + 6e,(Ny) — 4es(Ay) + ey(Ay). Furthermore,

(A11) E[p(S/N)]/p(*) = Bey(A) — Bey(A) — Beg(A) + 1 —eq(A).

Consider now p — . Since )(p2 +or/D — 1 in probability, it follows that
e,(p/y) > vy* for any 0 < y < 1. Using (A.11), this implies A;/p — v,},
where v, is the unique root of the equation 3y — 3y? + y® = 1/2, specifically
vo = 0.2063. If we set Ay = A, /7 with0 < 7 < 1l andlet p — o, then A,/p —
(ty,)"! and e, (1)) = (y,7)"!. From this we get the limiting results for «,
G,/p"?, o, and G, given in Section 9.
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