
The Annals of Statistics
1996, Vol. 24, No. 3, 1283]1297

A MINIMAX APPROACH TO CONSISTENCY AND
EFFICIENCY FOR ESTIMATING EQUATIONS1

BY BING LI

Pennsylvania State University

The consistency of estimating equations has been studied, in the
main, along the lines of Cramer’s classical argument, which only asserts´
the existence of consistent solutions. The statement similar to that of Doob
and Wald, which identifies the consistent solutions, has not yet been
established. The obstacle is that the solutions of estimating equations
cannot in general be defined as the maximum of likelihood functions. In
this paper we demonstrate that the consistent solutions can be identified
as the minimax of a function R, whose properties resemble those of a log
likelihood ratio, but which exists in a much wider context. Furthermore,
since we do not need R to be differentiable, the minimax is consistent
even when the estimating equation does not exist. In this respect, the
minimax is a new estimator. We first convey the idea by focusing on the
quasi-likelihood estimate, and then indicate its full generality by provid-
ing a set of sufficient conditions for consistency and studying a number of
important cases. Efficiency will also be verified.

1. Introduction. The quasi-likelihood estimate is defined as the solution
to the quasi-likelihood equation, the optimal estimating equation constructed
under the assumptions of the first two moments and the differentiability of

Ž . Ž . Tthe mean function. See Wedderburn 1974 and McCullagh 1983 . Let X s
Ž .X , . . . , X be random observations with joint distribution P for some1 n u

p-dimensional parameter u in some parameter space Q. About the family of
� 4distributions P : u g Q , we only know of the first two moments m su u

Ž .T � 4 Ž .m , . . . , m s E X and V s V : i, j s 1, . . . , n s cov X , X . The1u nu u u i ju u i j
quasi-likelihood equation is defined to be

1 q u , X s mT Vy1 X y m s 0,Ž . Ž . Ž .˙u u u

where m is the n = p-dimensional derivative matrix. The function on the˙u

left, usually called the quasi-score, is so constructed as to contain the greatest
amount of information among the class of all linear and unbiased estimating

Ž . Ž . Ž .equations in terms of Godambe 1960 . See Jarrett 1984 , McLeish 1984 ,
Ž . Ž .Godambe and Heyde 1987 and McLeish and Small 1992 .

If the quasi-score is the gradient vector of a potential function, in other
Ž . Ž . Ž . Ž .words, if  Q u , X ru s q u , X for some Q u , X , then Q u , X is defined to

be the quasi-likelihood, and its global maximum is the quasi-likelihood
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estimate. In general, however, the quasi-score may not be the gradient of any
potential function, in which cases the quasi-likelihood is not defined. See

Ž . Ž .McCullagh and Nelder 1989 and McCullagh 1990 . Hence, in general, the
quasi-likelihood estimate is only the solution to an estimating equation and

Ž .not the maximum of an objective function. Two questions arise: 1 If there
is more than one solution to the quasi-likelihood equation, which are con-

Ž .sistent? 2 If the mean m is not a differentiable function or if the quasi-u

likelihood equation has no solution in the parameter space, how should we
draw sensible inference based on the mean-variance assumption?

To make the point clearer, let us draw an analogy with the two main
approaches to consistency in the classical theory of maximum likelihood

w Ž .xestimation. By the first approach Cramer 1946 , one exhibits the existence´
of a sequence of consistent solutions to the likelihood equation. Since it
employs only the properties of the likelihood equation, this approach can be
applied generally to estimating equations which need not correspond to

w Ž . Ž .likelihood functions. By the second approach Doob 1934 ; Wald 1949 ;
Ž .xWolfowitz 1949 , one demonstrates that the global maximum of the likeli-

hood function is consistent. The advantages of the Doob]Wald approach are
Ž .i the consistency does not depend on the differentiability of the likelihood

Ž .function or the existence of the likelihood equation and ii when the likeli-
hood equation does exist, we know which solutions are consistent in case
there are more than one of them. However, since it appeals to the properties
of likelihood functions, which in general have no direct correspondence for
estimating equations, the Doob]Wald approach seems difficult to apply gen-
erally to estimating equations.

A key property of the likelihood function used in the Doob]Wald approach
is the inequality

2 E log dP rdP - 0 for all h in Q , h / u .Ž . � 4Ž .u h u 00 0

Ž .Cox and Hinkley 1974 gave the consistency argument of Doob and Wald a
concise and accurate summarization: The defining property of the maximum
likelihood estimate,
3 log p X G log p X ,Ž . Ž . Ž .û h

ˆŽ .is incompatible with 2 unless u converges to u . If this incompatibility could0
be derived without the use of a likelihood function, then it seems one might
be able to obtain a Doob]Wald type result for general estimating equations.

Ž .Our starting point is a function introduced in Li 1993 , which is derived
from the projection of an approximate log likelihood ratio. It takes the simple
form

T T1 1y1 y14 R u , h s m y m V X y m q m y m V X y m ,Ž . Ž . Ž . Ž . Ž . Ž .h u u u h u h h2 2

where the dependence of R on the data X and the sample size n is
suppressed, and u and h are two parameter values in Q. The following
properties motivate the idea of the present paper:

5 i R u , h s yR h , u , ii E R u , h - 0 for all h / u .� 4Ž . Ž . Ž . Ž . Ž . Ž .u 0 00
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From these it follows that

6 sup E R u , h s inf sup E R u , h .� 4� 4Ž . Ž . Ž .u 0 u0 0ugQhgQ hgQ

ˆ Ž .This leads us naturally to estimating u by the minimax u of R u , h . In0
ˆsymbols, u is any parameter value that satisfies the relation

ˆ7 sup R u , h s inf sup R u , h .� 4Ž . Ž .� 4Ž .
ugQhgQ hgQ

The idea of the minimax approach to the consistency of quasi-likelihood
estimation, which will be the focus of the present paper, can be summarized

ˆŽ . Ž .as: 6 and 7 are incompatible unless u converges to u . This approach0
makes no differentiability assumptions. Consequently, the consistency does

Ž .not depend on the existence of the quasi-likelihood equation 1 . Furthermore,
Ž .it will be shown that all the minimax points of R u , h are consistent; this

avoids the ambiguity that occurs when there are multiple solutions to the
quasi-likelihood equation and when the quasi-score does not integrate to a

ˆpotential function. Under mild assumptions, the minimax u has the same
ˆefficiency as the quasi-likelihood estimate. Under further mild assumptions, u

Ž .is necessarily a solution to the quasi-likelihood equation 1 . In either case,
the minimax approach provides us with a specific estimate that is consistent
and efficient, rather than merely indicative of the existence of such an
estimate.

Evidently the maximum likelihood estimate itself can be considered as the
Ž .minimax of the log likelihood ratio, because 3 is equivalent to

8 sup log p X y log p X s inf sup log p X y log p X .Ž . Ž . Ž . Ž . Ž .� 4 � 4ˆh u h u
ugQhgQ hgQ

Ž . Ž . Ž .Indeed, for any function f X , the minimax point of f X y f X is simplyu h u

Ž .the maximum point of f X . However, for general estimating equations, it isu

Ž .often impossible to find a suitable function L u , h that can be decomposed as
Ž . Ž . Ž . Ž .f X y f X and that satisfies inequality 2 . The functions similar to 4 ,h u

on the other hand, can be constructed for fairly general classes of estimating
equations. In this sense, the minimax approach generalizes the idea of Doob
and Wald.

Ž .From 5 and the weak law of large numbers it follows that

P R u , h - R u , u ª 1,� 4Ž . Ž .0 0 0
9Ž .

P R u , u ) R u , u ª 1 for each u / u , h / u .� 4Ž . Ž .0 0 0 0 0

Ž .See Li 1993 . Using these inequalities we can distinguish, with probability
ˆ ˆ� 4 � 4tending to 1, two sequences of solutions u and u , provided that one1n 2 n

converges to the correct parameter value and the other converges to an
incorrect value. This pointwise comparison is the first step toward the
consistency of the minimax, but the latter is a stronger statement, which
requires the global properties of R. To achieve this we appeal to the weak
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y1� Ž .4convergence of the random function n R y E R . In this respect, the
Ž .method used here is closely related to that of Wong 1986 , in which, along

with other theoretical development, the consistency of the maximum partial
likelihood estimate is established.

The consistency of estimating equations and that in the context of general-
ized linear models have been studied by a number of researchers. Fahrmeir

Ž .and Kaufmann 1985 studied the consistency of the maximum likelihood
estimate based on generalized linear models. For natural link function, they
proved the consistency of the maximum likelihood estimate; for nonnatural
link functions, they proved the asymptotic existence of a sequence of consis-

Ž .tent solutions to the likelihood equation. Crowder 1986 studied the behavior
of all existing solutions of an estimating equation. In particular, he gave
sufficient conditions for a set of parameter values to contain all the existing
solutions with probability tending to 1, and for a set to contain no solution
with positive probability in the limit. There has also been research to tackle
the problem of the nonexistence of the quasi-likelihood function. McCullagh
Ž .1990 demonstrated that when the quasi-likelihood equation has multiple
solutions, the confidence interval based on the score test may be misleading.
He suggested the possibility of constructing a quasi-likelihood function by
decomposing the nonconservative quasi-score function into a conservative

Ž .part and a residue part. Firth and Harris 1991 observed a similar phe-
nomenon in their multiplicative random effect model and used the profile

Ž .quasi-score function for inference purposes. McLeish and Small 1992 intro-
duced the projection of the likelihood ratio onto the Hilbert space spanned by
the products of the observations and studied its properties. Along the lines of

Ž . Ž .the discussions of McCullagh 1990 , Li and McCullagh 1994 constructed a
conservative estimating function that is nearest to the quasi-score in terms of
a metric associated with a prior distribution, and whose potential function
belongs to the linear exponential family. They also looked into the possibility
of incorporating prior information into the quasi-likelihood estimate using
this potential function.

The rest of the paper will be organized as follows. We will show in Section
Ž .2 that all the minimax points of R u , h are consistent and, in Section 3, that

they are efficient. In Section 4, we demonstrate under certain conditions that
the minimax points are solutions of the quasi-likelihood equation and we
study the further relations between these two approaches. In Section 5 a
number of possibilities of extending the minimax approach to other classes of
estimating equations are explored.

For simplicity, we refer to a point at which a function obtains its minimax
value as a minimax of that function, and a point at which a function achieves
its maximum value as a maximum of that function. We refer to the corre-
sponding values of the functions as the minimax value and the maximum
value. The maximum or minimax will always mean the global maximum or
minimax. To reduce the number of indices, without further specifications, the
expectation E and probability P are always evaluated at the true parameter
value, which is denoted by u . Perhaps it is helpful to mention that the0



MINIMAX APPROACH FOR ESTIMATING EQUATIONS 1287

Ž .quasi-likelihood function Q u , X , if it exists, is different from the underlying
distribution P, the latter being unknown except for its first two moments.

Finally, the word ‘‘efficiency’’ is used in a semiparametric sense. Thus
when we say that the quasi-likelihood estimate is efficient, we mean it is so
among the solutions of all linear and unbiased estimating equations, and
when we say that the minimax of R is efficient, we mean it is as efficient as
the quasi-likelihood estimate. The term ‘‘minimax approach’’ also needs
clarification. Another suitable name is ‘‘the saddle point approach,’’ which is
not used in order to avoid possible confusion with the term ‘‘saddle point
approximation.’’ It should, however, be understood, that the minimax is not
in the sense of decision theory; in particular, the minimax approach is not
related to what is referred to as the minimax]asymptotic variance method in
the literature.

2. The consistency of the minimax. In order to prove the consistency
ˆ Ž . Ž .of the minimax u of R u , h , we must go beyond the pointwise comparison 9 .

In particular, we need to make probability statements about the entire
function R. We first state and explain the assumptions under which the

� y1Ž .4sequence of random functions n R y ER converges in probability to 0
uniformly.

� Ž .4 Ž . Ž . Ž .With u fixed, we denote E R u , u by J u and R u , u y J u by0 0 n 0 n
Ž . y1 Ž .M u . For now we assume Q to be compact. Since n M u is a weightedn n

average of independent random variables with 0 expectations, by the weak
y1 Ž .law of large numbers, for each u , n M u ª 0 under u . The condition forn P 0

w Ž . xthis is very mild Serfling 1980 , page 27 and we do not count it as an
Ž . � y1 Ž .assumption. We assume i the sequence of random functions n M u :n

4 w Ž . xn s 1, 2, . . . is stochastic equicontinuous in Q see Pollard 1984 , page 139
Ž .and ii for any compact subset G of Q that does not contain u ,0

lim inf inf ny1 J u ) 0.Ž .� 4n
nª` ugG

It is a standard result, as can be verified by applying the Arzela]Ascoli`
Ž . y1 Ž †.theorem, that assumption i , together with the fact that n M u ª 0 forn P

† � y1 Ž .4 Ž .some u in Q, implies that the sequence n M u is tight in C Q . Seen
wŽ . xBillingsley 1968 , page 55 . By Prohorov’s theorem, the sequence of func-

� y1 Ž .4tions n M u , which we know converges in probability to 0 pointwise inn
Ž .Q, also converges weakly in C Q to the constant function 0. Hence

y1sup n M u ª 0.Ž .n P
ugQ

Ž . Ž .Also notice that J u in assumption ii is simply the quadratic formn

T y1J u s 1r2 m y m V m y m .Ž . Ž . Ž . Ž .n u u u u u0 0

Ž . Ž .THEOREM 1. Let Q be compact. Then, under assumptions i and ii
ˆmade in the last paragraph, any parameter value u that satisfies the minimax

Ž .relation 7 is a consistent estimate of u .0
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PROOF. Let O be an open ball centered at u . The gist of the argument isu 00

that, on the one hand, there exists a positive number d X for which

10 lim P ny1 inf sup R u , h ) d X s 1Ž . Ž .½ 5
nª` ufOu hgQ0

and, on the other, for any positive number d ,

11 lim P ny1 inf sup R u , h - d s 1.Ž . Ž .½ 5
nª` ugQ hgQ

To see this, let A be a subset of Q, which we will take to be either O oru0

Q _ O . Thenu0

inf ny1R u , u G inf ny1M u q inf ny1 J u .Ž . Ž . Ž .0 n n
ugA ugA ugA

y1 < Ž . <Since the first term on the right is sandwiched between "n sup M u ,u g A n
it converges to 0 in probability. This implies, for any d ) 0,

lim P inf ny1R u , u G inf ny1M u q inf ny1 J u ,Ž . Ž . Ž .0 n n½
nª` ugA ugA ugA

y1inf n M u - d s 1.Ž .n 5
ugA

12Ž .

y1 Ž . Ž .Take A s Q. Then inf n J u s 0. Hence 12 implies that, with proba-u g A n
y1 Ž .bility tending to 1, inf n R u , u ) yd . However, this event is equiva-u g Q 0

y1 Ž .lent to sup n R u , h - d , whose probability is apparently not greaterhg Q 0
Ž . Ž .than that in 11 . This proves 11 . Take A s Q _ O . Then, by assumptionu 0

Ž . y1 Ž . X Ž .ii , inf n J u ) 0. Denote this number by 3d and let the d in 12 beu g A n
X Ž .d . Then 12 implies that

13 lim P inf ny1R u , u ) d X s 1.Ž . Ž .0½ 5
nª` ufOu0

Ž . Ž . Ž . Ž .However, since inf R u , u F inf sup R u , h , 13 implies 10 .u f O 0 u f O h g Qu u0 0ˆ Ž .Next, let u be any minimax solution of R u , h . Suppose, contrary to the
ˆŽ .assertion of the theorem, that lim sup P u f O ) 0. Then,nª` u 0

lim sup P inf sup ny1R u , h G d XŽ .½ 5
ugQnª` hgQ

G lim sup P inf sup R u , h s inf sup R u , h ;Ž . Ž .½
ugQ ufOunª` hgQ hgQ0

inf sup ny1R u , h ) d X .Ž . 5
ufOu hgQ0

Ž .By 10 the limit on the right-hand side reduces to the left side of the next
string of inequalities:

ˆlim sup P inf sup R u , h s inf sup R u , h G lim sup P u f O ) 0.Ž . Ž . ž /u½ 5 0ugQ ufOunª` nª`hgQ hgQ0

Ž .This contradicts 11 . I
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To cover more general parameter spaces, we follow the discussions of Wald
Ž . Ž .1949 and Wong 1986 and assume that the parameter space is essentially
compact. The proof of the next corollary is a simple extension of Theorem 1
and will be omitted.

COROLLARY 1. Suppose that Q contains a compact subset K whose interior
contains u , and there is a positive number d such that0

P ny1 sup R u , h - yd ª 1.Ž .0½ 5
hgQ_K

Suppose that the conditions of Theorem 1 are satisfied for K. Then any
minimax solution of R on Q is consistent.

Ž .The following example shows that the minimax solution of R u , h some-
times gives a more reasonable, less ambiguous answer to an estimation
problem than does the solution to the quasi-likelihood equation.

EXAMPLE 1. Let X , . . . , X be independent random variables each taking1 n
w xvalues on the closed interval 0, u . Suppose that E X s ur2 for each i. Letu i

2 Ž . 2the variance s s var X be an unknown function of u . Assume that s isu u i u

finite and positive for all possible u . Observe that

y1 y2 y2R u , h s 8 n h y u s 2 X y u q s 2 X y h .Ž . Ž . Ž . Ž .½ 5u h

w .Here, the parameter space is 0, ` , and the sample space varies with u , so
� 4that X ' max X , . . . , X F u . For further discussions of this type of prob-Žn. 1 n

Ž .lems in a parametric setting, see Woodroofe 1972 .
Ž .First, consider the case 2 X - X . Notice that R X , h - 0 for all h /Žn. Žn.

X , soŽn.

sup R X , h s R X , X s 0.Ž . Ž .Žn. Žn. Žn.
hgQ

Ž †. † Ž .If u / X then R u , h ) 0 for each X - h - u , so sup R u , h ) 0Žn. Žn. h g Q

for u / X . Therefore,Žn.

14 sup R X , h s inf sup R u , h if 2 X - X .Ž . Ž .Ž .Žn. Žn.
ugQhgQ hgQ

Ž . ŽNext, let 2 X ) X . Notice that R 2 X, h - 0 if h / 2 X, so sup R 2 X,Žn. h g Q
† †. Ž . Ž .h s R 2 X, 2 X s 0. If X - u - 2 X, then R u , h ) 0 for all u - h - 2 X,Žn.

†Ž . Ž .so sup R u , h ) 0. Finally, if u ) 2 X, then R u , h ) 0 for all 2 X -hg Q
† Ž .h - u , so sup R u , h ) 0. Therefore,hg Q

15 sup R 2 X , h s inf sup R u , h if 2 X ) X .Ž . Ž .Ž . Žn.
ugQhgQ hgQ

ˆŽ . Ž . Ž .Combining 14 and 15 , it is seen that the minimax solution u of R u , h is
� 4max 2 X, X . This is a reasonably good estimate of u considering that weŽn.

have only made an assumption about the mean.
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Ž .In the meantime, the solution of q u , X s 0 violates the relation X F uŽn.
as frequently as 2 X is less than X .Žn.

ˆ3. The efficiency of the minimax. We now demonstrate that u is
efficient among all solutions of linear and unbiased estimating equations. As

˜ ˆŽ .a preparation, we first show that any u that maximizes R u , h as a function
Ž .of h is also consistent. We assume that R u , h is continuously differentiable

y1 5 Ž . 5with respect to either of its arguments. We denote n sup R u , h ruhg Q

Ž . 5 5 p Ž .by B u , X , where ? is the Euclidean norm in R . Since R u , h ru is
Ž .continuous and Q is compact, the function B u , X is defined and finite.

LEMMA 1. Suppose that the assumptions of Theorem 1 hold and in some
Ž . Ž .O , B u , X is bounded by a random variable B X , which does not dependu 00 ˆŽ .on u , and satisfies lim sup EB X - `. Let u be a minimax solution ofnª` 0

Ž .R u , h . Then, under the assumptions made in the last paragraph, any
˜ ˜ ˆ ˜ ˆŽ . Ž . Ž .u s u X that satisfies R u , u s sup R u , h is consistent.hg Q

PROOF. Suppose that there is an open ball O about u such thatu 00˜ ˆŽ . � Ž .lim sup P u f O ) 0. Then lim sup P sup R u , h sn ª ` u n ª ` h f O0 u 0ˆŽ .4sup R u , h ) 0. Hencehg Q

ˆ16 lim sup P sup R u , h G 0 ) 0.Ž . Ž .½ 5
nª` hfOu0

By the Taylor theorem,
 RT †ˆ ˆR u , h s R u , h q u y u u , hŽ . Ž .Ž . Ž .0 0 u

† † ˆ5 5 5 5for some u satisfying u y u F u y u . By the Cauchy]Schwarz in-0 0
equality,

y1 ˆ y1 ˆ †5 5sup n R u , h F sup n R u , h q u y u B u , XŽ . Ž .Ž . 0 0
hfO hfOu u0 0

y1 ˆ5 5F sup n R u , h q u y u B X .Ž . Ž .0 0 0
hfOu0

ˆŽ . 5 5 Ž . Ž .Since B X is bounded in probability, u y u B X ª 0. By 13 ,0 0 0 P
� y1 Ž . 4P n sup R u , h - yd ª 1 for some d ) 0. Hence, as n ª `,hg Q _O 0u0

P ny1 sup R u , h - 0Ž .0½ 5
hfOu0

y1 ˆ5 5G P n sup R u , h q u y u = B X - 0Ž . Ž .0 0 0½ 5
hfOu0

y1 ˆ5 5G P n sup R u , h - yd , u y u = B X - d ª 1.Ž . Ž .0 0 0½ 5
hfOu0

Ž .This contradicts 16 . I

� Ž . 4 Ž . UWrite yE  q u , X ru as I u . It is well known that if u is the0 0
U' Ž .solution to any linear and unbiased estimating equation, then n u y u0



MINIMAX APPROACH FOR ESTIMATING EQUATIONS 1291

� Ž . 4y1cannot have asymptotic variance lower than I u rn in terms of the0
Ž .Loewner’s ordering of matrices. See McCullagh 1983, 1990 . Hence to prove

ˆ y1r2 ˆŽ .Ž .the efficiency of the minimax u , it suffices to show that n I u u y u0 0
tends in distribution to a standard p-dimensional normal random vector. In

ˆ ˜fact more is true: as will be seen shortly, both u and u are efficient and they
are asymptotically linearly dependent. To simplify the notation, we will

Ž iq j i j.Ž . Ž .abbreviate  Rru h u , h as R u , h , i, j s 0, 1, 2, 3. For example,i j
Ž . Ž 3 2 .Ž . Ž .R u , h s  Rru h u , h . If we evaluate these derivatives at u , h s21

Ž . Ž .u , u , then they will be further abbreviated as R u . For example,0 0 i j 0
Ž . Ž 3 2 .Ž . Ž . Ž .R u s  Rru h u , u . By antisymmetry of R, R u s yR u .21 0 0 0 i j 0 ji 0

Ž .Also notice that R u s 0. We shall assume that the central limit theorem11 0
Ž .can be applied to q u , X .0

THEOREM 2. Suppose:

Ž .a The conditions in Theorem 1 are satisfied.
˜ ˆŽ .b Both u and u are in the interior of Q.

Ž . U Ž .c In a neighborhood O of u , u in Q = Q, the partial derivativesu 0 00
� Ž . 4R u , h , i, j G 0, i q j F 3 exists and the sequencesi j

ny1R u , h : n s 1, 2, . . . , 0 F i , j F 3, i q j s 3,Ž .� 4i j

Ž U . U Uare tight in C G , G being the closure of O .u u u0 0 0

Then:
y1r2 ˆ y1r2 ˜Ž . Ž .Ž . Ž .Ž .i Both n I u u y u and n I u u y u converge in law to the0 0 0 0

standard p-dimensional normal random vector.
ˆ ˜Ž .ii The asymptotic correlation coefficient between u and u equals 1.

ˆ ˜That u and u become linearly dependent as the sample size tends to
infinity is not surprising: Otherwise it would be possible to combine the two
estimates to achieve higher information, exceeding the information bound for
quasi-likelihood estimation. Also notice that if u is in the interior of Q, the0

˜ ˆprobability that u and u are both in the interior of Q tends to 1.

ˆ ˜PROOF OF THEOREM 2. The consistency of u and u , as given in Theorem 1
Ž .and Lemma 2, together with the tightness condition 17 , suggests that the

following approximation is valid:

ˆ ˜R u , uŽ .100 y1r2s nž /0 � 0ˆ ˜R u , uŽ .01

R uŽ .10 0y1r2s n ž /R uŽ .01 0

1r2 ˆn u y uR u 0Ž . Ž .020 0y1q n q o 1 ,Ž .p 1r2½ 5ž /0 R uŽ . ˜� 0n u y u02 0 Ž .0
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where the zeros on the left are p = 1 vectors and on the right are p = p
Ž . Ž . Ž . Ž .matrix blocks, and o 1 is a 2 p = 2 p matrix. By Li 1993 , ER u s I up 20 0 0

Ž . Ž .and R u s yq u , X . It follows that10 0 0

1r2 ˆ y1 y1r2n u y u I u 0 yn q u , XŽ . Ž .Ž .0 0 0s n q o 1 .Ž .p1r2 y1 y1r2˜� 0 � 0 � 0n u y u 0 yI u n q u , XŽ . Ž .Ž .0 0 0

Ž .Now applying the central limit theorem to the quasi-score function q u , X ,0
Ž . � Ž . 4 Ž .and noticing that Eq u , X s 0 and yE  q u , X ru s I u , we find that0 0 0

1r2 ˆ T ˜ T TŽŽ . Ž . .n u y u , u y u is asymptotically normally distributed with mean0 0
zero and covariance matrix

y1 y1
I u 0 I u yI u I u 0Ž . Ž . Ž . Ž .0 0 0 0n ž / ž / ž /0 yI u yI u I u 0 yI uŽ . Ž . Ž . Ž .0 0 0 0

Iy1 u Iy1 uŽ . Ž .0 0s n .y1 y1ž /I u I uŽ . Ž .0 0

This proves the theorem. I

4. The relation between the minimax and the quasi-likelihood esti-
ˆmate. In this section we study the relation between the minimax u and the

solutions to the quasi-likelihood equations. We will demonstrate that if the
condition

17 inf sup R u , h s sup sup R u , hŽ . Ž . Ž .
ugQ hgQ hgQ ugQ

Ž .holds, then the minimax is necessarily a solution of 1 . Thus the minimax
specifies a consistent solution. Since, by antisymmetry,

inf sup R u , h s inf sup yR h , u� 4Ž . Ž .
ugQ ugQhgQ hgQ

s y sup inf R h , u s y sup inf R u , h ,� 4 � 4Ž . Ž .
hgQ ugQugQ hgQ

Ž . Ž .condition 17 is equivalent to inf sup R u , h s 0. This conditionu g Q h g Q

Ž .holds quite generally in practice. If u ) u , R u , h is most likely maximized0
˜ Ž .at some h s u - u and the maximum value is positive; if u - u , then R u , h0

˜is most likely maximized at some h s u ) u and the maximum value is also
Ž̃ . Ž .positive. Hence, if the maximum h s u u of R u , h moves continuously as u

˜Ž Ž ..moves from the left to the right of u , the curve u , u u should cross the line0
ˆ ˆ ˆ ˆŽ . Ž . Ž .h s u at some u , u , which is necessarily a minimax. Since R u , u s 0, 17

Ž̃ .is satisfied. Of course, if the mode h s u u moves discontinuously, as would
be the case if, as u moves near u , a point which does not share the same side0

Ž .of the line h s u with the mode suddenly becomes a mode, 17 may fail. If it
ˆ Ž .fails, the minimax u need not be a solution to 1 . However, even in these

ˆcases, u is efficient, as is guaranteed by Theorem 2.
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ˆŽ . Ž .THEOREM 3 a . Suppose that the minimax u of R u , h is in the interior of
Ž .the parameter space Q, that R u , h is differentiable with respect to either of

ˆŽ .its arguments and that condition 17 holds. Then u is a solution to the
quasi-likelihood equation.

ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .PROOF. Since, by 17 , for all h, R u , h F 0 s R u , u , the function R u , ?
ˆ ˆ ˆŽ .is maximized at u . Hence R u , u s 0. However, by computation,01

ˆ ˆ ˆ ˆŽ . Ž . Ž .R u , u s q u , X . Thus u satisfies 1 . I01

Under stronger regularity conditions, we can obtain further relations
between the minimax approach and the quasi-likelihood approach. For each

Ž . Ž . Ž .u , let T u , X be a global maximum of R u , ? . Suppose that T u , X is a
ˆ ˆŽ .differentiable function of u and that T u , X s u . These are reasonable

Ž .assumptions in the light of the discussions that precede Theorem 3 a . Let
Ž . Ž Ž ..l u , X s R u , T u , X . We now describe the relation between the function
Ž . Ž .l u , X and the quasi-score q u , X .

Ž .THEOREM 3 b . Suppose that the assumptions made in the last paragraph
hold.

Ž . Ž .i If R u , h is twice differentiable, then

2 ˆ ˆ l u , X  q u , XŽ . Ž .
s y .2 uu

Ž . Ž .ii If the function R u , h is thrice differentiable and, for a fixed u , there is
an open neighborhood O with closure G such that the sequence of functionsu u

� y1 3 Ž . 2 4 Ž .n  R u , ? ru h : n s 1, 2, . . . , is tight in C G , thenu

 l u , XŽ . y1r2s yq u , X 1 q O n under P .Ž . Ž .� 4p uu

Ž .Under P , T u , X is consistent and efficient. Consistency can be provedu

along the lines of Lemma 1, and efficiency can be proved by the Taylor
Ž .expansion. The details will be omitted. That T u , X is consistent and effi-

cient is itself not of practical interest, for it is not a statistic. However, as will
5 Ž . 5 Ž y1r2 .be seen shortly, the fact that T u , X y u s O n serves as a bridgep

Ž . Ž .that relates the functions l u , X and q u , X .

Ž . Ž . � Ž .4PROOF OF THEOREM 3 b . i Since R u , T u , X s 0 for all u ,01

 2 l u , X  T u , XŽ . Ž .
s R u , T u , X q R u , T u , X .� 4 � 4Ž . Ž .20 112 uu

Ž .By computation, R u , u s 0 for all u . Hence the second term vanishes once11
ˆ ˆ ˆŽ . Ž .we substitute u s u and evoke T u , X s u . By Theorem 1 of Li 1993 , the

ˆŽ .first term on the right equals y q u , X ru .
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Ž . � Ž .4 Ž . � Ž .4ii Since R u , T u , X s 0,  l u , X ru s R u , T u , X . By the01 10
Taylor theorem,

R u , T u , X s R u , u q R u , u T u , X y u� 4 � 4Ž . Ž . Ž . Ž .10 10 11

T1 †q T u , X y u R u , T T u , X y u� 4 � 4Ž . Ž . Ž .122

† 5 † 5 5 Ž . 5 Ž .for some T satisfying T y u F T u , X y u . By Theorem 1 of Li 1993 ,
Ž .the first term on the right-hand side is yq u , X . The second term is zero

Ž . Ž .because R u , u s 0. The third term is O 1 because, by the discussion11 p' � Ž . 4 Ž .preceding the theorem, n T u , X y u is O 1 , and by the tightness as-p
y1 Ž †. Ž .sumption, n R u , T is O 1 . I12 p

EXAMPLE 2. Let X , . . . , X be independent observations with E X s u1 n u i
Ž .and var X s u for u ) 0. By simple calculation, we find thatu i

1r2
n X

yl u , X s 1 y X y uŽ . Ž .½ 5ž /2 2u y X

1r2 1r2
n 2u y X X

q y 1 X y u .½ 5 ½ 5ž / ž /2 X 2u y X

Ž . Ž .The quasi-likelihood function is Q u , X s n X log u y u q constant. Both
Ž . Ž .yl u , X and Q u , X are maximized at u s X, as is predicted by Theorem

Ž . Ž .3 a . The first four derivatives of yl u , X at X are 0, y1, 3r10 and y3r20,
Ž .respectively, and those for Q u , X are 0, y1, 1r5 and y3r50, respectively.

At the maximum, the two functions have the same second derivative, as
Ž .asserted by Theorem 3 b . Their next two derivatives have the same signs

and their third derivatives are quite close to each other. It is interesting to
Ž .compare the estimating equation derived from l u , X with the quasi-score.

Ž .Differentiating l u , X with respect to u , we obtain

 l u , X n X y uŽ . Ž .
y s 1 y A u , X ,� 4Ž .

u u q u y XŽ .
where

1r2 3r2 1r22 X 2u y X q X y 2u XŽ .
A u , X s .Ž . 1r2 1r21r22u y X X 2u y X q XŽ . Ž .

Ž . aMore generally, suppose that E X s u and var X s fu , f ) 0 being theu i u i
Ž .dispersion parameter, and a ) 0. Then T u , X is one of the solutions for h to

the algebraic equation

ya aq1 2X y u u h q a y 2 h q 1 y a X q u h q Xau s 0.Ž . Ž . Ž . Ž .
Ž . Ž .If a s 0, then T u , X equals X and yl u , X recovers the normal likelihood

2Ž . Ž .X y u r 2f .
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5. Remarks on generalizations. The minimax approach can be ex-
tended to cover fairly general classes of estimating equations. We first give a
set of sufficient conditions for the consistency of the minimax.

1. The parameter space Q is essentially compact in the sense of Corollary 1.
2. There is a continuous antisymmetric function R: Q = Q = XX ª R1 which

satisfies the following conditions.
� y1� Ž . Ž .4 43. The sequence of random functions n R u , u y ER u , u : n s 1, 2, . . .0 0

is stochastically equicontinuous in Q.
y1� Ž .4. Under u , the weak law of large numbers applies to n R u , u y0 0

Ž .4ER u , u .0
Ž . � Ž .45. Let J u , h s E R u , h . For each compact subset G of Q that does not

contain u ,0

lim inf inf ny1 J u , u ) 0.Ž .� 40
nª` ugG

Ž . Ž .For many estimating equations g u , X , the construction of R u , h resem-
bles that described in the previous sections, and entails the additional
relations
18 R u , u s g u , X , R u , u s  g u , X ru ,Ž . Ž . Ž . Ž . Ž .01 02

so that the minimax solution of R is as efficient as the consistent solutions
of g.

Ž .CASE 1 Higher order optimal estimating equations . If we know higher
moments, we can construct a higher order optimal estimating equation

Ž .similarly as one constructs the quasi-score. See Jarrett 1984 , Crowder
Ž . Ž . Ž .1987 and Godambe and Thompson 1989 . The function R u , h can be

Ž . Ž . Ž .constructed similarly and it retains the properties 5 and 18 ; see Li 1993 .
Under the additional regularity conditions listed above, the consistency and
efficiency of the minimax solution of R can be established.

w Ž .xCASE 2 Martingale estimating equations discrete . McLeish and Small
Ž . � 41988 discussed the following method. Let X : n s 1, 2, . . . be a sequence ofn
random observations. We want to make inference about some parameters u

Ž . Ž .based on the first two conditional moments. Let m u and V u be thei i
conditional mean and variance of X given X , . . . , X . Then the estimatingi 1 iy1
function

Tn mi y1
g u , X s V u X y m u� 4 � 4Ž . Ž . Ž .Ý i i iž /uis1

is optimal among the ‘‘conditionally linear’’ estimating functions of the form
n Ž .� Ž .4 Ž .Ý a u X y m u , where a u is a p-dimensional vector, whose compo-is1 i i i i

� 4 Ž .nents may depend on X , . . . , X . Consider the function R u , h s1 iy1
n Ž .Ý R u , h , whereis1 i

Ty1 y1R u , h s 2 m h y m u V u X y m u� 4 � 4Ž . Ž . Ž . Ž . Ž .i i i i i i

Ty1 y1q 2 m h y m u V h X y m h .� 4 � 4Ž . Ž . Ž . Ž .i i i i i
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Ž .In this case, we let J u , u be the accumulative information0

n

J u , u s E R u , u X , . . . , X .� 4Ž . Ž .Ý0 i 0 1 iy1
is1

The assumptions 4 and 5 should be replaced by the following assumption
about the accumulative information:

4X. For each compact subset G of Q that does not contain u , there is a d ) 00
for which

P ny1 inf J u , u ) d ª 1Ž .½ 50
ugG

and

ny2 J u , u ª 0 in probability for all u g G.Ž .0

This condition is an analogue of Wong’s condition made on the accumula-
w Ž .xtive Kullback]Leibler information of the partial likelihood Wong 1986 .

Ž .CASE 3 Optimal linear combination of marginal estimating equations .
Suppose that, for each observation X , there is a preferable unbiased estimat-i

Ž .ing equation g u , X , which, for example, may be the marginal likelihoodi i
score for X . Sometimes it may be more realistic or more convenient toi
assume the first two joint moments of the marginal estimating equa-

� Ž .4tions than the joint distribution. Assuming that E g u , X andh i i
� Ž . Ž .4cov g u , X , g u , X are known for each u and h in Q, the optimal linearh i i j j

w Ž .xcombination of these equations in terms of Godambe 1960 is
Tn n  g u , XŽ .i i

g u , X s E yŽ . Ý Ý u ½ 5uis1 js1

y1
= cov g u , X , g u , X g u , X .Ž .� 4Ž . Ž .u i i j j j j

Ž . Ž . Ž .The function R u , h can be defined as R u , h y R h, u , where0 0

n n
T

R u , h s E g u , XŽ . Ž .� 4Ý Ý0 h i i
is1 js1

y1
= cov g u , X , g u , X g u , X .Ž .� 4Ž . Ž .u i i j j j j

Ž . Ž .It is easy to see that conditions in 5 and condition 18 are satisfied. Thus,
under mild assumptions the minimax approach also applies to this case.

Acknowledgments. I would like to thank a referee and an Associate
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